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Abstract: The success of a ferroelectric tunnel junction (FTJ) depends on the asymmetry of electron
tunneling as given by the tunneling electroresistance (TER) effect. This characteristic is mainly
assessed considering three transport mechanisms: direct tunneling, thermionic emission, and Fowler-
Nordheim tunneling. Here, by analyzing the effect of temperature on TER, we show that taking into
account only these mechanisms may not be enough in order to fully characterize the performance
of FTJ devices. We approach the electron tunneling in FTJ with the non-equilibrium Green function
(NEGF) method, which is able to overcome the limitations affecting the three mechanisms mentioned
above. We bring evidence that the performance of FTJs is also affected by temperature–in a non-trivial
way–via resonance (Gamow-Siegert) states, which are present in the electron transmission probability
and are usually situated above the barrier. Although the NEGF technique does not provide direct
access to the wavefunctions, we show that, for single-band transport, one can find the wavefunction
at any given energy and in particular at resonant energies in the system.

Keywords: ferroelectric tunnel junction; electron transport; non-equilibrium Green function;
resonance states; empirical tight-binding

1. Introduction

The asymmetric ferroelectric tunnel junction (FTJ), a thin ferroelectric (FE) layer sand-
wiched between two dissimilar electrodes–or with different interfaces in the case of the
same electrode material–is a promising electron device for many applications such as low
power memories [1] or neuromorphic computing [2]. The salient mechanism of FTJ is based
on the tunneling electroresistance (TER) effect, i.e., a change in the electrical resistivity
when the ferroelectric polarization is reversed under an external electric field [3,4]. In
other words, the electrical resistance of FTJ switches from a high conduction (ON) state
to a low conduction (OFF) state or vice-versa when a voltage pulse is applied. Ferro-
electrics like BaTiO3, PbZr0.2Ti0.8O3, BiFeO3 [5–7], as well as high-k dielectrics like HfO2
and Hf0.5Zr0.5O2 [8,9] have been shown to work as FTJs. The latter are particularly attractive
since they are compatible with the CMOS technology. The TER effect can be characterized
by the TER ratio

TER =
(JON − JOFF)

JOFF
, (1)

where JON/OFF are the current densities in the two different states. The higher the TER ratio
and JON, the better the FTJ performance. The extent of the barrier modulation depends on
numerous factors, such as: (i) the thickness and spontaneous polarization of the ferroelectric
film, (ii) the bias voltage, (iii) the differences between work functions and screening lengths
of the electrodes, and (iv) the built-in field and screening of the polarization charge, as
well as on the variation of barrier thickness due to piezoelectricity [10]. In some FTJ
implementations, an ultrathin dielectric (DE) layer is also introduced, as shown in Figure 1,
in order to ensure an additional way to tune the FTJ performance.
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where JON/OFF are the current densities in the two different states. The higher the TER ratio 
and JON, the better the FTJ performance. The extent of the barrier modulation depends on 
numerous factors, such as: (i) the thickness and spontaneous polarization of the ferroelec-
tric film, (ii) the bias voltage, (iii) the differences between work functions and screening 
lengths of the electrodes, and (iv) the built-in field and screening of the polarization 
charge, as well as on the variation of barrier thickness due to piezoelectricity [10]. In some 
FTJ implementations, an ultrathin dielectric (DE) layer is also introduced, as shown in 
Figure 1, in order to ensure an additional way to tune the FTJ performance. 

To understand, describe, and model the TER effect, the ab-initio methods may pro-
vide an accurate image of the physics governing FTJ systems including the geometry, po-
larization state, electronic structure [11], and transport properties [12,13]. Nevertheless, 
ab-initio methods require large computational resources, which may prevent their inten-
sive use in the early stages of FTJs design, when there is a requirement for a fast scan in 
parameter spaces to obtain a device with required basic functionalities. In the search for 
optimized devices, the semi-empirical methods are fast and, despite all simplifications, 
are extremely useful for the treatment of the charge transport as long as they are fed with 
appropriate physical parameters [14,15]. These semi-empirical approaches are based on 
the non-equilibrium Green function (NEGF) method that can calculate exactly, in princi-
ple, the tunneling current and the I–V characteristic of a FTJ [15]. 

 
Figure 1. Schematic representation of a FTJ with a composite barrier, consisting of a ferroelectric 
(FE) layer and a dielectric (DE) layer between two metallic electrodes (ML and MR). The dotted line 
delimitates the device that is considered in calculations, λ1,2 are the screening lengths in electrodes, 
εFE,DE the relative dielectric constants of the ferroelectric and dielectric layers, ε1,2 the relative dielec-
tric constants of the electrodes, and tFE,DE,ML,MR mark the margins of the layers. In the case of a simple 
FE barrier, the DE layer is not present. 

In semi-empirical methods based on NEGF, the parameters can be adjusted to match 
the experimental data [14]. In many cases, in order to characterize the electron transport 
and interpret the I–V curves, various models of transport mechanisms, involving direct 
tunneling, thermionic emission, and Fowler-Nordheim tunneling, are used [16]. Direct 
tunneling presumes low energy for incident electrons such that the tunneling probability 
does not depend on the profile of the barrier, which is assumed to be rectangular on av-
erage in the case of Simmons formula [17,18] or trapezoidal in the case of Brinkman et al. 
formula [18,19]. The thermionic emission is that part of the current carried over the top of 
the barrier by thermally activated charge carriers [20]. The last mechanism, the Fowler-

Figure 1. Schematic representation of a FTJ with a composite barrier, consisting of a ferroelectric
(FE) layer and a dielectric (DE) layer between two metallic electrodes (ML and MR). The dotted line
delimitates the device that is considered in calculations, λ1,2 are the screening lengths in electrodes,
εFE,DE the relative dielectric constants of the ferroelectric and dielectric layers, ε1,2 the relative
dielectric constants of the electrodes, and tFE,DE,ML,MR mark the margins of the layers. In the case of
a simple FE barrier, the DE layer is not present.

To understand, describe, and model the TER effect, the ab-initio methods may pro-
vide an accurate image of the physics governing FTJ systems including the geometry,
polarization state, electronic structure [11], and transport properties [12,13]. Nevertheless,
ab-initio methods require large computational resources, which may prevent their inten-
sive use in the early stages of FTJs design, when there is a requirement for a fast scan in
parameter spaces to obtain a device with required basic functionalities. In the search for
optimized devices, the semi-empirical methods are fast and, despite all simplifications,
are extremely useful for the treatment of the charge transport as long as they are fed with
appropriate physical parameters [14,15]. These semi-empirical approaches are based on
the non-equilibrium Green function (NEGF) method that can calculate exactly, in principle,
the tunneling current and the I–V characteristic of a FTJ [15].

In semi-empirical methods based on NEGF, the parameters can be adjusted to match
the experimental data [14]. In many cases, in order to characterize the electron transport
and interpret the I–V curves, various models of transport mechanisms, involving direct
tunneling, thermionic emission, and Fowler-Nordheim tunneling, are used [16]. Direct
tunneling presumes low energy for incident electrons such that the tunneling probability
does not depend on the profile of the barrier, which is assumed to be rectangular on
average in the case of Simmons formula [17,18] or trapezoidal in the case of Brinkman et al.
formula [18,19]. The thermionic emission is that part of the current carried over the top of
the barrier by thermally activated charge carriers [20]. The last mechanism, the Fowler-
Nordheim tunneling, is used for triangular barrier profiles, which are encountered at finite
applied bias voltages [21]. The treatment of the above mechanisms is based on several
approximations for electron transport. The Simmons and Brinkman et al. as well as the
Fowler-Nordheim formulae are based on the semi-classical Wentzel–Kramers–Brillouin
(WKB) approximation [17,21], while thermionic emission tacitly assumes a homogeneous
transmission probability of one for all electrons with energy above the top of the barrier [20].
In this work, by the exact treatment of the tunneling within the NEGF method, we show
that the above models (describing direct tunneling, thermionic emission, and Fowler-
Nordheim tunneling) are not accurate enough for performance characterization of FTJs.
These models cannot capture resonant features emerging in FTJ structures that might
play an important role in carrier transport and ultimately in the performances of the
device. The electric current of an impinging electron at a given energy is determined by
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the electron transmission probability at that energy weighted (multiplied) by its Fermi-
Dirac distribution function. Hence, even though they seem unlikely to play a role in
the tunneling due to the relatively simple structure of the barriers, the resonances can
contribute significantly to the electric current since their contribution to transmission
probability may offset the temperature-dependent Fermi-Dirac factor. In the following,
we will show that the resonances emerging close or above the top of the barriers play a
decisive role for transport at room temperature, a fact that is not captured by the models
previously mentioned. Moreover, resonances may appear in FTJs with composite (both
a ferroelectric and a dielectric) barriers. The NEGF method can also accurately describe
these type of heterostructures. Generally, the NEGF approach cannot provide full access to
the wavefunctions, especially for multi-band transport [22]. However, for a single-band
transport, we show that this is not the case; the eigenvectors of the spectral functions are just
the wavefunctions of the system. At this stage, we are able to identify the Green function of
the device as the discrete version of the outgoing Green function, which is used in diverse
scattering problems like nuclear reactions or electron transport in nanostructures [23,24].
The advantage of such correspondence is that the NEGF of the device and the transmission
probability can be expanded as a sum of resonances or Gamow-Siegert states [23–26]. Thus,
we are able to sort out the resonances that count for the electron transport in FTJs.

The paper is organized as follows: The next section deals with the theoretical back-
ground of the calculations of applied voltage induced electrostatic potential across the FTJ,
of transport quantities like I–V curve and conductance by NEGF method, and the evalu-
ation of wavefunctions and resonance states from NEGF calculations. Section 3 presents
numerical results regarding the effect of temperature on electric conductance and TER ratio
for several practical cases of simple and composite BaTiO3-based FTJs. In addition, the
wavefunctions and resonance states for such FTJ structures are analyzed. Section 4 summa-
rizes the conclusions of this work, and lastly, in Appendix A we present the steps to obtain
a discrete tight-binding Hamiltonian from the BenDaniel and Duke Hamiltonian [22].

2. Theoretical Background
2.1. The Profile of Potential Barrier

In semi-empirical methods, the calculation of tunneling current and electric conduc-
tance is performed by simultaneously solving the electrostatic and transport problems.
They are intricately interrelated since the charge density in Poisson equation is calculated
self-consistently from the NEGFs [22]. However, when one deals with free carriers, only
in the metallic contacts they can decouple each other. Thus, let us first deal with the
electrostatics and the profile of the potential barrier. We assume that the dielectric and
ferroelectric are located at x between −tDE and 0 and x between 0 and tFE, respectively,
while the metallic contact ML is at x < −tDE and the metallic contact MR is at x > tFE, as
illustrated in Figure 1. A widely used and good approximation of electrostatics in metals is
the Thomas-Fermi approximation [14,17]. Within this framework, the electrical fields in
ML and MR are given by:

EML(x) = τSe(x+tDE)/λ1 /(ε1ε0), (2)

EMR(x) = τSe−(x−tFE)/λ2 /(ε2ε0). (3)

In Equations (2) and (3) τS is the screening charge at ML/dielectric and MR/ferroelectric
interfaces, λ1(ε1) and λ2(ε2) are the Thomas-Fermi screening lengths (dielectric constants)
of ML and MR, respectively, and ε0 is the vacuum permittivity. In the following, we denote
by εFE, EFE, and P the dielectric constant, the electric field, and the intrinsic polarization,
respectively, of the ferroelectric, and by EDE and εDE the electric field and the dielectric
constant of the dielectric, respectively. The electrostatic equations are in fact the conti-
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nuity of the normal component of the electric induction D at both ferroelectric-MR and
ML-dielectric interfaces.

τS = εFEε0EFE + P = εDEε0EDE. (4)

Additionally, the bias voltage, V, across the structure obeys the equation:

τSλ1

ε1ε0
+

τSλ2

ε2ε0
+ EFEtFE + EDEtDE + V + VBI = 0, (5)

where VBI is the built-in voltage due to mismatch of the conduction band discontinuities
and of Fermi energies EFL (EFR) of ML (MR).

VBI = (ϕ2 + ϕC − EFR − ϕ1 + EFL)/e. (6)

In (6), e is the elementary electric charge, ϕ1 is the band discontinuity at the first
interface between ML and the dielectric, ϕ2 is the band discontinuity at the second interface
between the ferroelectric and MR, and ϕC is the band discontinuity at the interface between
the dielectric and ferroelectric when the ferroelectric is unpolarized. Eliminating EFE and
EDE from (4) and (5), we obtain the screening charge τS

τS =
−(V + VBI) + tFEP/(ε0εFE)

λ1
ε0ε1

+ λ2
ε0ε2

+ tFE
ε0εFE

+ tDE
ε0εDE

. (7)

Knowing that the electric field is homogeneous in both the dielectric and the ferroelec-
tric, now it is straightforward to obtain the electric potential. Then, the tunneling barrier
profile for electrons has the following form:

U(x) =



e τsλ1
ε1ε0

exp[(x + tDE)/λ1], x < −tDE

eτs

(
λ1

ε1ε0
+ tDE+x

εDEε0

)
+ ϕ1, −tDE ≤ x < 0

eτs

(
λ1

ε1ε0
+ tDE

εDEε0

)
+ e τs−P

εFEε0
x + ϕ1 − ϕC, 0 ≤ x ≤ tFE

−e
(

V + VBI +
τsλ2
ε2ε0

exp[−(x− tFE)/λ2]
)
+ ϕ1 − ϕC − ϕ2, x > tFE

(8)

In Equation (8), P is considered positive when points from ML to MR, and negative
when it points the other way around.

2.2. Transport by NEGF

Transport properties like electric current density and conductance can be calculated
by solving the Schrödinger equation with scattering boundary conditions, i.e., either an
incoming wave from the left or from the right. For a single band, the equation is merely 1D
with a BenDaniel and Duke Hamiltonian, where the effective mass of electrons can vary
across the structure [22]:

H = −}2

2
d

dx

(
1

m∗(x)
d

dx

)
+

}2k2

2m∗(x)
+ U(x). (9)

In Equation (9), it is assumed that the energy band is parabolic with an isotropic
effective mass in each layer of the heterostructure, k is the transverse wavevector (parallel
to each interface), m* is the effective mass, and U(x) the potential energy given by (8).
Equation (9) can be discretized into a 1D problem in a tight-binding representation [22].
The details are presented in Appendix A. In general, in the tight binding representation,
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the Hamiltonian has a block matrix form, or more precisely, a block tridiagonal form, as in
Equation (10):

H =

 HL VLD 0
V†

LD HD V†
RD

0 VRD HR

. (10)

For a single band model, the block tridiagonal matrix form of H becomes a simple
tridiagonal matrix. In this format, one can easily see that the Hamiltonian has three parts:
the semi-infinite left (L) and right (R) metallic electrodes and the device (D) that is defined
by HD, an nD × nD matrix. Both electrodes act as reservoirs, hence they have well-defined
chemical potentials and temperatures. We can define the retarded Green function (GR) of
the system at energy E as the inverse matrix of [(E + iη) − H], where η = 0+. Similarly, the
advanced Green function GA is the inverse of [(E − iη) − H], i.e.,

GR,A(E) = [(E ± iη)− H]−1. (11)

In the NEGF method, one eliminates the degrees of freedom of contacts by introducing
self-energies into the projected Green functions of the device (D).

GR,A
D (E) =

[
(E ± iη)− HD − ΣR,A

B (E)
]−1

. (12)

The self-energy ΣR,A
B (E) = ΣR,A

L (E) + ΣR,A
R (E) has two components due to the cou-

pling to the left and right contacts. It replaces the boundary conditions that otherwise would
be fulfilled by the construction of a Green function in the device region. The self-energy
due to the left contact has the following expression:

ΣR,A
L (E) = VLDgR,A

L (E)V†
LD, (13)

where gR,A
L (E) =

[
(E ± iη)− H0

L

]−1
is the Green function of the semi-infinite left contact.

Additionally, ΣR,A
R (E) has a similar expression. Here we notice that due to the fact that we

deal with a nearest-neighbor tight-binding Hamiltonian, the self-energies ΣR
L and ΣR

R are
nD × nD matrices with just one non-zero element, the (1,1) element for ΣR

L and (nD,nD) for
ΣR

R. Thus, the retarded Green function is:

GR
D =



E+iη − D1 + σR
L (E) −t12 0 · · · 0

−t21 E+iη − D2
. . . . . .

...

0
. . . . . . −tnD−2,nD−1 0

...
. . . −tnD−1,nD−2 E+iη − DnD−1 −tnD−1,nD

0 · · · 0 −tnD ,nD−1 E+iη − DnD + σR
R (E)



−1

(14)

The poles of the device Green function are no longer real–an attribute of an open
quantum system. Starting from Equation (11), the calculation of σR

L (E) involves the cal-
culation of matrix element (0,0) of gR

L (E), which is the surface Green function of the left
contact. Bearing in mind that DL and tL are the tight-binding parameters of the left contact
and defining a longitudinal wavevector kl, the energy can be parameterized according to
the single-band dispersion relation for the left contact E = DL − 2tL cos(kl∆). One can
find that the matrix element (0,0) of gR

L (E) is −eikl ∆/tL and σR
L (E) = −tLeikl∆ [14,22,27].

The expression of gR
L (E) is calculated with outgoing boundary condition [27], hence the

self-energy is for this kind of boundary condition.
One can further define: (a) the spectral function A = i(Gr − Ga), which also has a

matrix form–whose diagonal is just the local density of states up to a 2π factor–and (b) the
broadening function due to the coupling to the left and right contacts
ΓL,R(E) = i

(
ΣL,R(E)− Σ†

L,R(E)
)

.
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Using the projection operator on the device D, one can show that the projection of the
full spectral function A on the device space is [28].

AD(E) = i
(

GR
D(E)− GA

D(E)
)
= GR

D(E)(ΓL(E) + ΓR(E))GA
D(E). (15)

Moreover, one can further show that partial spectral densities

AL,R(E) = GR
D(E)ΓL,R(E)GA

D(E) (16)

are spectral densities due to incident Bloch waves that come from the left (L) and from the
right (R), respectively [28]. Thus, GR

D(E) contains information about both solutions of the
scattering problem. Furthermore, it can be shown that the current flow from an incident
Bloch wave that comes from the left electrode into the right electrode is

j(E) =
2e
h

Tr
[

GR
D(E)ΓL(E)GA

D(E)ΓR(E)
]

(17)

GR
D(E)ΓL(E)GA

D(E)ΓR(E) is just the matrix of transmission probability T(E) that has a
schematic representation in Figure 2. From Equation (17), the expression of the total current
takes the form of the Landauer-Büttiker formula [15,22]:

J =
2e
h

∫
Tr(T(E))( fL(E)− fR(E))dE. (18)
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Figure 2. The behavior of an incident Bloch wave Ψnk+ coming from the left. One part is reflected
with the coefficient r and the other part is transmitted with a coefficient t. In case of a single-band
transport, the coefficients r and t are simple scalars.

In Equation (18), the Tr () operation includes both the trace over the T(E) matrix and
the integration over the transverse wavevector k. The functions fL,R are the Fermi-Dirac
distribution functions of the L and R electrodes. Performing the trace operation only over
the T matrix, we obtain the transmission probability coefficient t̃, and the Landauer-Büttiker
formula becomes:

J =
e

2π2h

∫ ∞

−∞

∫ ∞

−∞
d2k

∫ ∞

0
t̃(k, E)( fL(E)− fR(E))dE. (19)

In addition, in the linear regime (small bias voltages V) and at temperature of 0 K, we
obtain the Landauer conductance formula [15]

G =
2e2

h

∫ ∞

−∞

∫ ∞

−∞

d2k

(2π)2 t̃(k, EF) (20)
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2.3. Retrieving the Wavefunction from the Spectral Function. Resonance States

Let us consider the spectral function AL(E) = GR
D(E)ΓL(E)GA

D(E). It signifies the
projected spectral function on the device for incident waves coming from the left. As it
was pointed out in Ref. [28], in general the eigenvectors of AL cannot be identified with the
wavefunction in the device region since there are several eigenvectors of AL with non-zero
eigenvalues. This is rather obvious in the tight-binding representation, but for the multi-
band problem. For a single-band problem, however, this is not the case. AL has just one
non-zero eigenvalue. Its corresponding eigenvector is just the function that is proportional
to the wavefunction in the device region. This statement can be proven directly. The matrix
ΓL(E) has just one element different from 0, like its corresponding self-energies ΣR,A

L (E)

ΓL(E) =

 γL(E) 0 · · ·
0 0
...

. . .

. (21)

Denoting by GD,i,j(E) the matrix elements of GR
D(E) and by AL,i,j(E) the matrix el-

ements of AL(E), it is easy to check that AL,i,j(E) = γL(E)GD,i,1(E)G∗D,j,1(E), where the
* means complex conjugation. One can further see that the nD-dimensional vector

vL =
(

GD,1,1(E) GD,2,1(E) · · · GD,nD ,1(E)
)

(22)

is an eigenvector of AL(E) with the eigenvalue

λL = γL(E)
nD

∑
i=1
|GD,1,i(E)|2 = Tr(AL(E)). (23)

The fact that λL = Tr(AL(E)) ensures that λL is the only non-zero eigenvalue of AL(E).
In a bra and ket notation, we thus write AL(E) as

AL(E) = γL(E)|vL〉〈vL| (24)

since the norm of vL is just
√

λL/γL. Equations (22) and (24) of vL and AL(E) guarantee
that vL is proportional to the solution of Schrödinger equation for incoming waves from
the left projected on the device space:

|ΨL 〉D =

√
γL
2π

vL (25)

Similar calculations can be performed for AR(E), explicitly, the matrix form is
AR,i,j(E) = γR(E)GD,i,N(E)G∗D,j,N(E) with the eigenvector

vR =
(

GD,1,nD (E) GD,2,nD (E) · · · GD,nD ,nD (E)
)
, (26)

the eigenvalue

λR = γR(E)
nD

∑
i=1

∣∣GD,1,nD (E)
∣∣2 = Tr(AR(E)), (27)

and the simple bra and ket form

AR(E) = γR(E)|vR 〉〈vR|. (28)

Also Equations (26) and (28) of vR and AR(E) guarantee that vR is proportional to
the solution of Schrödinger equation for incoming waves from the right, projected on the
device space:

|ΨR 〉D =

√
γR
2π

vR (29)
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The total spectral function AD(E) is the sum of AL(E) and AR(E), hence its range is
spanned by vL and vR with two eigenvalues λ1 and λ2. They obey the following equation:
λ1 + λ2 = λL + λR. Also it is easy to find that the squared modulus of the overlap between
|ΨL 〉D and |ΨR 〉D is

|D〈ΨL|ΨR〉D|2 = (λL λR − λ1λ2)/4π2 (30)

From the analysis we are going to perform in the next section on realistic examples, we
will see that for energies in the direct tunneling regime there are two distinct solutions with
low overlap. In this case, λ1 and λ2 are close to λL and λR. In the opposite case, at resonance,
one of the two eigenvalues λ1 or λ2 is much larger than the other, hence the overlap is large.
In a similar manner, we can obtain the explicit expression of the transmission probability
coefficient in terms of the Green function

t̃(E) = γL(E)γR(E)
∣∣GD,1,nD

∣∣2. (31)

Equation (31) has previously been deduced using an iterative procedure to calculate the
Green function [22,29]. It additionally shows that the transmission probability coefficient
has the spectral properties of the Green function. There is a large body of work in which the
Green function GR

D(E) is set in a meaningful representation. Such a representation is given
by the expansion of the Green function in resonance (Siegert-Gamow) states [23,24], which
lead to the Breit-Wigner formula for resonances in transmission. Here we will outline a few
results about resonant states representation that are connected with our results discussed
above. The expansion of the Green function in resonance states is the sum over these states
plus a background, and it may take the following form:

GR
D
(
x, x′, E

)
=

N

∑
n=1

un(x)un(x′)
E− En

+ B(E). (32)

where un(x) is a resonant state that satisfies the Schrödinger equation

HDun(x) = Enun(x) (33)

with outgoing boundary conditions at the device boundary. Since these boundary condi-
tions are not hermitian, the eigenvalues are rather complex, i.e., En = Ern− iΓn/2. Resonant
states come into pairs with a negative and positive imaginary part [23,25,26]. Now, it is
rather obvious that for energy E far from any resonant energy Ern, the solution of the
Schrödinger equation for incoming waves from the left is different from the solution of the
Schrödinger equation for incoming waves from the right due to different mixing of the tails
of various resonances. However, for energy E near a resonant energy Ern, both solutions
from the left and from the right are similar since the dominant term is that given by un(x).
Finally, it is quite straightforward to notice by using Equation (29) that the transmission
probability coefficient has a multi-resonance Breit-Wigner-like form [24]

t̃(E) =
N

∑
n=1

Tn(E) +
N

∑
n<m

Tnm(E) + R(E). (34)

The term
Tn(E) =

An

(E− Ern)
2 + (Γn/2)2 (35)

is the Breit-Wigner expression, Tnm(E) of the interference term between resonances, and
R(E) is the term resulting from the background.
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3. Numerical Analysis of Tunneling in Relevant FTJs
3.1. Temperature Influence on Conductance and TER Ratio

Numerically, we calculated all quantities defined in the previous section using the
NEGF formalism. The calculation of I–V characteristics is performed with Equation (19),
which is able to reproduce the non-linear regime for large bias voltages and finite temper-
atures. Equation (20) describes the linear regime at 0 K and is often used (especially in
ab-initio calculations, where a full I–V curve is costly) in the calculation of the TER ratio
defined by Equation (1). In the following we shall analyze a few practical FTJ structures.

3.1.1. Pt/BaTiO3/SrRuO3 FTJ

The first system to deal with is that of a BaTiO3 ferroelectric barrier on top of a SrRuO3
substrate which acts as the right contact layer in Figure 1, and Pt is the left contact to the
barrier. The physical parameters are: λ1 = 0.45 Ǻ, λ2 = 0.75 Ǻ, ε1 = 2, ε2 = 8.45, εFE = 125,
EFL = EFR = 3 eV, ϕ1 = ϕ2 = 3.6 eV, P = 16 µC/cm2. The effective masses are: 5 m0 for SrRuO3,
2 m0 for BaTiO3, and m0 for Pt, where m0 is the free electron mass [30]. The Fermi energy is
set to EF = EFL = EFR = 3 eV. One should note that the electron effective masses are different
in the three layers of the structure, hence the calculations need full numerical integration
over transverse k wavevector in Equations (19) and (20). In Figure 3 we show the potential
profiles of a 2 nm thick BaTiO3 barrier for both directions of polarization. The transmission
probability coefficients, also depicted in the right of Figure 3, exhibit resonances above the
very top of the barriers. The resonances are associated with the peaks in the transmission
spectra and if they are well resolved then they obey Equation (35). In Figure 4a, we plot the
conductance of the system, and in Figure 4b the TER ratio at 0 K and 300 K.
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Figure 3. Potential profiles of a BaTiO3 barrier of 2 nm thickness between Pt and SrRuO3 contacts,
for both directions of polarization. Schematically, on the right side are shown the transmission
probability coefficients.

The calculation of the conductance at 300 K, see Figure 4a, was performed with an
applied bias of 0.0001 V, which is low enough to satisfy the linear regime conditions.
Both the conductance and TER ratio behave differently at 300 K with respect to 0 K. At
300 K we observe two regimes depending on the ferroelectric thickness–one regime up
to 2.5 nm and another one beyond this value. The difference between the two regimes is
explained in Figure 5. At 0 K, the channels open to electron flow are those up to the Fermi
energy, represented by dashed line. These channels are those of direct tunneling such that
the Simmons and Brinkman formulae are appropriate [17–19]. For the barrier of 1.6 nm
thickness (Figure 5a), the transport occurs around Fermi energy even at room temperature
(300 K), hence the similar behavior of the conductance at 300 K with respect to 0 K, see
Figure 4a. There is a small contribution to the transmitted current from the resonance
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states, but this contribution is orders of magnitude smaller. However, for thicker barriers
like the one shown in Figure 5b, things may change. First, the direct tunneling current is
much smaller since it has an exponential dependence on the barrier thickness. Second,
the resonance levels are spaced much closer, hence their contribution to transmission
increases considerably. Even if their occupancy–given by the Fermi-Dirac function–might
be small, it is offset by the large transmission probability. In Figure 5b it can easily be
seen that the contribution from the resonance states is overwhelmingly larger than the
contribution from the states near the Fermi energy. Moreover, electrons with energies
closer to the barrier top encounter a triangular barrier profile and so they may still reach a
resonance state; this mechanism cannot be described within the semiclassical WKB theory
of Fowler-Nordheim [21]. A similar behavior of the TER ratio at room temperature was also
observed in experimental data [31]; a degradation of TER was even found when increasing
the ferroelectric thickness. However, performing their analysis based on Brinkman model
at finite bias voltage, the authors attributed the TER degradation to the rather high levels
of noise in the measurements.
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Nanomaterials 2022, 12, 1682 11 of 19

3.1.2. Pt/ SrTiO3/BaTiO3/SrRuO3 Composite Barrier FTJ

The second system we analyze is a composite FTJ, where a dielectric barrier (SrTiO3)
is added besides the BaTiO3 ferroelectric barrier. The electrodes are Pt (left) and SrRuO3
(right). The role of the dielectric layer is to increase the asymmetry of the system, hence it is
expected a higher TER ratio [32]. Physical parameters are slightly changed with respect
to the previous case [32,33]: λ1 = 0.45 Ǻ, λ2 = 0.8 Ǻ, ε1 = 2, ε2 = 8.45, εFE = 90, εDE = 90,
EFL = EFR = 3 eV, ϕ1 = ϕ2 = 3.6 eV, ϕC = 0 eV, P = 20 µC/cm2. The effective masses are: 5 m0
for SrRuO3, 2 m0 for BaTiO3 and SrTiO3, and m0 for Pt. In the following, BaTiO3 thickness
is fixed to 2.4 nm and we varied the SrTiO3 thickness between 0.5 and 3 nm. The results of
the calculations are presented in Figure 6.
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Figure 6. Pt/SrTiO3/BaTiO3/SrRuO3 composite FTJ: (a) Conductance and (b) TER ratio as a function
of the dielectric thickness at 0 K and 300 K.

At 0 K, the conductance for both polarization directions shows an exponential de-
pendence on the dielectric thickness. At room temperature, on the other hand, it appears
that this exponential dependence is no longer valid, as revealed by the TER ratio. In this
case, a decrease in TER takes place when the dielectric thickness increases (Figure 6b). The
explanation of TER degradation is provided by the results presented in Figure 7. One may
observe that the electric charges are mainly transported through quantum states that are
close or above the barrier top, the contribution of the states near the Fermi energy being
negligible. The total barrier thickness is 3 nm at least, a value at which the resonance states
start to play a significant role. As the barrier thickness increases, the contribution of the
resonance states is enhanced. Nevertheless, those resonances located above the barrier (see
the F-D weighted curves in Figure 7 right panel) become less sensitive to the barrier profile,
and hence the decline in the TER ratio with the barrier thickness decrease.

3.1.3. Metal/CaO/BaTiO3/Metal Composite Barrier FTJ

The third system studied herein is also a composite FTJ, with a CaO dielectric barrier
added to the BaTiO3 ferroelectric barrier. The electrodes are of the same generic metal, Me.
In this case the asymmetry is ensured just by the presence of the dielectric. We have set the
physical parameters to [32]: λ1 = λ2 = 1.0 Ǻ, ε1 = ε2 = 1, εFE = 90, εDE = 10, EFL = EFR = 3 eV,
ϕ1 = 5.5 eV, ϕ2 = 3.6 eV, ϕC = 1.9 eV, P = 40 µC/cm2. The effective masses are equal to
m0 for all materials. We have also kept the thickness of BaTiO3 to 2.4 nm and we have
varied the thickness of CaO from 0.5 to 3 nm. In comparison to the previous system, in this
particular case the barrier is much higher on the dielectric. The calculated conductance and
TER ratio are presented in Figure 8.
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Figure 8. Me/CaO/BaTiO3/Me composite FTJ: (a) Conductance and (b) TER ratio as a function of
the dielectric thickness at 0 K and 300 K.

In contrast to Pt/SrTiO3/BaTiO3/SrRuO3, the conductance and the TER ratio of
Me/CaO/BaTiO3/Me composite FTJ exhibit an exponential dependence on the dielectric
thickness at both 0 K and 300 K. Therefore, qualitatively at least, a 0 K analysis remains
valid also at room temperature. In Figure 9, we show the data for a quantitative explanation
of conductance and TER ratio behavior with temperature. One can see that the resonance
states have a minor contribution to the current; the vast majority of carriers are transported
through states around Fermi energy, although there are many resonances below the top
of the barrier. Due to the higher dielectric barrier, these resonant states are just weakly
coupled to the contacts, hence they show low transmission probability coefficients and they
have a modest contribution to conductance.
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3.2. The Tunneling Wavefunctions. The Wavefunctions of Resonances

In the previous section, it was discussed that the energy-dependent transmission in
FTJs has resonant features besides an exponential background. In this section we show that
the wavefunctions also exhibit general features, some of which–e.g., those corresponding
to resonances–are also observed in other nanostructures like quantum wells, multi-barrier
structures, etc. Usually, as a scattering problem, the electron transport in FTJs has two
solutions at a given energy: one solution for an incident electron wave coming from the left
and the other for the electron wave coming from the right. In the following we will illustrate
the wavefunctions at some representative energy values for two FTJs: Pt/BaTiO3/SrRuO3
and Pt/SrTiO3/BaTiO3/SrRuO3.

3.2.1. The Wavefunctions of Pt/BaTiO3/SrRuO3 FTJ

We illustrate the wave functions at the Fermi energy (3 eV) and at some resonant
energies that can be taken from Figure 10.
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It is obvious that up to about 3.5 eV, the transmission probability has an exponential
dependence with respect to energy. In Figure 11, we plotted the wavefunctions of a
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1.6 nm thick BaTiO3 barrier at Fermi energy, as well as the first few resonance energies for
both directions of polarizations. In order to compare these wavefunctions we plotted the
“normalized” eigenvectors of AL, AR, and AD. In other words, for instance, |ΨL,R〉D are
divided by

√
λL,R/2π. The device region is comprised of the barrier and several layers of

contact regions, such that the region outside the device should exhibit a flat electrostatic
potential. In practice this is achieved when a few nanometers of contacts are added to
the device region. At Fermi energy, the wavefunctions are almost real and their overlap
is almost zero. They decay exponentially in the barrier, hence the Simmons or Brinkman
formula applies well for states around Fermi energy.
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Figure 11. Representative wavefunctions of BaTiO3 FTJ as normalized eigenvectors of AL (solid
black line), AR (dotted red line). They are scaled down by a factor

√
λL,R/2π, where λL,R is the

corresponding eigenvalues of AL, AR. In addition we illustrate the normalized eigenvectors of AD

with eigenvalue λ1 (solid black line) and λ2 (dotted red line). The normalized eigenvectors of AL,
AR are as follows: (a)—real part, positive ferroelectric polarization; (b)—imaginary part, positive
ferroelectric polarization; (d)—real part, negative ferroelectric polarization; (e)—imaginary part,
negative, ferroelectric polarization. The normalized eigenvectors of AD are as follows: (c)—positive
ferroelectric polarization; (f)—negative ferroelectric polarization.
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Since the barrier is thin, the resonances are well separated. From Figure 11a,b,d,e
we see that the “normalized” |ΨL〉D is almost identical with the complex conjugate of
“normalized” |ΨR〉D, however the values of λL,R/2π provide the levels of electron density
inside the device for the corresponding wavefunction. These states exhibit a confining
character within the barrier, in contrast to the states shown at Fermi energy. These solutions
belong to resonance and anti-resonance states in the complex wavevector plane [23,25,26].
Moreover, the real and the imaginary parts of |ΨL,R〉D can be found in the normalized
eigenvectors of AD (Figure 11c,f). Finally, by analyzing Figures 5 and 11, we notice that just
the first resonance would participate to the electron transport at room temperature.

3.2.2. The Wavefunctions of Pt/SrTiO3/BaTiO3/SrTiO3 FTJ

The plots of the wave functions for this composite barrier FTJ are shown in Figure 12.
The transmission probability for polarizations is shown in Figure 12a, from which we can
extract the resonances that play a role in the electron transport at room temperature. The
physical parameters are those that have already been used in the calculations. The effective
thickness of the barrier is larger than in simple FTJ presented in the previous subsection;
hence the resonances are closely spaced. Still, at Fermi energy the wavefunctions decay
exponentially in the barrier and are almost real, while their overlap is almost zero. The
wavefunctions of the first four resonances in transmission have a much smaller imaginary
part, which is not shown here. As in the previous section, these wavefunctions manifest
confining character in the barrier. Moreover, the dielectric induces a much smaller coupling
to one of the two contacts, such that the first two resonances in transmission contain a
significant background contribution as a decaying wavefunction in the barrier seen in the
solution from the left (Figure 12b, positive polarization) and in the solution from the right
(Figure 12d, negative polarization). Analyzing Figure 12c,e, one can notice that the overlap
between the solution from the left and that from the right is almost zero for the first two
resonances in transmission. The next two resonances in transmission, however, can be
distinguished from the background, the normalized eigenvectors of AL and AR being quite
similar, yet the corresponding wavefunctions |ΨL 〉D and |ΨR 〉D having quite different
amplitudes. The difference in amplitudes starts to close in as we move to higher energies,
since at sufficiently higher energy the asymmetry of the barrier will not play any major
role in the electron transmission. As a final comment, all four resonances shown here
participate to temperature-activated transport (Figure 7). However, the main contribution
to temperature-dependent transport is given by the first three resonances, even though the
couplings to the contacts of the first two resonances are not as strong as the couplings of
the third one, which is further apart in energy.
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Figure 12. Pt/SrTiO3/BaTiO3/SrTiO3 composite FTJ (1 nm of SrTiO3 and 2.4 nm of BaTiO3).
(a) Transmission probability coefficient for positive (dotted red line) and negative (solid black line)
ferroelectric polarization; (b–e) Like in Figure 11 the representative wavefunctions are the normalized
eigenvectors of AL and AR as well as the normalized eigenvectors of AD. The real part of normalized
eigenvectors of AL (solid black line) AR (dotted red line) are as follows: (b)—positive ferroelec-
tric polarization; (d)—negative ferroelectric polarization. The normalized eigenvectors of AD with
eigenvalue λ1 (solid black line) and λ2 (dotted red line) are as follows: (c)—positive ferroelectric
polarization; (e)—negative ferroelectric polarization.

4. Conclusions

In conclusion, the semi-empirical model of electrostatic and NEGF calculations can
provide a detailed picture of electron transport in systems with FTJs. It treats on equal
footing several transport mechanisms that are usually invoked when studying these devices,
such as direct tunneling, thermionic emission, and Fowler-Nordheim tunneling. This
feature of NEGF allows us to assess in detailed form the role of temperature in electron
transport, and how temperature affects the TER ratio. We have found that for simple or
composite barrier BaTiO3-based FTJs, the transport through temperature activated resonant
(Gamow-Siegert) states may become dominant, affecting both the conductance and the
TER ratio; thus, the more resonances are activated and the stronger their coupling to
the contacts, the more powerful the effect of temperature. The effect of temperature is
obvious in thicker FTJs, since the resonant states–especially those above the barrier–are
closer one another, and hence more of them may participate in the transport. More insight
into this phenomenology may be acquired by calculating the wavefunctions at any given
energy. We show that this is possible for NEGF calculations of single-band transport. Thus,
the transport by direct tunneling takes place through states whose wavefunctions have
a decaying shape in the barrier. These states belong to the background generated by all
resonant states. Furthermore, where the resonances are strong and well-separated, the
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wavefunctions show confinement character in the barrier. In the intermediate regime,
where the resonances are weak, the confining character of the resonance competes with
the decaying character of the background. This analysis is valid not only in the linear
regime, but also for larger bias voltages characteristic to non-linear regime and relevant to
applications; the only change is a rigid shift in the screening charge and in the potential
energy of the right contact, as can be seen from Equations (7) and (8). Lastly, we suggest
that these results may be usefull in the optimization process of the FTJ design for various
applications, particularly at high temperature.
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Appendix A

The BenDaniel and Duke Hamiltonian

H = −}2

2
d

dx

(
1

m∗(x)
d

dx

)
+

}2k2

2m∗(x)
+ U(x) (A1)

can be cast into 1D problem by rewriting it as

H =
−}2

2
d

dx

(
1

m∗(x)
d

dx

)
+ Vk(x) +

}2k2

2m∗L
, (A2)

where m∗L is the effective mass in the left contact and

Vk(x) = U(x) +
}2k2

2m∗L

(
m∗L

m∗(x)
− 1
)

. (A3)

Equation (A2) is discretized and the discrete form of (A2) can be mapped into a tight-
binding Hamiltonian. Thus the continuous variable x is transformed in the discrete version
∆·n, where ∆ is the discretization step and n is an integer running from −∞ to ∞. We
define a localized orbital

∣∣n, RL〉 with ∆·n and RL as longitudinal and transverse positions.
Moreover, we construct transverse Bloch orbitals as a sum over N localized orbitals in the
transverse plane

|n, k〉 = 1√
N

∑
RL

eikRL
∣∣∣n, RL

〉
. (A4)

In this Bloch basis the Hamiltonian has the following expression〈
n, k
∣∣H∣∣n′,k〉 = Dn(k)δn,n′ − tn,n′δn′ ,n±1, (A5)
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where

Dn(k) =
}2

2∆2

(
1

m−
+

1
m+

)
+ Vk(n), (A6)

tn,n′ =
}2(

m∗n + m∗n′
)
∆2 , (A7)

m− =
m∗n−1 + m∗n

2
, (A8)

m+ =
m∗n + m∗n+1

2
. (A9)

The tight-binding version (A5) of BenDaniel and Duke Hamiltonian has a tridiagonal
form. The left contact is defined for n running from −∞ to 0, the device is defined for n
running from 1 to nD, and the right contact from nD + 1 to ∞. The left and the right contacts
are homogeneous systems; hence, we define the tight-binding parameters as follows. The
diagonal term of the left (right) contact is defined as DL (DR), while the off-diagonal terms
ti,i ± 1 as tL (tR).
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