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Abstract: The presented paper describes accurate distance measurement for a field-sensed magnetic
suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor
is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to
external magnetic influences and disturbances. External disturbances interfere with the information
signal and reduce the usability and reliability of the proximity measurements and, consequently,
the whole application operation. A sensor fusion algorithm is deployed for the aforementioned
reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear
dynamic model was derived with the Finite Element Modelling approach. The advantage of such
modelling is a more accurate dynamic model parameter estimation, especially in the case when
the real structure, materials and dimensions of the real-time application are known. The novelty of
the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity
sensor for accurate proximity measurement of the magnetic object. The paper successively presents
a modelling procedure with the finite element method, design and parameter settings of a sensor
fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and
results of real-time operation.

Keywords: accurate proximity measurement; sensor fusion algorithm; Unscented Kalman Filter;
finite element modelling

1. Introduction

Linear proximity sensors (LSPs) with mid- and low-range measurement capabilities are devices
that are used widely in many industrial and non-industrial applications. They are mostly used to
determine the displacement, direction of movement, orientation, speed, etc., of a measured object.
The LSP exploits different physical principles of operation, where capacitive, inductive, ultrasonic,
optical and magnetic phenomena are the most commonly deployed in a sensing operation. Many
of these physical phenomena, especially accurate optical technology and the ultrasonic principle,
require complex pre- and post-processing operations which, unintentionally, result in a high price and
relatively large dimensions of the measuring unit. The dimensional obstacles and the high price of the
sensor devices often prevent installation of precise sensing technology on small/miniature and low
cost devices. In the time of high expansion and pervasive sensing technologies, especially in the field
of miniature sensors, as well as a highly efficient processing unit of relatively small dimensions and
price, they offer many applicable solutions which can effectively replace many complex and expensive
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solutions. In the last two decades devices using magnetic phenomena based on the Hall effect (HE)
have been used widely in many applications due to their low cost, small dimensions, and simple,
reliable and effective operation [1]. Application solutions with HE sensors have been demonstrated
in many different industrial areas such as: automotive, aerospace, aviation industries etc., and in
many of the vastly different engineering fields like electronics, construction, mechanical, medical and
computer engineering [1,2]. HE is a well-known technique for the measurement and detection of rotor
orientation and positioning in electromechanical machines [3,4], contactless current sensing [2], linear
displacement in electromagnetic linear actuators, as well as shaft angle measurement on mechatronic
haptic interfaces [5,6].

This paper deals with a relatively small electromagnetic actuator with an integrated proximity
sensor (EMAwS). The proximity sensor is based on the measurement of magnetic field density with
a ratiometric Hall effect sensor. The electromagnetic actuator is composed of an electromagnet with
a HE sensor mounted on the edge surface, perpendicular to the electromagnet flux linkage. The second
part of the system is an actuated body with an attached permanent magnet (PM), placed near the
electromagnet surface with the HE sensor. The permanent magnet was aligned parallel to the HE
sensor. The actuated body/piston can be contactless actuated vertically or horizontally. Such a EMAwS
system with regard to the physical construction is widely known as a levitation/suspension [7,8] or
a contactless horizontal positioning system [2]. The basic principle of operation is the production of
an electromagnetic force on the body, driven by an electric current. Electric current can be driven
bidirectionally or unidirectionally in regard to the control scheme and operation principle. The main
advantage of such a system is no mechanical contact, low friction, high efficiency and mechanical
reliability. According to the previously listed advantages, such a system can be used as a precise
positioning system in different industrial applications. There are many different applications of
levitation/suspension systems such as; high-speed transportation systems—maglev trains, vibration
isolation systems, magnetic bearings, conveyor systems, wind turbines, medical treatment, precision
engineering industry, etc. The magnetic levitation and positioning is known as a highly nonlinear,
complex and unstable dynamic system, where the proper control algorithm and precise data acquisition
with the sensor system play an important role in the device‘s operation. Many of the studies and
published papers have dealt with the design and analysis of the feedback controller. There are
many presented solutions based on linear and nonlinear control configurations, especially the
simple Proportional Integral Derivative or Proportional Derivative (PID/PD) controller structure
presented by Li and Lin [8,9], the robust H2, H∞ controller paradigm used by Li [7] and more
comprehensive approaches, with linear and nonlinear approaches based on Linear-Quadratic-Gaussian
(LQG) controller, sliding mode, back stepping and the feedback linearization design technique in
combination with intelligent fuzzy and neural systems presented by the authors Mehrtash, Shameli,
Elbuken, Lin, Yang, Gentili and Kashif [10–17].

In most research about levitation and magnetic positioning there is a profound lack of details
about position measurement, especially in the application with HE sensors. For this reason, the main
focus of this paper is the research and development of an accurate distance measurement with a HE
sensor in the magnetic positioning system. The accurate sensing of the suspended object is key, crucial
for the further analysis of the control algorithm, particularly where positioning of the suspended
object is required at very long range. The most challenging subject of the sensor application was
the suppression of the substantial external influences, measurement noise, and other unknown time
varying uncertainties of the HE element. The external influences are described primarily as influences
of the electromagnet and presence of the PM magnetic fields to the HE sensor. Both quantities have
a highly nonlinear connection. Nonlinearity depends on the system dimensions, distance between
the object and electromagnet, the drive coil current and other parameters, such as variable resistance
and inductance due to electromagnet heating and other unknown factors. With the aim to supress
the aforementioned disturbances and to mitigate unknown influences on the position measurement,
the Sensor Fusion Algorithm (SFA) was deployed. The SFA was based on the redundant classification,
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where two sources provide information of the positioning measurement [18]. The first source of
the SFA was direct measurement from the HE sensor and the second was the state estimation from
the mathematical model. The Unscented Kalman Filter—UKF was employed as a nonlinear state
estimation technique [19,20]. The Kalman filter—KF is a state correction, bias and noise suppression
algorithm widely used in many applications [21]. The crucial starting point for proper operation
of the KF algorithm is accurate model dynamics and the initial settings of the error covariance
matrices. The UKF algorithm is intended for nonlinear estimation and has better features, like the
other linear-based estimation KF algorithm. The presented paper deals with the derivation of the
eligible model for accurate and reliable state estimation. There were many studies with model
derivations which relied solely on an analytical approach based on physical laws, presented by
Naumović and Hajjaji [22,23]. Some of the authors used the linear model structure Autoregressive
exogenous—ARX and different identification technique in frequency domain, presented by Yemeo
and Shameli [24,25]. Mostly such approaches involved more or less simplification and approximation
which, consequently, caused imprecise model dynamics. On the other hand, it is also important to note
that the derived models in many studies are used further for the controller design [24–26]. The main
task of the controller is ensuring the stability and robustness of the feedback system with regard to
the plant uncertainty and reference changes [7–9]. It is also evident that many authors used the same
mathematical model for different configurations of the levitation system; levitating PM or metallic
object. In this case, the tracking performance for a wider range of levitation deteriorates drastically,
because the deviation from the nominal operating point increases highly. This issue, i.e., how important
the accuracy of the plant model is, was discussed by Hajjaji [23]. The levitating magnet or metal
object has a different relation between distance and coil driven current on the electromagnetic force,
which is applied to the levitating body. Especially, the levitating PM has a very complex analytical
description of the magnetic force, which depends on the estimation of the magnetic moments. To avoid
complexity of the analytical model the Finite Element Method (FEM) was used for electromechanical
systems. Magnetic field modelling is an important research area, where the real quantities are the
effects of the magnetic field such as; force, electromotive force—EMF, inductance, etc. [27]. The FEM
technique is used often for structure design, modelling and efficiency measurement of different kinds
of electromagnetic machines [27,28]. In the present work, the FEM technique was used for accurate
modelling of the real system, with known dimensions and material characteristics. The aim of the FEM
modelling was to acquire the relation between different quantities, such as driven coil current, magnet
proximity, coil dimension etc. to the dynamics of the electromagnetic force. The derived model has
key importance on the reliability of the used sensor fusion algorithm with UKF which, consequently,
affects the accuracy of the proximity measurement. The efficiency of the FEM modelling approach for
proximity measurement with UKF, will be presented and tested on the real levitation system with PM.

The study is organised as follows: problem formulation and the EMAwS structure is described in
Section 2. The modelling procedure with FEM and parameter optimization is presented in Section 3.
The design of the data fusion algorithm with UKF is discussed in Section 4. Validation and the
effectiveness of the measurement system are presented in Section 5. Finally, the paper is concluded in
Section 6.

2. Experimental Prototype and Modelling of the Electromagnetic Actuator with Integrated
Proximity Sensor

The experimental prototype of the EMAwS electromagnetic actuator with integrated proximity
HE sensor is composed from three main parts: Electromagnet, ratiometric Hall Effect sensor and
actuated body with PM. The ratiometric HE sensor is attached on the electromagnet close to the side of
the PM body, centre aligned with the exit flux linkage field lines. The actuated PM body is positioned
along the electromagnet, parallel to the HE sensor. The body can be moved vertically or horizontally,
depending on the actuator structure. Two different structure types of EMAwS are depicted in Figure 1.
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Figure 1 shows electromagnet—1 with driven current i, linear Hall Effect sensor—2 and actuated
body with permanent magnet—3. Variable d is the distance between the actuated body and the
electromagnet. The following research will not be relayed directly on the specified structure (a) or (b)
of the EMAwS depicted in Figure 1, but on the modelling of the magnetic force Fe for the proximity
measurement d. The modelling of the magnetic force applied to the magnetic body is principally the
same for systems (a) and (b) in Figure 1. For the electromagnetic force modelling and for further data
fusion algorithm the state space description of the system is taken.
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Figure 1. Two electromagnetic actuators with integrated proximity HE sensor-EMAwS; (a) Vertical
movement of the body and (b) Horizontal movement of the body.

The state space representation of the system is:

y(n) (t) = g (x (t)) + f (x (t)) u (t) (1)

where the terms y (t) = [y1 (t) , y2 (t) , . . . , ym (t)] ∈ <m, x (t) = [x1 (t) , x2 (t) , . . . , xm (t)] ∈ <mn and
u (t) = [u1 (t) , u2 (t) , . . . , um (t)] ∈ <m denote the system output vector, states vector and system
input vector, respectively. The functions g (t) ∈ <m and f (t) ∈ <m represent smooth nonlinear
uncertainty functions and they are assumed to be bounded. With regard to the law of motion the
model structure is:

m
d2x(t)

dt2 = ±Fg/ f (t)∓ Fe(x, i, t) (2)

and the coil dynamic equation is:

U(t) = R · i(t) + L
di(t)

dt
+ km(x)

dx(t)
dt

(3)

where U (t), i (t), R, L, km (x) , x, m, Ff g (t), Fe (x, i, t) are the applied voltage, coil current, winding
resistance, winding inductance, induction constant, distance, body mass, opposite force and magnetic
force, respectively. The meaning of opposite force depends on the system structure in Figure 1 and
can be treated as gravity force Fg = mg for system (a) and the friction force Ff = k

.
h for the system (b).

The parameter k is the friction coefficient. Calculation of the magnetic force between two magnets
is a complex task and can be done with the Gilbert and Ampere model [29]. With regard to the
mentioned models the magnetic force Fe between the actuated body and the electromagnet can be
determined with inspection of the magnetic field as a function of the separation distance presented
by Naumović and Hajjaji [22,23,29,30]. It can be done with the integral method, where the solenoid
is modelled as a volume current density and the permanent magnet as a surface current density
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around its circumference presented by Furlani and Robertson [31,32]. The derived magnetic force
models are mostly highly complex functions, which can be used only for offline analysis, parameter
estimation and structure optimization [32]. Such models have very limited use in real-time systems,
especially in the systems with fast execution demand and the systems with modest computational
power. In the presented research the magnetic force model will be used in the UKF algorithm in the
systems with relativity short execution time demand and feedback controller. Algorithms, UKF and
feedback controller need to be executed in each sampling period iteratively. The main focus of the
modelling is obtaining an accurate model dynamic with an adequately simple structure.

3. Magnetic Force Modelling with the Finite Element Method

Partial nonlinear equations arise in mathematical modelling in many diverse areas, such as
material science, fluid dynamics, electromagnetism, economics, etc. [33]. In most cases the equations
of the described system are so complicated that their solution in purely analytical form is impossible
or impractical. Due to the complexity, many times the circumstances have compelled users to search
for approximate solutions to the unknown analytical solutions. The FEM is one of the numerical
techniques used for finding approximate solutions of partial differential equations with known
boundary values [34]. In the presented paper the FEM technique is used for modelling and analysis of
the electromagnetic force Fe and EMAwS system. The open source 2D Finite Element Method Magnetics
(FEMM) created by Meeker [35] was used. FEMM offers broad coupling with different external
simulation and analysis software and self-created scripts in LUA-language. Such external coupling
and self-created scripts’ capability allows many options in simulation, analysis and measurement.
Each created model’s parameters, dimensions, electrical circuit properties, etc. in FEMM can be
controlled by coupled external software or the self-created scripts in LUA. We used the coupling
possibility with MATLAB software, where MATLAB scripts are controlling the multiphysics model in
FEMM, similar to the work presented by Benamimour [36].

The analysis of the electromagnetic force Fe was started by drawing the EMAwS system in FEMM.
The model drawing is an important task, where all material characteristics, geometric and circuit
parameters, measurement units, mesh polygonal angle (grid generation) are determined. The system (a)
in Figure 1 will be examined for further analysis. The system parameters are recorded in Table 1 and
in Figure 2.

Table 1. EMAwS system parameters.

Parameters Value

Solenoid high (hs) 25 mm
Solenoid flange high (hse) 5 mm

Solenoid flange diameter (ws) 40 mm
Centre hole diameter (p) 5 mm

Inside winding diameter (wsin) 20 mm
Ferrite magnetic permeability (µ/µ0) 450

Permanent magnet-neodymium N52
Permanent magnet diameter (wm) 11 mm

Permanent magnet high (hm) 5 mm
Coil wire diameter AGW30 0.255 mm

Number of turns 30
Weight of the magnet 4.35 g

All the materials, wire characteristic, number of coil turns, driven current, PM characteristic
were assigned in the FEMM software as depicted in Figure 3. The picture in Figure 3 represents
a 2D-EMAwS model in central cross-section view, with computational boundary.
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Figure 3. Plotted EMAwS in FEMM software.

In Figure 3. with the selection of solver precision (1e−8) and minimal angle value setting (30)

in a millimeter scale for the inside computational boundary surface, we get a computational mesh
with 17, 257 nodes. The selection of the solver parameters (solver precision and mesh angle) is
crucial in the accuracy of the simulation results. In our approach the solver parameters were selected
experimentally in a manner to acquire accurate and reliable results in a reasonable time. By increasing
the solver precision and angle value of the FEM procedure, the computational effort was greatly
increased, wherein the accuracy of the simulation was insignificant compared to the computation
time used. In regard to the drawn model and solver parameters’ selection, the simulation lasted
approximately 4 min on a Windows 10-based PC, with a i7-3770@3.4GHz CPU and 8GB-RAM memory.
The computational mesh in the selected computational boundary surface and calculated quantities
with FEM are depicted in Figure 4.

The FEMM software offers calculation of many different quantities and values of the designed
electromechanical system. The electromagnetic force Fe for the given system in Figure 4 was calculated
via a weighted stress tensor, where the force value components were mapped in a 2D plane.
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3.1. Coupling FEMM with Matlab and Data Analysis

The coupling procedure is attained after designing a model in FEMM software with all the
material characteristics. There were many choices for how to achieve and how to handle the objects
inside the FEMM from outer programmes or self-defined scripts. As we mentioned before, the Matlab
software was used to handle model objects externally in FEMM. Matlab-FEMM coupling has many
possibilities for managing model objects and FEMM properties. The whole design of the model and
simulation procedure inside the Matlab software was presented by Benamimour [36]. In our case,
we used the possibility of simulation commissioning and model objects handling in an already existing
FEMM model. The coupled Matlab software was used to control and acquire simulated data from
FEMM. Matlab software scheduled the simulation parameters, where the driven coil current and
vertical position of the PM were adjusted. The whole experiment was based on the measurement of the
electromagnetic force, which was acquired from the FEMM at the exact specified value of the current
and PM position. The current value was changed on interval [0 A÷ 1.4 A] by steps of 0.2 A, where
position was changed on interval [15 mm÷ 45 mm] by steps of 0.5 mm. The simulation schedule is
depicted in Figure 5.

The simulated values are further used for model parameters estimation given in Equation (2).
The obtained results from the simulation are presented in Figures 6 and 7.

Figures 6 and 7 present the nonlinear dependence of the electromagnetic force between coil
current and the PM position.
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3.2. Modelling of Electromagnetic Force Fe

The modelling of the electromagnetic force will be presented from the obtained simulation
results from Matlab and FEMM software. The modelling of the electromagnetic Fe has been based
on the function fitting procedure to the set of the simulated result data’s with preselected model
structure. Model estimation and data fitting was performed with the quadratic programming (QP)
method. The QP technique is a well-known and efficient approach for convex optimization with
introduced, boundaries, inequalities and equalities [37]. Before the objective function for optimization
will be derived, the same optimization relaxation will be assigned. The modelling of the Fe will be
considered only on the system with fixed structure and geometrical form. The current and distance
dependence by given fixed preselected system will be considered. From the simulated data presented
in Figure 7 it is straightforward to recognise that the current dependence is completely linear to the
force Fe. This assumption can be proven with the calculated difference between each adjacent current’s
characteristic in Figure 7. Each current characteristic has been labelled as Ik, where k represents
corresponding current value from 0 A to 1.4 A by steps of 0.2 A. The linearity test Lp of current to the
Fe is given with:

Lp = Ik − Ik−1 (4)

where p represents the number of pairs of adjacent difference characteristics. In the presented case with
8 current characteristics k ∈ [0÷ 8] in Figure 7, we have seven difference pairs; p = 7. With deviation
and mean calculation of the Lp we have proved the linear dependence of the current to the force Fe.
The calculated values are presented in Table 2.

Table 2. Calculated difference characteristics Lp with mean and standard deviation values.

p Ld Current Characteristic Difference Mean Value Standard Deviation

1 L1 [0.2–0] A 0.0012 0.6740
2 L2 [0.4–0.2] A 0.0012 0.6740
3 L3 [0.6–0.4] A 0.0012 0.6740
4 L4 [0.8–0.6] A 0.0012 0.6740
5 L5 [1–0.8] A 0.0012 0.6740
6 L6 [1.2–1] A 0.0012 0.6740
7 L7 [1.4–1.2] A 0.0012 0.6740

The distance dependence needs to be determined in regard to the linear correlation of current
and force. The distance and force dependence was estimated with a curve fitting algorithm and the
QP optimization technique. The QP optimization technique allows finding an optimal solution in the
given interval of search parameters with selected equality and inequality constraints. In the given case,
only positive solutions are allowed. The optimization procedure was divided into two stages. In the
first stage the general model structure of the model was specified, where the polynomial parameters
stay uncertain. The corresponding preselected model was fitted for each current characteristic in
Figure 7. After the first stage of the optimization, we get a set of different models with fixed structure
and different polynomial coefficients. In regard to Figure 7 and the simulation schedule we derived
eight different models. The second stage was intended to estimate polynomial coefficients, where each
coefficient in the polynomial has eight values from a fitted model. Each coefficient is also approximated
with a new coefficient polynomial function. The coefficient polynomial functions are inserted further
in the preselected model structure from the previous stage one.

3.3. Model Structure Selection Fe—Stage One

The first stage begins with selection of the simple model structure. The best two model candidates
were selected after a few iterations and with the assumption of the current-force linearity. The best
model candidates for Fe are:
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F1e(d) = ad−4 + bd−2 (5)

F2e(d) = cd−4 (6)

where coefficients a, b, c are estimated with QP optimization, for each separated current characteristic.
The variable d is PM proximity. Selected residual functions for QP optimization are:

J1(d) =
n

∑
i=1

(yi − F1e (d))
2

=
n

∑
i=1

(
yi −

(
ad−4 + bd−2

))2

, (7)

J2(d) =
n

∑
i=1

(yi − F2e (d))
2

=
n

∑
i=1

(
yi −

(
cd−4

))2

, (8)

where n is a number of simulation data from FEMM. The parameters a, b, c are solution of the QP
programming technique with residual Equations (7) and (8). The QP solutions with corresponding
matrixes are:

min 1
2 xTPx + Nx

s.t.

{
Aeqx = Beq

lb ≤ x ≤ ub

(9)

PFe1 =



0 0 0 0 . . . . 0
0 0 0 0 . . . . 0
...

... 1 0 . . . . 0
...

... 0 1 . . . . 0
...

...
. . .

0 0 0 0 . . . . 1


n+2×n+2

, NFe1 =



0
...
...
...
0


n+2×1

, Aeq Fe1 =


d−4

1 d−2
1 1 0 . . . 0

d−4
2 d−2

2 0 1 . . . 0
d−4

3 d−2
3 0 0 . . . 0

...
...

. . .
d−4

n d−2
n 0 0 . . . 1


n×n+2

,

Beq Fe1 =



y1

y2
...
...

yn


n×1

, lbFe1
=



0
...
...
...
0


n+2×1

ubFe1
=



10−7

...

...

...
10−7


n+2×1

, x =


a
b
0
...
0


n+2×1

PFe2 =



0 0 0 . . . . 0
... 1 0 . . . . 0
... 0 1 . . . . 0
...

...
. . .

0 0 0 . . . . 1


n+1×n+1

, NFe2 =



0
...
...
...
0


n+1×1

, Aeq Fe2 =


d−4

1 1 0 . . . 0
d−4

2 0 1 . . . 0
d−4

3 0 0 . . . 0
...

...
. . .

d−4
n 0 0 . . . 1


n×n+1

,

Beq Fe2 =



y1

y2
...
...

yn


n×1

, lbFe2
=



0
...
...
...
0


n+1×1

, ubFe2
=



10−7

...

...

...
10−7


n+1×1

, x =



c
0
...
...
0


n+1×1

(10)

Results of model fitting F1e and F2e over current characteristic from 0 A to 1.4 A, are presented in
Table 3 and Figures 8 and 9.
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Table 3. Parameter estimation of the model F1e and F2e , by current characteristics 0 A–1.4 A.

Current
Model F1e Model F2e

a b Residual (J1) c Residual (J2)

0 A 5.999× 10−9 7.587× 10−8 6.409× 10−5 6.031× 10−9 6.424× 10−5

0.2 A 5.98× 10−9 88.6× 10−8 6.421× 10−5 6.415× 10−9 1.13× 10−4

0.4 A 6.012× 10−9 174.4× 10−8 6.399× 10−5 6.781× 10−9 2.033× 10−4

0.6 A 6.005× 10−9 263.4× 10−8 6.437× 10−5 7.135× 10−9 3.615× 10−4

0.8 A 5.985× 10−9 357.1× 10−8 6.427× 10−5 7464× 10−9 5.512× 10−4

1 A 5.994× 10−9 450.6× 10−8 6.395× 10−5 7.775× 10−9 7.867× 10−4

1.2 A 5.989× 10−9 543.1× 10−8 6.397× 10−5 7.892× 10−9 9.183× 10−4

1.4 A 6.007× 10−9 637.2× 10−8 6.403× 10−5 8.134× 10−9 12.437× 10−4

Figure 8 represents the residue values for model estimation F1e and F2e.
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The model fitting on current characteristics is presented in Figure 9, where Figure 9a,b show the
fitting properties with models F1e and F2e, respectively. Only three current characteristics 0 A, 0.6 A
and 1.2 A are presented for better clarity of the results. It is obvious from Table 3, Figures 8 and 9,
that model F1e has better data matching to the current characteristics than model F2e. From Table 3
it can be seen that the residual values indicate that model structure F1e has quite accurate fitting
properties over the whole area, where residual values remain constant with neglect deviation in regard
to the residual values of the model F2e. The model F1e will be considered for further analysis.
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3.4. The F1e Coefficient Estimation and Fe Model Derivation—Stage Two

After model structure derivation F1e the next step of the optimization procedure is estimation of
coefficient functions. The coefficient function describes the coefficient change in model F1e, where it
is apparent from Table 3 that, the estimated model F1e has variable coefficients. Figure 10 shows the
parameter change of model F1e with regard to the current characteristics.
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With regard to Figure 10 only parameter b needs to be estimated, where parameter a has a constant
value with neglected deviation. The mean value of parameter a is 5.996× 10−9. Parameter b can
be approximate with linear function. Such function indicates linear dependence between force and
current, which was confirmed before with Table 2. The selected linear function of parameter b is:

fb(i) = mi (11)

where fb (i) is a b parameter function of current and unknown parameter m. The same optimization
procedure was used as for model Equations (5) and (6), where residual function is:

J3 =
n

∑
j=1

(
bj − fb(i)

)2

=
n

∑
j=1

(
bj − (mi)

)2

(12)

The obtained results are presented in Table 4 and in Figure 10.

Table 4. Parameter b estimation.

Parameter a Parameter b–(i)

Mean a m Residual (J3)
5.996× 10−9 4.509× 10−6 2.0486× 10−14

Fitting solutions of the parameters a and b are presented in Figure 10. After derivation of the
parameter a, function fb (i) and model structure in Equation (5), we get an accurate model of the
electromagnetic force Fe. The electromagnetic force model Fe is:

Fe(x, i) = ax−4 + fb (i) x−2,
Fe(x, i) = 5.996× 10−9x−4 + 4.509× 10−6ix−2.

(13)

Table 5 presents the final results of model fitting with model Equations (13), consideration of
objective function given in Equation (7) and simulated FEMM results.
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The graphical model fitting results with derived model Fe given in Equation (13) and FEMM was
already presented in Figure 9a.

Table 5. Residual value of objective function J1 with final model Fe and FEMM results.

Current
Model Fe (x, i) = 5.996× 10−9x−4 + 5.996× 10−9 · i · x−2

Residual (J1)

0 A 6.413× 10−5

0.2 A 6.411× 10−5

0.4 A 6.402× 10−5

0.6 A 6.399× 10−5

0.8 A 6.417× 10−5

1 A 6.399× 10−5

1.2 A 6.401× 10−5

1.4 A 6.416× 10−5

4. Distance Measurement and Sensor Fusion Algorithm

After derivation of a proper mathematical model, the next step was to design an algorithm for
accurate position measurement. There are many approaches and estimation algorithms which offer
many promising and useful results. The basic problem of distance measurement with a Hall sensor
is the noisy and biasing output voltage, which is caused by structural and external factors. In our
application, the disturbances on the Hall sensor can be generally defined as: external magnetic
field influence, from the driven coil, the temperature dependence and structural imperfections
of the Hall element. All influences have a complex nonlinear dependence, where the magnetic
field from a driven coil can be prior estimated with static characteristics. With determined static
characteristic the disturbances can be mainly supressed but the accuracy of the measured distance can
still remain incorrect due to the other unknown disturbances, voltage drift, sensor noise, imperfect
static characteristics etc. The measured static characteristics for the system in Figure 1a with an Allegro
MicroSystems A1321 Hall sensor (Allegro MicroSystems, LLC, Worcester, MA, USA) are depicted
in Figure 11.

Figure 11a presents the slack linear static characteristic between the coil and Hall voltage, where
the Hall voltage and PM distance have a nonlinear relation. Both characteristics in Figure 11 are used
for direct proximity measurement with a Hall sensor; conversion from a Hall voltage to PM distance.
The characteristics Hall-coil voltage and Hall voltage and PM position are estimated in the same
fashion as the characteristic for electrical force Fe given in Equations (7) and (8).

The equations for direct distance measurement with static characteristics compensation are:

dhall(v, vhall) = M H (C H(v, vhall)) , (14)

CH(v) = vhall − 1.299× 10−6v2 + 9.05× 10−5v + 2.544, (15)

MH(v) = −563.9 · CH(v)5 + 1351.6 · CH(v)4 − 1284.2 · CH(v)3

+633.1 · CH(v)2 − 183.9 · CH(v) + 46.9,
(16)

where CH (v), MH (v), v, vhall , dhall represents the Hall-coil voltage characteristic, magnet-Hall
characteristic, coil voltage, Hall voltage and PM proximity, respectively. Direct distance measurement
is composed with coil voltage compensation CH (v), after which the PM proximity is obtained from
the MH (v) characteristic.
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4.1. Unscented Kalman Filter and Sensor Fusion Algorithm

The Kalman filter—KF is a broadly used estimation, prediction and sensor fusion
algorithm [19,38,39]. There exist many variants of the KF algorithm, where the Extended Kalman
Filter—EKF and Unscented Kalman Filter—UKF are particularly used to deal with nonlinear systems.
The central operation of the linear KF is the propagation of the Gaussian random variable through the
system dynamics, where covariance of the estimation error needs to be minimized. The EKF used the
same procedure as the linear KF, where the Gaussian random variable is approximated analytically with
Jacobian or Hessian matrices (Taylor series—TS approximation-linearization). Such approximations
can, in some cases, introduce large errors in the true posterior mean and covariance of the Gaussian
random variable, which may lead to poor performance of the filter [40]. The UKF addresses the
issues with approximation of the Gaussian random variables with the Taylor series. Similar to the TS
approximation the Unscented Transformation (UT) can be used for forming a Gaussian approximation
of the joint distribution of random variables, which are defined in the nonlinear dynamic system.
UT transformation deterministically chooses a relatively small amount of the fixed number of sigma
points, which capture the true mean and covariance of the Gaussian random state variable [41]. The UT
transformation is a method for calculation of the statistics of a random variable which undergoes
a nonlinear system. In regard to the TS approximation in the EKF algorithm, the UT transformation
is better at capturing the higher order of moments caused by the non-linear transform and is less
error prone in regard to the calculation of the Jacobian and Hessian matrices—TS [41–43]. The basic
framework of the UKF involves the estimation of the state of the discrete time nonlinear system.
The discrete time non-linear system is:

xk+1 = F (xk, uk, wk) ,
yk = H (xk, nk) ,

(17)

where xk represents the unobservable states of the system, uk is a system input and yk is the measured
output signal. The wk and nk are process and measurement noise, respectively, with corresponding
process noise Q and measurement noise R covariance matrices. The non-linear state F and output H
functions are known. The UKF algorithm is just a straightforward extension of the UT transformation
to the recursive estimation of standard state update equation:

x̂k = (prediciton o f xk) + κk (yk − (prediciton o f yk)) , (18)

where κk is Kalman gain and x̂k is estimated state vector-filter output. The UT transformation sigma
points are applied in the new augmented sigma point matrix χa

k−1, which is generalized obtained from
a value of the vector x̂k−1 and the state covariance matrix Pk−1 [41]. The UKF algorithm equations and
calculation procedure are given below.
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• Initialization of the UKF- filter:

x̂0 = E [x0] ,

P0 = E
[
(x0 − x̂0) (x0 − x̂0)T

]
.

(19)

Variable x̂0 represents initial states of nonlinear system given in Equation (17) and P0 is an initial
covariance matrix of the state variable x0.

• Prediction:
UT-transformation, calculation of 2L + 1 sigma points:

χa
0,k−1 = x̂k−1,

χa
i,k−1 = x̂k−1 +

√
(L + λ) Pk−1, i = 1, . . . , L,

χa
i,k−1 = x̂k−1 −

√
(L + λ) Pk−1, i = L + 1, . . . ., 2L,

(20)

and associated weights:

Wm
0 = λ/ (L + λ) ,

Wc
0 = λ/ (L + λ) +

(
1− α2 + β

)
,

Wm
i = Wc

i = 1/ (2L + 2λ) , i = 1, . . . , 2L.
(21)

The variable L is the number of system states and λ is the scaling parameter; λ = α2 (L + ki)− L.
Parameter α determinates the spreads of the sigma points, ki is a secondary scaling parameter and
β is used to incorporate prior knowledge of the distribution χa

k. The weights Wm and Wc represent
mean weighting factor and estimation error covariance weighting factor respectively [42].

• Time Update
χa

k|k−1 = F
[
χa

k−1, uk−1
]

, (22)

x̂k|k−1 =
2L

∑
i=0

Wm
i χa

i,k|k−1, (23)

Pk|k−1 =
2L

∑
i=0

Wc
i

[
χa

i,k|k−1 − x̂k|k−1

] [
χa

i,k|k−1 − x̂k|k−1

]T
+ Qk, (24)

k|k−1 = H
[
χa

k|k−1

]
, (25)

ŷk|k−1 =
2L

∑
i=0

Wm
i ΥΥΥi,k|k−1. (26)

• Measurement Update Equation

Pykyk =
2L

∑
i=0

Wc
i

[
ΥΥΥi,k|k−1 − ŷk|k−1

] [
ΥΥΥi,k|k−1 − ŷk|k−1

]T
+ Rk, (27)

Pxkyk =
2L

∑
i=0

Wc
i

[
χa

i,k|k−1 − x̂k|k−1

] [
ΥΥΥi,k|k−1 − ŷk|k−1

]T
, (28)

κk = Pxkyk P−1
ykyk

, (29)

x̂k|k = x̂k|k−1 + κk

(
yk − ŷk|k−1

)
, (30)

Pk|k = Pk|k−1 − κkPykykκ
T
k . (31)

where variables χa
k|k−1, ΥΥΥk|k−1, x̂k|k−1, ŷk|k−1, Qk, Rk, Pk|k−1, Pyk ,yk , Pxk ,yk , κk, x̂k|k, Pk|k are prior

sigma points states, prior output sigma points obtained from a nonlinear model given in
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Equation (17), prior estimated state vector, prior estimated output vector, process noise covariance
matrix, measured noise covariance matrix, prior state covariance matrix, prior output covariance
matrix, cross covariance matrix, Kalman gain, posterior state vector—UKF output and a posteriori
state covariance matrix, respectively. The UKF algorithm starts with the a priori selected weights
Wm, Wc and scaling parameters λ, ki. The UKF filter is used for the sensor fusion procedure
in a manner to improve accuracy of the distance measurement with the Hall sensor. The direct
measured value from the Hall sensor with Equation (14) represented variable yk, where ŷk is the
estimated variable from the derived nonlinear model of Equations (2), (3) and (13).

4.2. Deployment of the UKF Filter

The UKF filter, as a sensor fusion algorithm, is based on two main baselines; the real direct
proximity measurement from the Hall sensor with nonlinear characteristic compensation given
in Equation (14) and the proximity estimation from the selected non-linear dynamic model in
Equations (2), (3) and (13). Both the proximity values are used in the UKF algorithm. The state
space representation of the derived nonlinear model is:

.
x(t) =


.
d(t)
.
v(t)
.
i(t)

 =

 v(t)
9.89− 5.996× 10−9d−4(t) + 4.509× 10−6i(t) · d−2(t)
−165.6 i(t) + 61.61 u(t)

 = F (d(t), v(t), i(t)) ,

y(t) = d(t) = H (d(t), v(t), i(t)) .

(32)

where x (t) = [d (t) , v (t) , i (t)] is a system state vector x (t) εR3 and represents; d—PM vertical
position, v—PM velocity and i—coil current. The size of the state vector is L = 3, which means that the
UKF operated with 2L + 1 sigma points. For the further use on a real-time system, the continuous-time
Equation (32) were discretized using the Euler integration scheme. The discrete form of the continuous
system in Equation (32) is:

d(k + 1) = d(k) + v(k) · ts,
v(k + 1) = v(k) +

(
g− 5.996× 10−9d−4(k) + 4.509× 10−6i(k) · d−2(k)

)
· ts,

i(k + 1) = i(k) + (−165.6 i(k) + 61.61 u(k)) · ts,
y(k) = d(k).

(33)

where ts is a sampling time with preselected value of, ts = 0.5 ms. Model system output is the
predicted proximity d (k). For better transparency of the paper text, we assumed that the d (k) = dk
and it applies for all other variables v (k) , u (k) , etc. The state variable x̂k of the UKF algorithm

in regard to the Equations (22)–(31) is equal to x̂k = [d̂k, v̂k, îk]
T

, where input vector uk is a driven
coil voltage. An important part of the algorithm is the state estimation update in Equation (30),
which is based on error calculation between the direct proximity measurement dhallk

obtained from
Equation (14) and UKF’s output state d̂k|k−1 given in Equations (23) and (25). The state update equation
is, x̂k|k = x̂k|k−1 + κk(dhallk

− d̂k|k−1). The derived model in Equation (33) was used for sigma state
estimation χa

k|k−1 in Equation (22) and sigma output estimation ΥΥΥk|k−1 in Equation (25). The discrete
process noise Qk and measured noise Rk were set to:

Q (k) =

 5.6× 10−2 0 0
0 1.7× 10−2 0
0 0 7.71× 10−3

 , R (k) = 0.12.

Other fixed parameters of the UKF have been selected arbitrary with values: α = 0.002, ki = 0,
β = 2 [40]. The selected weighting matrices Wm and Wc are:

Wm = [−2.499 0.416 0.416 0.416 0.416 0.416 0.416]× 105,
Wc = [−2.5 0.416 0.416 0.416 0.416 0.416 0.416]× 105.
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Figure 12 represents deploying UKF as a sensor fusion algorithm for accurate proximity
measurement from a Hall sensor.
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5. Experimental Results

Testing the sensor fusion algorithm with a UKF filter was done predominantly in a closed
loop system, with nonlinear and linear controllers. The nonlinear controller was obtained on the
basis of backstepping controller design. The backstepping method is a recursive design technique,
which stabilises the origin of the system in strict feedback form [44,45]. The nonlinear controller was
synthesised from the derived model in Equation (32). A simplified second order nonlinear model in
Equation (32) was used for the simplification of the Backstepping controller design. In the design
procedure we assumed that the dynamic of the electrical coil was much higher than the mechanical
part, where we got di

dt = 0. The static current value was (t) = 61.61
165.6 u (t). The static current value i (t)

was placed to the velocity equation dv
dt of the model in Equation (32), wherein the second order model

was obtained. For better reference tracking capability of the feedback system, the supplementary error
state was introduced; e (t) = re f (t)− d (t). The re f (t) is a reference tracking value. The Backstepping
controller procedure has had two ‘back steps’, from the proximity-error sate e (t) over v (t) to the
driven voltage as a system input and controller output. The nonlinear controller structure was:

u (k) = 596.11× 103 · d (k) ·
(

9.83 + 0.3 · re fd (k) + re fdd (k)− 3.45 · v (k) +

5.996× 10−9d−4(k) + re f (k)− d (k)

)
,

re fd (k) = 0.927 · re fd (k− 1) + 150 · re f (k)− 150 · re f (k− 1) ,
re fdd (k) = 0.9418 · re fdd (k− 1) + 125 · re fd (k)− 125 · re fd (k− 1) ,

(34)

where uk, re fk, re fdk, re fddk are controller output-coil voltage, reference value, first derivative and
second derivatives of the reference value, respectively. For the first and second derivatives a cut-off
filter was used with frequency at the 150 Hz and 125 Hz. The velocity of the suspended object vk
was not measured directly with separated velocity sensor, but was estimated from a sensor fusion
algorithm with UKF.

For the second test a classic linear PID structure with output clamping algorithm was used to
validate the system efficiency with UKF. The PID controller was tuned with the linear approximation of
the model given in Equation (32) and Integra of Square Error (ISE) performance index. The controller
was designed with Control System Design and Optimization toolboxes in a MATLAB 2016a
environment. The clamping algorithm was used to prevent proper operation of the system and
prevent integrator windup. The PID controller structure with clamping output was:
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u (k) = f (u (k))

(
1.604 · u (k− 1)− 0.603 · u (k− 2) − 623.9 · e (k) +

1020 · e (k− 1)− 386.8 · e (k− 2)

)
+ f2 (u (k)) ,

f1 (u (k)) =


1, 0.5 < u (k) < 3
0, u (k) ≤ 0.5
0, u (k) ≥ 3

, f2 (u (k)) =


0, 0.5 < u (k) < 3

0.5, u (k) ≤ 0.5
3, u (k) ≥ 3

,
(35)

where uk, ek are controller output and current controller error, respectively.
The sensor UKF fusion algorithm and nonlinear controller are running on an ARM Cortex-M4

STM32F407VGT6 microcontroller (STMicroelectronics, Geneva, Switzerland) with floating point
unit-FPU and 12 bit AD conversion for accurate Hall voltage measurement. Figure 13 represents
a real-time system configuration with a Hall proximity sensor and ARM microcontroller. The schematic
in Figure 14 represents the structure of the sensor fusion algorithm with the feedback controller in
Figure 14a and the algorithm procedure flow chart in Figure 14b.
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Figures 15–18 represent the experimental results of the sensor fusion algorithm with UKF and
direct measurements distance with static characteristics (Equation (14)). The reference value of the
feedback system represents the true proximity of the PM obtained from the external independent ruler.
The accuracy of the external ruler was around 0.2 mm. The experiments were tested with feedback
controllers (backstepping and PID), where feedback signals (position, velocity) are taken from the
UKF sensor fusion algorithm. in the presented results, the reference value was changed in the span of
22 mm to the 30 mm from the driven coil.
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Table 6 shows the Root Mean Square-RMS value of the measurements with Backstepping and PID

controllers, where RMS value was assessed with the given expression, RMS =

√
1
N ∑N

k=1

(
dk − d̂k

)2

where dk is a true value and d̂k is the measurement from direct approximation or sensor fusion
algorithm with UKF.

Table 6. RMS values of the signals.

RMS Backstepping Controller PID Controller

Direct measurement 12.32× 10−5 15.71× 10−5

Sensor fusion with UKF 1.52× 10−5 1.68× 10−5

Figure 19 presents a comparison between the UKF and EKF sensor fusion algorithms with the
backstepping controller given in Equation (34). The EKF algorithm uses a linear approximation
(Jacobian matrix) of the model in Equation (32). For better comparison of both algorithms the span of
reference value was selected between 22 mm and 25 mm.
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The results presented in Figures 15–18 show the effectiveness and reliability of the sensor fusion
algorithm with UKF. The UKF, in regard to the direct measurement application improves proximity
measurements significantly, suppresses Hall drift and lowers noise influence on the proximity
information signal. The effectiveness of the noise suppression is confirmed with the Frequency
spectrum plot in Figures 17 and 18 and with Table 6, where the RMS values of the signals are calculated.
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From Figure 19 it can be seen clearly that the UKF sensor fusion algorithm outperforms the EKF.
The advantage of UKF can be noticed also in its reference tracking and noise suppression capability.
The resolution of the measurement in regard to the feedback stability region between 18 mm and
32 mm is estimated at 0.05 mm with regard to Equations (14)–(16), Hall sensitivity value and 12 bit AD
resolution of the ARM microcontroller. The accuracy of the proximity measurement in regard to the
external ruler is estimated at 0.2 mm. At the end of the experiment it needs to be mentioned that the
close-loop system in both configurations with backstepping and PID controllers are unstable if direct
measurement from the Hall sensors is used in controller operation.

6. Conclusions

The main contribution of the presented paper is accurate distance measurement with low cost
sensing devices in the presence of a magnetic field. In the present case a low cost linear Hall sensor
was used. The rough data from the sensor are relatively noisy and contain exogenous disturbance
effects, which need to be removed or suppressed efficiently. The paper findings show great distance
measurement results with regard to the system open loop instability and feedback controller sensitivity
to the sensor noise and signal drift. The sensor fusion algorithm with UKF improved the accuracy
of distance measurement and system states estimation drastically, which are also used in feedback
control. The efficiency of the sensor fusion algorithm originated from the accuracy of the system
model derived with the Finite Element Method. Both approaches, modelling of the system dynamics
with the Finite Element Method and UKF filter settings, are crucial in the proximity measuring with
a Hall sensor. Such an approach can be used in many different electro-mechanical applications where
a relatively uncertain sensor is used and system behavior is known. The approach offers a great
potential to acquiring the quantities, which are not directly measured with separated sensors but are
estimated with the model and sensor fusion algorithm (measuring the coil current and the velocity of
the levitating object).
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