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Abstract

Motivation: Serial section microscopy is an established method for detailed anatomy reconstruc-

tion of biological specimen. During the last decade, high resolution electron microscopy (EM) of

serial sections has become the de-facto standard for reconstruction of neural connectivity at ever

increasing scales (EM connectomics). In serial section microscopy, the axial dimension of the vol-

ume is sampled by physically removing thin sections from the embedded specimen and subse-

quently imaging either the block-face or the section series. This process has limited precision

leading to inhomogeneous non-planar sampling of the axial dimension of the volume which, in

turn, results in distorted image volumes. This includes that section series may be collected and

imaged in unknown order.

Results: We developed methods to identify and correct these distortions through image-based sig-

nal analysis without any additional physical apparatus or measurements. We demonstrate the effi-

cacy of our methods in proof of principle experiments and application to real world problems.

Availability and Implementation: We made our work available as libraries for the ImageJ distribu-

tion Fiji and for deployment in a high performance parallel computing environment. Our sources

are open and available at http://github.com/saalfeldlab/section-sort, http://github.com/saalfeldlab/z-

spacing and http://github.com/saalfeldlab/z-spacing-spark.

Contact: saalfelds@janelia.hhmi.org

Supplementary information: Supplementary data are available at Bioinformatics online

1 Introduction

Serial section microscopy has been used for over a century to recon-

struct volumetric anatomy of biological samples (Born, 1883).

Beyond its classical application in biology, zoology and medical re-

search, serial sectioning in combination with electron microscopy

(EM) has become the standard method to reconstruct dense neural

connectivity of animal nervous systems at synaptic resolution

(Briggman and Bock, 2012; Lichtman et al., 2014; Plaza et al., 2014).

A resolution of less than 10 nm per pixel is necessary to separate indi-

vidual neural processes and to recognize chemical synapses. Sample

preparation and data acquisition at this resolution are highly sensitive

procedures and, as a result, imaging noise and artifacts during

acquisition can be minimized at best but not entirely avoided. In

this paper, we will focus on two major acquisition modalities for large

3-D EM that are used in connectomics: high throughput serial section

transmission EM (ssTEM; Bock et al., 2011) and block-face scanning

EM with focused ion beam milling (FIB-SEM; Heymann et al., 2006;

Knott et al., 2008; Xu and Hess, 2011). While we have developed our

methods with a strong focus on these two modalities, we expect them

to generalize well to other applications.

1.1 Serial section transmission electron microscopy
A series of ultra-thin sections is generated by cutting the plastic

embedded specimen using an ultra-microtome with a diamond
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knife. Section ribbons are collected on tape (Hayworth et al., 2006)

or manually. Manual collection in particular bears the risk of order-

ing mistakes that in practice occur frequently. The nominal section

thickness ranges between 30 and 90 nm, which defines the axial

resolution. Yet, discontinuous operation of the ultra-microtome and

precision limits of the instrument cause variations of section thick-

ness between and within sections. Shearing forces applied by the

knife and during collection introduce deformations to individual

sections. Section folds, tears and staining artifacts further complicate

the comparison of sections in the series and require that sections be

aligned after imaging (Saalfeld et al., 2012). However, compared

with block-face SEM as discussed in the next paragraph, ssTEM has

two major advantages: (1) sections can be post-stained which results

in improved contrast of structures of interest (e.g. synapse T-bars)

and (2) imaging is performed in transmission mode which enables

high acquisition speed and significantly higher in-plane resolution at

high signal to noise ratio.

1.2 Focused ion beam scanning electron microscopy
Block-face scanning EM follows a cycle of imaging the block face of

a plastic-embedded specimen with a scanning electron microscope

(SEM) followed by material removal until complete acquisition of

the specimen. In FIB-SEM, FIB milling is used for material removal.

This procedure, in practice, generates inhomogeneous z-spacing and

non-planar block faces leading to distorted volumes (Boergens and

Denk, 2013; Jones et al., 2014). These distortions exhibit a wave-

like evolution of height variances throughout the acquired data and

can be severe enough to seriously impede the correct reconstruction

of small neural processes (c.f. Fig. 1). FIB-SEM has two major ad-

vantages over the previously discussed ssTEM: (1) FIB milling en-

ables significantly higher axial resolution than physical sectioning,

which enables the acquisition of isotropic volumes at less than

ð10 nmÞ3 voxel size and (2) fully automatic integration of serial

imaging and milling in the vacuum chamber of the microscope bears

a lower risk for variances in image quality and provides better initial

section alignment and correct section order.

1.3 Contribution
Extending our previous work (Hanslovsky et al., 2015), we de-

veloped methods for the identification and correction of ordering

mistakes as well as planar and non-planar axial distortions through

image-based signal analysis without the need for any further appar-

atus or physical measurements (Section 3). We thoroughly assess ef-

ficacy and efficiency in virtual ground truth experiments,

demonstrate their applicability to real world problems (Section 4)

and compare with state of the art (Supplementary Note A). We

published our methods as open source libraries for the ImageJ distri-

bution Fiji and for deployment in high performance parallel comput-

ing environments using Spark (Zaharia et al., 2010).

2 Related work

To the best of our knowledge, both post-acquisition order correction

for serial section microscopy and non-planar section thickness cor-

rection have not yet been addressed in a rigorous way. However,

several methods exist for measuring or correcting section thickness

or spacing. De Groot (1988) reviews four different methods for esti-

mating section thickness, all of which require additional physical

measurements, specialized apparatus, or even destructive modifica-

tions of previously acquired sections, rendering the proposed meth-

ods impractical or even impossible for certain imaging modalities,

e.g. block face SEM. Similarly, Jones et al. (2014) introduce an arti-

fact as a fiducial mark from which section thickness can be esti-

mated in FIB-SEM acquisitions under the assumption of planar

sections. Berlanga et al. (2011) correct small volumes by evening out

top and bottom surfaces that have been manually annotated by the

user and transforming the whole series accordingly by a single trans-

formation, which fails to capture varying thickness. Boergens and

Denk (2013) reduce non-planar distortions during acquisition using

measurements of the intensity of the ion beam to control the FIB-

SEM milling process. In addition, they estimate section thickness

post-acquisition by adjusting z coordinates such that the peaks of

auto-correlations in several xz-cross-sections have the same half-

width in both dimensions.

Most related to our method for image based estimation of planar

section thickness is the work by Sporring et al. (2014). They assume

an isotropic signal that is sampled at less than isotropic axial reso-

lution, with planar thickness variation. A reference similarity curve

is obtained from in-section pixel intensities. The corrected spacing

between adjacent sections is then determined by evaluating the in-

verse of the reference similarity curve at the measured pairwise simi-

larity. We compared Sporring et al.’s method with ours and showed

that our global approach performs superior where individual

sections are compromised by staining artifacts (Supplementary

Note A).

To the best of our knowledge, we are first to propose solely

image-based methods for the correction of section ordering mistakes

and non-planar axial distortion. Other than existing methods for

planar section thickness correction, we do not accumulate pairwise

distance estimates relative to a constant reference. Instead, we

jointly optimize and update the axial distortion field and an ideal-

ized observation along the axial dimension. This allows us to

Fig. 1. Left: Three FIB-SEM xy-section scans showing Drosophila melanogaster neural tissue overlaid with color-coded local z-spacing, serial index top left. Color

overlay was chosen arbitrarily to visualize the wave-like evolution of height variance. Scale bar 1 mm. Right: Magnified crop of an xz-cross-section of the original

(top) and corrected (bottom) series, z-compression by the “wave” is completely removed. Scale bar 250 nm
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explicitly account for artifacts that compromise the signal in individ-

ual images and to cope with varying properties of the reference sig-

nal along the axis of distortion.

3 Materials and methods

In the following, we describe our image-based methods for the cor-

rection of continuous and discontinuous non-planar axial distor-

tions in serial section microscopy. Our only assumptions are—true

for correct section order and spacing—monotonic decrease of pair-

wise similarity of sections with distance and a slow rate of change of

biological tissue, i.e. the shape of the similarity function is locally

constant (Section 3.1). Violations of these assumptions indicate

wrong section order or spacing. We will describe in detail how co-

ordinate space is transformed to re-establish correctness of these as-

sumptions and thereby correcting section order mistakes (Sections

3.2 and 3.3), planar z-spacing (Section 3.3) and non-planar z-spac-

ing (Section 3.4).

3.1 Similarity measure
We define pairwise similarity sðPi;PjÞ of two sections Pi;Pj 2 I,

indexed by their respective positions i; j along the z-axis within an

image series that has correct section order and spacing, as a symmetric

function that decreases strictly monotonically with distance jj� ij:

s : I � I! ½0; 1� � R (1)

ðPi;PjÞ ! sðPi;PjÞ ¼ f ðjj� ijÞ (2)

jj� ij < jk� lj ) f ðjj� ijÞ > f ðjk� ljÞ (3)

sðPi;PjÞ ¼ sðPj;PiÞ (4)

For a series of Z sections, all pairwise similarities are stored in a

Z� Z matrix denoted by S such that

Sij ¼ sðPi;PjÞ: (5)

By definition, S is a symmetric matrix. In practice, we use noisy sur-

rogate measures for the inaccessible ideal s such that Equation (3)

may not hold for long distances. Thus, for deformation estimation,

we ignore measurements for which jj� kj > r, for a user specified r

that depends on the dataset.

We implemented three similarity measures: (1) the Pearson

product-moment correlation coefficient (PMCC) for aligned series,

(2) the best block matching coefficient (BBMC) for approximately

aligned series and (3) the percentage of true positive feature matches

under a transformation model (inlier ratio) for unaligned data. In

our experiments (Section 4), we used PMCC and feature inlier ratio.

3.1.1 Pearson product-moment correlation coefficient

The PMCC of two statistical samples A;B : jAj ¼ jBj ¼ N is defined

as

qAB A;Bð Þ ¼ cov A;Bð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðAÞvarðBÞ

p 2 ½�1;1� (6)

with sample co-variance

cov A;Bð Þ ¼ 1

N

X

i;j

Aij � lA

� �
Bij � lB

� �
; (7)

where lA ¼ 1
N

P
i;j Aij is the sample mean, and var(A)¼ cov(A,A) is

the sample variance. PMCC is invariant to changes of the mean and

variance of samples A and B and therefore robust against contrast

and gain variations across the image series. In order to comply with

Equation (1), we use

sðA;BÞ ¼ ~qAB ¼ maxðqAB;0Þ 2 ½0;1�: (8)

3.1.2 Best block matching coefficient

Similarity estimates using PMCC require the series to be perfectly

aligned which, in practice, is not always guaranteed. We therefore

implemented an alternative similarity measure that is robust against

small local translations, the average over local BBMCs. For any rect-

angular region Ri � Pi, the best correspondence R�j � Pj is deter-

mined by maximizing pairwise PMCC over a set of correspondence

candidates Rj � Pj of the same width and height, sampled in a small

radius around the center of the region. The pairwise similarity of

sections Pi and Pj,

Sij ¼
1

N

X

Ri

max
Rj

s Ri;Rj

� �
; (9)

is the average of all pairwise similarities between Ri and correspond-

ing R�j , where N is the total number of regions Ri within Pi.

3.1.3 Inlier ratio

Even BBMC requires that the series is approximately aligned. In

ssTEM series, however, approximate alignment is often not avail-

able and aligning the series may be impossible because the correct

order of sections has not yet been established. To recover the correct

order of sections, we need a similarity measure that is independent

of alignment. Using transformation invariant features, we match

automatically extracted interest points across pairs of sections. We

then use a variant of the random sample consensus (RANSAC) in

combination with a least squares local trimming estimator (Fischler

and Bolles, 1981; Saalfeld et al., 2010) to estimate a model M that

transforms one set of interest points onto the other. The estimator

groups all matches into inliers I that conform with M and outliers

O that do not (I \ O ¼1). The similarity of two sections is then

given by the inlier ratio

sð�Þ ¼ jIj
jI [ Oj 2 ½0; 1�: (10)

For our experiments, we use the scale invariant feature transform

(SIFT; Lowe, 2004). Where interest point detection and matching

are part of the image alignment pipeline (e.g. Saalfeld et al., 2012),

this similarity can be extracted at virtually no cost.

3.2 Section order correction
Incorrect section order breaks the monotonicity assumption for

similarity measures. With pairwise similarity as a proxy for distance

between sections, visiting every section in the correct order is

equivalent to visiting every section exactly once on the shortest path

possible based on distances derived from pairwise similarity. This

can be formulated as an augmented traveling salesman problem

(TSP; Applegate et al., 2011; Voigt, 1831). To that end, we repre-

sent the image sections fPiji ¼ 1; . . . ;Zg as vertices V ¼ f1; . . . ;Zg
of a fully connected graph G ¼ ðV; EÞ with edges E ¼ V � V and

associated edge weights wða; bÞ 8 ða; bÞ 2 E. Based on the intuition

that sections are more similar when they are close to one another,

we chose wða; bÞ ¼ 105 � exp ðj1� SabjÞ to transfer the similarities

into distances (While the monotonicity of this function is equivalent

to the simpler j1� Sabj, we found that stretching out similarities of
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nearby sections helped the TSP solver to find a correct solution).

With the addition of a “start” vertex ~V ¼ f0g and zero distance

edges ~E ¼ fð0; iÞ; ði;0Þ : 8i 2 Vg, wða;bÞ ¼ 0 8ða;bÞ 2 ~E, establish-

ing correct section order is equivalent to solving the TSP for the aug-

mented graph

~G ¼ ðV [ ~V; E [ ~EÞ: (11)

The TSP solution will place the start node between the first and the

last section of the sorted stack. Assuming that the first section ap-

pears before the last section in the initial stack, the correct order can

be established by traversing the TSP solution accordingly.

3.3 Simultaneous section spacing and order correction
We observed that TSP-sorted series occasionally contain small mis-

takes such as flipped section pairs. Pairwise comparison alone does

not capture global consistency if the similarity measure is too noisy

to reliably distinguish between pairs of sections (Fig. 4) because

similarity to any neighbor higher than first order is completely

ignored. We therefore developed a method that, assuming that sec-

tions are in approximately correct order, compares shapes of com-

plete similarity matrices to determine globally consistent order of

sections and their relative spacing.

Based on the assumption of monotonically decreasing pairwise

similarity and local constancy of the similarity decay, we formulate

an optimization problem that simultaneously estimates a real valued

position ci for each section i, a scalar factor mi to compensate for

the influence of uncorrelated noise in individual sections to their

pairwise similarity scores, and the “true” similarity �sð�Þ. Correct sec-

tion order can be established by sorting c in increasing order. We

summarize all variables, parameters and measurements in Table 1.

We forgo any assumptions other than monotonicity and con-

stancy of shape in a local neighborhood. Instead, we estimate the

similarity �siðdÞ as a function of the distance d ¼ k� j between two

sections j and k in a local neighborhood around each section i. We

constrain this neighborhood by a windowing function wsði; jÞ that

specifies the locality of the estimate [Equation (13)]. These local esti-

mates capture both changes in tissue and image properties along the

z-axis. For all j within this neighborhood, the measured similarities

Sðcj; cj þ dÞ evaluated at integer distances d from the position of the

section cj contribute to the similarity function estimate weighted by

wsð�Þ. Simultaneously, we warp the coordinate space such that all

measured similarities agree with the function estimate [Equation

(14)]. In terms of the pairwise similarity matrix that means aligning

the contour lines such that they are parallel to the diagonal (c.f.

Fig. 2).

Noise in individual sections decreases the pairwise similarity

with all other sections in conflict to what �sð�Þ suggests and would

thus distort the estimate of c. Therefore, we estimate a scaling factor

m for each section i to distinguish between displacement and other

noise that could distort position correction [Equation (15)]. Using

mi and mj to lift all pairwise similarities Sij closer to �siðci � cjÞ will

account for this effect. Sections that need displacement will not have

a consistent bias towards decreased or increased similarities and re-

main unaffected by this “quality assessment”.

The windowing function wrð�Þ restricts the evaluation of pair-

wise similarities to a range r to avoid estimation based on distant

sections whose similarity measures tend to be unreliable. In general,

we define this window using the Heaviside step function parameter-

ized by range r,

wrði; jÞ ¼ hðr� jj� ijÞ: (12)

Each of Equations (13)–(15) contribute to a joint objective

[Equation (16)] that is optimized over the function estimate �sð�Þ
within the support range constrained by wrð�Þ, the factors m, and

the coordinates c:

SSEfit ¼
X

i

X

j

wsði; jÞ
X

k

wrðj;kÞð�siðk� jÞ (13)

�Sðcj; cj þ k� jÞÞ2;

SSEshift ¼
X

i

X

j

wrði; jÞð�s�1
j ðmimjSijÞ � ðci � cjÞÞ2; (14)

SSEassess ¼
X

i

X

j

wrði; jÞðmimjSij � �siðcj � ciÞÞ2; (15)

�s�;m�; c� ¼ arg min
�s ;m;c

aSSEfit þ bSSEshift þ cSSEassess: (16)

We find a local optimum for Equation (16) by alternating least

squares. In this optimization scheme, the weights a, b and c do not

affect the arg min and are therefore neglected. In the benign case

that the series is in approximately correct order and that similarity

measures capture sensible information about relative distances be-

tween sections, this local optimum is typically the correct solution.

We avoid trivial solutions by meaningful regularization: all mi tend

toward 1, and c is limited by locking the first and last z-positions.

If section order is guaranteed to be correct (as in FIB-SEM), then we

do not allow reordering and enforce ciþ1 � ci > 0 at any iteration.

Table 1. Description of variables and parameters introduced in

Equations (13–16)

Input

Sij Symmetric matrix containing measures of similarity for all

pairs of sections indexed by i and j.

Variable

i; j; k Indices referencing (sub-)sections within the data.

ci Location of index i in corrected coordinate space.

mi Scaling factor for section i to compensate for independent

artifacts.

Sð � Þ S, corrected by m and warped by c:

Sðci; cjÞ ¼ mi �mj � Sij

�siðdÞ Local estimate of the similarity curve around i for all dis-

tances d, sampled at integer coordinates, evaluated at

d 2 R.

Parameter

wsði; jÞ Windowing function that specifies the locality of similarity

estimates �siðdÞ.
wrði; jÞ Windowing function to exclude noisy similarity measures

of distant sections. Fig. 2. Warp coordinate space such that contour-lines of transformed similar-

ity matrix Sðci ; cj Þ are parallel to diagonal
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In addition, we enforce monotonicity of �s during estimation of both

�s and c. More precisely, if any scaled similarity estimate Sðci; cjÞ vio-

lates the monotonicity assumption, this measurement and all subse-

quent estimates Sðci; ckÞ with jck � cij > jcj � cij are ignored for this

iteration.

3.4 Non-planar axial distortion correction
Section spacing estimation (Section 3.3) does not require to consider

complete sections but can be applied to any sub-volume defined by a

local neighborhood in x and y if similarity can be estimated for pairs

of sections in that sub-volume. Hence, non-planar deformation

fields can be estimated by solving Equation (16) for a grid of inde-

pendent similarity matrices, each extracted from a local field of

view. If grid locations were optimized independently, local smooth-

ness could not be guaranteed which is particularly objectionable as

similarity measures typically degrade with a smaller field of view

and become increasingly susceptible to noise. Coupling terms be-

tween the optimization problems at each grid location would en-

force local smoothness but results in a single large optimization

problem instead of many independent optimizations. We therefore

apply a multi-scale hierarchical approach: Starting with a large field

of view—typically the complete section—the spacing between sam-

ple points and the field of view around each sample point are

decreased at each stage. Both parameters are freely adjustable and

can result in overlapping or disjoint grid areas. Local smoothness is

enforced through regularization

SSEreg ¼
X

i

ðci � ðkbi þ ð1� kÞ�ciÞÞ2 (17)

toward the inferred coordinates b at the previous stage. A unique b

for each sample point at the current stage is generated by interpo-

lated re-sampling of the previous stage. The impact of regularization

is controlled by a parameter k 2 ½0; 1� with �c being the result of

Equation (14) at each iteration of the alternating least squares solu-

tion of Equation (16). All optimization problems at one stage of the

hierarchy depend solely on the results of the previous stage which

makes it straightforward to parallelize the solution over all grid

cells. The resolution and field of view considered at each stage, the

regularization parameters k, and the range of interest [Equation

(12)] for pairwise similarity measurement in the z-series are exposed

as adjustable parameters to the user.

4 Experiments

Following the outline of Section 3, we first describe the evaluation

of section order correction, both using TSP and section spacing esti-

mation (Section 4.1), before we elaborate on experiments on spacing

correction for planar and non-planar distortion (Section 4.2).

4.1 Section order correction
We began the evaluation of section order correction with a proof of

concept on a small ssTEM dataset (ssTEM-a; ssTEM of Drosophila

melanogaster CNS, courtesy of D. Bock, R. Fetter, K. Khairy, E.

Perlman, C. Robinson, Z. Zheng, HHMI Janelia) of dimensions

2580� 3244� 63 px3 and nominal voxel size 4� 4� 40 nm3. We

perturbed the correctly ordered series using (1) a completely random

permutation and (2) a permutation that randomly reassigned the

position of sections within a range of 6 4 for the approaches intro-

duced in Section 3.2 and 3.3, respectively. For (1), we evaluated

both PMCC and SIFT inlier ratio as similarity measure from images

scaled to 12.5% of their original size. For (2), we used PMCC only.

Similarity matrices before and after section order correction are

shown in Figures 3 and 5 for TSP (PMCC and SIFT inlier ratio) and

section spacing (PMCC and xz-cross-section), respectively. Note

that, for (2), section order and z-spacing are estimated simultan-

eously and therefore the sorted matrix appears warped. TSP re-

established the correct section order for both PMCC and SIFT inlier

ratio. The run times for optimization of the TSP problems are negli-

gible compared to the time required to extract pairwise similarities

(14 ms versus 720 ms for PMCC and 19 ms versus 9064 ms for SIFT

inlier ratios). Shorter run times for solving the TSP in the PMCC ex-

periment indicate that, with PMCC, the problem is easier due to bet-

ter similarity measures. PMCC is superior to SIFT inlier ratio as a

similarity measure for well aligned series. Even for larger examples,

the run time for the TSP solution remains short, e.g. 2070 ms for

2051 sections (data not shown). All experiments were carried out on

a Dell Precision T7610 workstation using the TSP solver concorde

(Applegate et al., 2006).

With this successful proof of concept at hand, we proceeded with

section order correction of a longer section series (ssTEM-b; ssTEM

of Drosophila melanogaster CNS, courtesy of D. Bock, R. Fetter, K.

Khairy, E. Perlman, C. Robinson, Z. Zheng, HHMI Janelia). We

chose an unaligned series of 251 complete sections for which we

manually curated the correct section order. The objective of the ex-

periment was to re-establish correct section order from an initially un-

aligned series with ordering mistakes. We therefore extracted the

SIFT inlier ratio matrix from the unaligned series and estimated sec-

tion order via TSP. The solution included small pairwise ordering mis-

takes. However, these disturbances were sufficiently local to enable

elastic alignment (Saalfeld et al., 2012) of the corrected series and to

extract a PMCC similarity matrix. We then used the TSP method to

estimate order from the PMCC similarities (Fig. 4), decreasing the

number of misplaced sections from 2 (0.80%) to zero.

4.2 Spacing correction
Similar to the experiments for section order correction, we started

with a proof of concept, followed by an extensive experiment for

the evaluation of non-planar distortion correction using an artificial

ground truth deformation on a real world dataset.

Fig. 3. Similarity matrices for randomly permuted ssTEM-a series before and

after section order correction. Similarities were calculated using PMCC (a)

and SIFT inlier ratio (b)

Fig. 4. Section order correction for ssTEM-b. Inlier ratio matrix for original se-

quence (a) and after correction (b). The major disturbance (bottom right)

could be resolved but two sections remain flipped (magnified view). This be-

comes more apparent in the PMCC matrix of the aligned series (c). Repeated

TSP correction resolves this remaining issue (d)
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4.2.1 Section spacing correction

For the evaluation of section spacing correction, we corrected and

visually inspected distortions in two datasets: ssTEM-a and FIB-

SEM-a (FIB-SEM of Drosophila melanogaster CNS, courtesy of K.

Hayworth, H. Hess, C. Shan Xu, HHMI Janelia, Hayworth et al.,

2015) with dimensions 2048� 128� 1000 px3 and nominal voxel

size 8� 8� 2 nm3. The latter is an excerpt of a larger dataset with

dimensions chosen such that axial distortions can be considered ap-

proximately planar.

Figure 5 shows xz-cross-sections and the according similarity

matrices before and after section spacing correction for (a) the ori-

ginal ssTEM-a dataset, (b) Sections 20, 21, 22, 46, 48 removed and

(c) randomized section order. Our experiments show that for the

original dataset, z-spacing varies between 0.6 and 1.6 px (24 and

64 nm). Section spacing correction of (b) and (c) was evaluated by

comparing the estimated transformations with the result of (a) as

“ground truth”. The estimated transformation for (b) correctly

stretches the data where sections were removed and deviates (abso-

lute value) from the ground truth by 0.13 px (5.2 nm) on average,

and not more than 0.28 px (11.2 nm). Sections removed for this ex-

periment do not contribute to the evaluation. For the simultaneous

order and spacing correction (c), we measured an absolute deviation

from the ground truth of 0.044 px (1.76 nm) on average, and not

more than 0.13 px (5.2 nm). All ssTEM-a section spacing correction

experiments finished in 0.6 s (similarity matrix calculation) and 0.4 s

(inference, 100 iterations) on a Dell Precision T7610 workstation

using the default parameters of the provided Fiji plugin.

We observed stronger distortions in FIB-SEM-a as shown in

Figure 6 (top). Stretched/condensed regions are highlighted in an xz-

cross-section and appear in the respective similarity matrix as re-

gions with slow/fast decay of similarity. After section spacing correc-

tion (Fig. 6 bottom), the corrected xz-cross-section appears

homogeneously sampled and similarity decay is approximately con-

stant. The estimated section spacing varies between 0.14 and 10.2

px or 0.28 and 20.4 nm. On the Dell Precision T7610 workstation

used for this experiment, similarity matrix estimation and inference

(150 iterations) took 62.3 and 49.4 s, respectively, using the default

parameters of the provided Fiji plugin, with the exception of r ¼ 55

[Equation (12)].

On artificial distortions of dataset ssTEM-a, we compared our

method with the approach by Sporring et al. (2014) (Supplementary

Note A) demonstrating that our method performs superior if indi-

vidual sections are compromised by staining artifacts.

4.2.2 Non-planar distortion correction

We evaluated the performance of non-planar deformation correc-

tion against synthetic ground truth. To that end, we applied syn-

thetic non-planar axial distortion to a distortion free reference

series, estimated the distortion with our method (Section 3.4) and

compared the estimate with the synthetic ground truth. Since distor-

tion free volumes do not exist, we had to first correct the original

image volume using the same non-planar axial distortion correction

method. The resulting series, from the perspective of our method, is

free of distortions. To compensate for the apparent bias in this ap-

proach, we ran our experiment not only in the original orientation

but permute the coordinate axes such that the new axial dimension

falls into the unprocessed image plane.

The data used in this experiment are a subset of FIB-SEM-b

(FIB-SEM of Drosophila melanogaster CNS, courtesy of K.

Hayworth, H. Hess, C. Shan Xu, HHMI Janelia, Hayworth et al.,

2015) with dimensions 4000� 2500� 2100 px3 and voxel reso-

lution 8� 8� 2 nm3. Initial non-planar axial distortion correction

was distributed onto 60 compute nodes with 16 cores each and took

120 minutes to finish. We scaled the corrected series along the z-axis

by a factor of 0.25 resulting in an isotropic volume of 4000� 2500

�525 px3 from which we extracted two sub-volumes: (a) 100
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Fig. 5. z-position correction experiments for ssTEM-a: original series (a), missing sections (b), and randomized order (c) with a shared coordinate frame in z, as

indicated by the white grid. Top/bottom show an xz-cross-section (left sub-column) and corresponding intensity-encoded pairwise similarity matrices (right sub-

column) before/after z-position correction. Arrows in the center column highlight removed sections
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Fig. 6. z-position correction experiment for FIB-SEM-a: Top/bottom show an

xz-cross-section (a) and corresponding intensity-encoded pairwise similarity

matrices (PSM; b) before/after z-position correction. (a) and (b) share the

same coordinate frame in z. Arrows highlight areas that are visually stretched

or compressed in the original acquisition and appear biologically plausible

after correction
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complete xy-sections starting at z¼25, and (b) 100 xz-cross-sections

of dimension 3000�475 px2 starting at y¼1000. For (b), we

flipped the y- and z-axes such that the synthetic distortion could be

consistently applied along the z-axis. Our synthetic distortion model

is this: Randomly oriented planes superimposed with trigonometric

functions act as attractors that shift the coordinates towards the at-

tractor along the z-axis as a monotonically decreasing function of

the distance to the attractor along z. This generates waves and plat-

eaus that approximately resemble phenomena that we observed in

the original volume before pre-correction. We then applied non-

planar distortion correction to the synthetically deformed series as

described in Section 3.4 (parameters listed in Supplementary Note

B). We compared estimated and ground truth distortions at every

stage of the hierarchical solution and show histograms of the pixel-

wise differences (Fig. 7). Since we are not interested in low frequency

distortion of the volume, we mapped each estimate onto the ground

truth using a linear transformation that minimizes the squared dif-

ference of corresponding look-up table entries within local support

defined by a Gaussian window with r ¼ ðrx;ry; rzÞ.
The evolution of the estimated distortion for each of the sub-

volumes is shown in Figure 7. For intuitive visualization, the gradi-

ent is displayed. Starting at a complete field of view and a resolution

of 1 px2 in x and y at stage 1 (planar estimate), the field of view/

resolution is decreased/increased by a factor of two in both x and y

with every sub-sequential stage which allows for a more accurate es-

timate of the deformation. At the same time, noise in the data will

have a stronger influence on smaller fields of view (c.f. Fig. 7, stage

6) and sets a limit to the resolution at which the deformation can be

estimated. The histograms of differences did not improve after (a)

stage 6 or (b) stage 4. We chose r¼ð1;1;120 pxÞ for the Gaussian

window to estimate the linear transformation. The mean of differ-

ences between estimate and ground truth is approximately zero for

all stages. We therefore used the standard deviation of the error ~ri

for stage i including the baseline i ¼ 0 as a quality indicator. Smaller

~ri means better estimates of the ground truth. For (a), we found

~r0¼0.550 px and ~r6¼0.176 px, and for (b), we found ~r0¼0.523

px and ~r4¼0.227 px. As expected, non-planar axial distortion cor-

rection considerably decreased the distortion of the series in both

experiments.

5 Discussion

We developed novel methods to address two previously unsolved

problems: (1) establish the correct order of unordered section series

and (2) compensate for planar and non-planar axial distortion. We

demonstrated through extensive experiments that our methods

work reliably and with high accuracy and efficiency on both ssTEM

and FIB-SEM data. We went beyond pure proof of concept and

showed that our methods are applicable to and perform well on

large real world datasets.

In large ssTEM series, the combination of automatic alignment

and series sorting has the potential to greatly reduce the need for

manual intervention. Non-planar axial distortion correction

addresses the peculiar wave-problem in FIB-SEM which, we believe,

will have a strong impact on the future application of FIB-SEM for

high resolution 3-D reconstruction.

In this work, we made only mild assumptions about the data, i.e.

monotonic decrease of pairwise similarity and local constancy of the

shape of the similarity curve. While this means that our methods can

be applied to a wide range of data, we predict that many problems

would benefit from domain specific modeling. For example, explicit

modeling of FIB-SEM-waves has the potential to further increase the

accuracy of the estimated deformation field. We will work on these

ideas in our future research.
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