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Biobetters are new drugs designed from existing peptide or protein-based therapeutics by improving their prop-
erties such as affinity and selectivity for the target epitope, and stability against degradation. Computational
methods can play a key role in such design problems—by predicting the changes that are most likely to succeed,
they can drastically reduce the number of experiments to be performed. Here we discuss the computational and
experimental methods commonly used in drug design problems, focusing on the inverse relationship between
the two, namely, the more accurate the computational predictions means the less experimental effort is needed
for testing. Examples discussed include efforts to design selective analogs from toxin peptides targeting ion
channels for treatment of autoimmune diseases and monoclonal antibodies which are the fastest growing class
of therapeutic agents particularly for cancers and autoimmune diseases.
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1. Introduction

Most of the drug leads that have high affinity for the target receptor
ultimately fail because of problems with side effects, cytotoxicity or
degradation. In fact, such problems are present in existing drugs but at
a tolerable level. Improving the properties of existing biologics (protein
or peptide-based drugs or drug leads) against such shortcomings is
dubbed biobetters. Because the chemical space is very large, design of
biobetters through trial and error methods is unlikely to succeed. One
yucak).

. on behalf of Research Network of C
needs to make use of all the available information about the problems
faced by a drug in order to facilitate the design of a biobetter. In fact,
the experimental effort will be inversely proportional to the amount
and accuracy of the information provided. As an example, consider
solving the selectivity problem of a peptide ligand which binds to an
off-target protein with a high affinity. If no information is available,
one has to examine various mutations on the ligand which could
be a very large experimental undertaking, e.g., for an average ligand
with 30 amino acids, there are 30 × 19 = 570 single mutations and
(30 × 29/2)×192 = 157,035 double mutations to consider. Using a
docking program, one could identify the binding region on the ligand,
which will reduce the number of mutations, e.g., if there are 4 residues
in the hot spot, the number of single and double mutations will be
omputational and Structural Biotechnology. This is an open access article under the CC BY
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reduced to 76 and 2166, respectively. While this is a drastic reduction,
the experimental effort required is still substantial. As a next step, one
could refine the binding poses obtained from docking using molecular
dynamics (MD) simulations and obtain an accurate structure for
the protein-ligand complex. Now one has a precise map of the inter-
molecular interactions and can predict with some certainty which
single and double mutations will yield the best outcome for reducing
the affinity of the ligand for the off-target protein.

As illustrated in the above example, obtaining an accurate model of
the protein-ligand complex holds the key for designing biobetters
with minimal experimental effort. The most common method used
for complex structure prediction is docking, which is fast but not very
accurate. On the other extreme is MD, which can provide the desired
accuracy but it is very slow. Combining the two methods by refining
the binding poses obtained from docking in MD simulations offers a
compromise solution that has been successfully applied to numerous
protein-ligand complexes in the past decade [1–3]. An important ingre-
dient in the success of this approach is the judicious use of the available
experimental information about the complex system in the computa-
tions from initial docking to final validation. For example, available
mutation data can be used as restraints in docking, which facilitates
sampling of the correct pose and reduces the amount of subsequent
MD work. Final validation of a predicted complex structure is typically
based on binding free energy and available mutation data. While muta-
tion of the residues in the predicted binding mode provides the most
detailed and hence the best test for the proposed model, such data are
not routinely available. Thus one may have to rely on the binding free
energy of the ligand for validation, which has to be calculated near
chemical accuracy to be useful for testing. Various methods can be
used in calculation binding free energies from scoring functions in
docking to potential of mean force (PMF) calculations in MD simula-
tions. Again only the PMF calculations based on MD have the potential
to provide the desired chemical accuracy.

Determination of validated complex structures is the most impor-
tant step in design of biobetters because inspection of the binding
mode will readily indicate the most promising mutations to achieve
the desired improvement in affinity or selectivity. In fact, one can go
beyond that and turn qualitative predictions into quantitative ones by
calculating the effect of the mutation on the binding free energy from
MD simulations. Such computational mutagenesis studies have the
potential to eliminate guesswork completely and deliver the optimal
biobetter for a given target with minimal side effects. In the following,
we review the computational and experimental methods that will
help to optimize design of biobetters while reducing the experimental
efforts. Applications discussed include construction of selective analogs
from toxin peptides targeting ion channels and design of biobetters
from monoclonal antibodies with improved affinity and aggregation
resistance.

2. Computational Methods

2.1. Protein-Ligand Complex Structure from Docking and MD

Determination of crystal structures for protein-ligand complexes is
extremely difficult and very rare. Therefore, construction of an accurate
complex structure from a given pair of protein and ligand structures
is the most critical step in the design of a biobetter. Here we stress
accuracy of the complex model in particular because an incorrect bind-
ing mode will predict misleading mutation sites for improvements,
resulting in wasted experimental effort. Assuming crystal or NMR
structures (or good homology models) of the protein and ligand are
available, one can use a docking program to find a set of initial poses
for the complex [4,5]. Docking programs work by evaluating an energy
function for various positions, orientations and conformations of the
ligand with respect to the protein and ranking the energy scores. An
energy function consists of Coulomb, van der Waals, and hydrophobic
interactions and may include entropic terms. There are many commer-
cial and academic docking programs, and choosing an appropriate one
could be overwhelming. Most of them are for docking small drug-like
molecules and would not be very useful for peptide ligands. Among the
academic programs we mention AUTODOCK [6,7], ZDOCK [8], and
HADDOCK [9,10]. AUTODOCK is the most popular docking program
but works mainly for small molecules. ZDOCK can handle larger mole-
cules like peptides but performs only rigid docking. Among the three,
HADDOCK ismost suitable for docking of peptide ligands as it can handle
peptides and allows flexibility.

Accuracy of docking programs is limited due to neglect of water
molecules and lack of adequate sampling [11]. These are automatically
incorporated in MD simulations, hence MD has the capacity to provide
an accurate representation of the protein-ligand interactions. However,
MD is too slow topredict the complex structure from scratch. A compro-
mise solution is to refine the binding poses predicted by docking in MD
simulations, which avoids the shortcomings of either method and could
provide the sought accuracy. This approachwas first used for binding of
small ligands (b50 at.), and promising results were obtained [1,12–14].
Feasibility of its extension to peptide ligands was initially demonstrated
for binding of charybdotoxin to a KcsA potassium channel mimic using
HADDOCK for docking [15], which was generalized to binding of other
scorpion toxins to Kv channels in a subsequent systematic study [16].
For most channel-toxin complexes, a consensus complex was obtained
from cluster analysis of the top 100 poses, which simplifies the refine-
ment process with MD.

Several programs are available for performing MD simulations such
as AMBER, CHARMM, GROMACS, and NAMD. The NAMD program [17]
has been a popular choice because of its user-friendliness and the
accompanying visualization and analysis software VMD [18]. Although
NAMD allows use of different force fields, CHARMM has been the
preferred choice in most simulations of proteins [19]. For the basic
formalism of MD simulations, we refer to the monographs [20,21].
Applications of MD simulations to membrane proteins, where creation
of the simulation system is more involved, can be found in the reviews
[22–24]. A key step in the refinement of the chosen binding pose viaMD
is the relaxation process where restraints between the protein and
ligand are gradually reduced. The complex system is unlikely to
be properly hydrated initially so without proper relaxation, various
bonds and interactions in the complexmay break, resulting in a dissoci-
ated ligand. There are well-established protocols for this purpose that
can also be adapted for complex structures [25]. After relaxation, MD
simulations are performed on the system, monitoring RMSDs of the
protein and ligand, and the distances between interacting residues.
The complex system is assumed to be equilibrated when the RMSDs
reach a plateau and the time series of distances between interacting
pairs fluctuate around a base line.

In the final stage, trajectory data obtained from the equilibrated
system are used for visualization of the complex structure and analysis
of the binding mode. The binding mode can be characterized quantita-
tively by calculating the average distances between the interacting res-
idues. The strong ones include charge interactions, where the N\\O
distance between the charged residues is about 3 Å, and hydrophobic
interactions involving aromatic side chains (2–3 kcal/mol). Intermedi-
ate strength interactions include hydrogen bonds and charge interac-
tions at larger distances (1–2 kcal/mol). The binding mode results can
be compared directly to alanine scanningmutagenesis data, which pro-
vides a detailed validation for a complex model. Unfortunately alanine
scanning experiments are available only in a few cases, and one has to
rely on binding free energies for validation in most cases.

2.2. Free Energy Calculations

Free energy calculations can contribute to design problems in two
ways: validation of complex models as alluded above and prediction
of free energy changes due to mutations. Binding constants of ligands



Fig. 1. Example of a thermodynamic cycle used in free energy calculations. The superscript
0 denotes a residue with no charges on the side chain atoms. Reverse transformation is
performed simultaneously in bulk to preserve the charge neutrality of the system during
the FEP-MD simulations.
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are routinely available for most complexes and thus provide a standard
test for a complexmodel. Several methods can be used for this purpose,
from docking and scoring [4,5] to molecular mechanics with Poisson-
Boltzmann surface area (MM-PBSA) [26] and free energy calculations
based on MD simulations [27–30]. For a method to be useful for testing
purposes, it should be able to predict binding affinities accurately.
Otherwise any discrepancy with the experimental binding constant
cannot necessarily be attributed to incorrect modeling. The docking
and scoring methods are very fast but their accuracy for binding affini-
ties is too poor to consider them for validation [1,31,32]. Similarly
MM-PBSA provides a high-throughput method which has somewhat
better accuracy for binding affinities, but it is still not sufficiently
accurate for testing [33,34]. Only free energy calculations based on
MD have the potential to satisfy the desired level of accuracy [35–37].
The MD-based methods can be classified into two groups: i) path-
independent alchemical transformation methods where the ligand
is destroyed in the binding pocket while it is created in bulk; and
ii) path-dependent PMF methods, where the ligand is moved from the
binding pocket to bulk using biasing potentials [27–30]. Alchemical
methods are computationally cheaper and easier to use but their accu-
racy is compromised for larger, charged peptide ligands [35], which
leaves the PMF method as the only choice at present for peptides.

The PMF provides the free energy profile of a ligand along a chosen
reaction coordinate. The binding constant Keq (inverse of the dissocia-
tion constant KD) of a ligand is obtained from the integration of
the PMF, which is related to the standard binding free energy via
Gb = −kT ln(KeqC0), where C0 is the standard concentration of 1 M.
Umbrella sampling MD simulations is the most common method used
in PMF calculations. The problem with sampling at high-energy posi-
tions is overcome by introducing harmonic biasing potentials along
the reaction coordinate [20,21]. The sampled coordinates of the ligand
are unbiased and combined using the weighted histogram analysis
method [38]. Applicability of the PMF method to peptide ligands was
first shown for binding of charybdotoxin to a KcsA potassium channel
mimic, where the binding free energy was calculated within chemical
accuracy [39]. Since then, the PMF method has been used in several
computational studies of toxin binding to ion channels (see [2,3,40]
for reviews). Chemical accuracy was achieved in all cases, provided
that a validated complex structure was employed and the PMF was
calculated properly. An alternative method that has become popular
in recent years due to its simplicity is to use Jarzynski's equation in
steered MD simulations [41]. However, this method suffers from
sampling problems and cannot provide the desired chemical accuracy
for affinities [42].

Binding mode of a complex structure gives important clues
on how to improve affinity and/or selectivity of a peptide ligand.
By calculating the free energy change due to each suggested muta-
tion, one can predict which one will be the most effective. Again
chemical accuracy is essential in such calculations to retain predic-
tive power, which is provided only by the MD-based methods.
The two most common methods used for this purpose are free
energy perturbation (FEP) and thermodynamic integration (TI) [20,
21]. In both methods, one introduces a hybrid Hamiltonian,
H(λ) = (1 − λ)H0 + λH1, where H0 represents the Hamiltonian in
the initial state (wild-type ligand) and H1 in the final state (mutant
ligand). The alchemical transformation is performed by changing
the parameter λ from 0 to 1 in small steps, which ensures that the
change in the free energy in each step is small enough to enable
sufficient sampling of the system. In the FEP method, the interval
[0, 1] is divided into n subintervals, and for each subinterval the
free energy difference ΔGi is calculate from the ensemble average.
The free energy difference between the initial and final states is
obtained from the sum of all ΔGi. In the TI method, the ensemble
average of the derivative ∂H(λ)/∂λ is obtained at several λ values,
and the free energy difference is calculated from the integral of this
quantity from 0 to 1.
Charged residues have the strongest interactions, hence mutation of
a neutral residue to a charged one for improving affinity (or vice versa
for improving selectivity) is a common situation. This is a challenging
problem that has been resolved only recently. FEP/TI calculations for
mutations are usually performed separately in the binding site and
bulk. This causes problems for charge mutations because the system
needs to be kept neutral and also errors arise when solvation energies
are calculated in different systems. In fact, such errors can be avoided
by performing the binding site and bulk calculations simultaneously
in the same system. That is, while a charged residue on the peptide is
mutated to a neutral one in the binding site, the reverse transformation
is applied simultaneously to the mutant peptide in bulk, which is well
separated from the binding pocket. It is also necessary to separate
the Coulomb and Lennard-Jones interactions to avoid stability and con-
vergence problems. This can be achieved by introducing residues with
uncharged side chains (denoted with a superscript 0) as intermediate
steps. For example, the free energy change due to a Lys to Ala (K → A)
mutation can be expressed as ΔΔGb = ΔΔG(K → K0) + ΔΔG
(K0 → A0) + ΔΔG (A0 → A). The thermodynamic cycle that combines
these procedures in the FEP/TI calculations is illustrated in Fig. 1. Each
of the contributions to the free energy difference can be calculated
using the FEP or TI methods. The viability of this method for accurate
calculation of the free energy change associated with charge mutations
was shown for the K18Amutation in ShK in complex with Kv1.3, which
will be discussed below [43]. The binding free energy differences
obtained from the FEP/TI results were in good agreement with both
the PMF and experimental results, demonstrating the feasibility and
accuracy of this approach for calculation of free energy changes due to
charge mutations [43].

3. Experimental Methods

There are many biophysical and biochemical techniques used for
affinity measurements and aggregation studies of biologics. In the
following, we briefly discuss some of the widely used methods.

3.1. Methods for Affinity Measurements

Affinity measurements involve detecting the equilibrium dissocia-
tion constant (KD = koff/kon) of proteins using a variety of biophysical
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or biochemical techniques. The binding affinity is related to KD inversely,
thus a lower KD value means a higher affinity. Using bioassays in mea-
surement of the binding kinetics is among the most common methods.
However, recording of the binding rate constants is not a trivial task,
and sensitivity of the assay and reproducibility of the data need to
be considered. Existing experimental methods to measure the KD of
biotherapeutics include enzyme-linked immunosorbent assay (ELISA)
based methods, spectroscopy-based assays, calorimetric methods such
as isothermal titration calorimetry, and a diverse range of biochemical
methods.

ELISA-based methods are used for detecting and determining the
amount of biomolecule under study in a quantitative manner [44].
Although there are different ELISA formats, the common points are:
it is a microplate reading assay requiring an immobilized antigen or
antibody (Ab) on a surface and detecting the amount of biomolecule
with a spectroscopy-based technique, usually fluorescence. The antigen
generally forms a complex with an antibody that is associated with an
enzyme (direct assay). A secondary Ab that specifically binds to the
first Ab may be used to increase the sensitivity of the method (indirect
assay). In the direct assay, Ab is usually conjugated with a fluorescent
dye molecule whereas in the latter the secondary Ab is labeled with a
dye. In an indirect assay, the antigen is captured by an immobilized Ab
prior to forming a complex with another Ab, which is often preferred
due to a better sensitivity and specificity. A plate reader, for instance
with fluorescence detection capability, is then used to record the signal
from the tagged Ab. In some cases, the antigen can be labeledwith a dye
instead of Abs. Titrating for different amounts of primary or secondary
Ab yields the fluorescent signal versus concentration gives information
about the Ab-antigen interaction. Thismethod is widely used, for exam-
ple, to see whether or not the binding affinity is changed due to amuta-
tion in a protein. Instead of fluorescence, other parameters such as
absorbance could also be used to detect the interaction.

Anotherwidely usedmethod is surface plasmon resonance spectros-
copy (SPR) [45]. It is based on detecting the plasmonwave that is creat-
ed by the oscillating resonant electrons near a surface after a laser light
induces the resonant state. To this end, the surface is coated with a
metal layer (usually gold) and a protein sample is bound to this metal
surface. Addition of antigen causes a change in the SPR signal, generally
refractive index of the surface, enabling one to observe the intermolec-
ular interactions including efficacy measurement of biotherapeutics.
This method is commonly used for many sensor based detections as
well as lab-on-a-chip applications, and there are several models avail-
able on the market. For example, antibody-antigen detection can be
easily done with this method by coating the surface with the antigen.
The target antibody is introduced into the system then and signal
change is observed. Many antigens are available on ready to use chips,
making SPR one of the high-throughput methods. If there is excessive
binding compared to another protein, for example to another variant
antibody with mutation, then a relative efficacy can be obtained.

Many different fluorescence properties can also be used to study
molecular interactions including protein affinities. The sample is labeled
with a fluorescence tag unless intrinsic tryptophan (tryp) fluorescence
is used. One of the fluorescence properties (e.g. emission spectrum,
fluorescence lifetime, anisotropy, energy transfer or quenching) is
used to probe the interactions. A fluorimeter, lifetime instrument or
a confocal microscope can be utilized for the detection of fluorescence
intensity and lifetime. Depending on the interactions, a change in the
fluorescence signal is expected upon binding to the target. This could
be an increase or decrease in the emission maximum, a concurrent
shift in the emission wavelength, a change in fluorescence lifetime or
a change in polarization leading to change in anisotropy.

Flow cytometers are mainly used for cell sorting and detection but
they can also be used in affinity studies. The sample flows through a
steady stream created via hydrodynamic focusing in a narrow tubing
and the scattered light as well as a fluorescence signal is detected
from a fluorescent dye that is bound to the biomolecule of interest
[46]. It is particularly useful for detecting biomolecules which bind to
the cell surface, and therefore this is the preferredmethod to determine
affinities in such systems, e.g., Abs. The number of biomolecules or cells
as a function of forward or right-angle scattering are collected and can
be related to the concentration and interaction of proteins.

3.2. Methods for Aggregation

Methods to study the structural stability and aggregation profiles
of proteins can be roughly categorized into three groups [47–49]:
(i) separation methods such as electrophoresis, chromatography, or
centrifugation; (ii) spectroscopy based methods such as fluorescence,
absorbance, light-scattering, FTIR, MS, and NMR; and (iii) microscopy
based methods such as TEM, SEM, AFM, and optical. Each technique
has its advantages and disadvantages and there is no single method
that would be appropriate for any given system since the stability and
aggregation profile of any protein is a multifaceted problem. Therefore,
it is always beneficial to adapt a holistic approach and use orthogonal
methods to understand the stability and aggregation issues fully. Here
we will only discuss some of the widely used methods.

Intrinsic tryp fluorescence is probably the most used method for
studying conformational changes in proteins, but it is also very helpful
for probing protein-protein interactions [50]. Tryp fluorescence, how-
ever, becomes complicated if there is more than one tryp residue in
the protein due to fluorescence being additive and also because of its
solvatochromic nature. Thus, relating tryp emission to protein degrada-
tion may not be an easy task. Nevertheless, these difficulties were over-
come in some studies, where tryp fluorescence was used successfully
in folding and aggregation of proteins [51,52]. Another widely used
fluorescence-based technique is external dye-binding method where a
protein is labeledwith afluorescent dye either covalently or by diffusion
[53]. If covalent labeling approach is used, chemically different reactive
moieties can be used for tagging dyes onto proteins including amine,
sulfhydryl, carboxyl and glycosylation groups. These dyes generally
have high quantum yields with excellent photostability. In the
diffusion-based dye-binding studies, dyes are bound to either a protein
or protein aggregates via diffusion of the dyemolecules. A large number
of dyes can be used for this purpose, and in general, these dyes have
hydrophobic and aromatic structures. Consequently, they mostly bind
to the hydrophobic patches on the protein surface, reporting conforma-
tional stability of the protein or intercalate inner sections of aggregates,
which are usually much more hydrophobic than bulk solution. Upon
binding to a hydrophobic environment, the florescence properties
change radically; the emission spectra shift to a different wavelength
and/or intensity is enhanced. This allows one to probe conformational
changes of the protein, aggregation formation over time, or the effect
of different additives on the system.

Light-scattering spectroscopy is used extensively to check aggregate
formation in biotherapeutic formulations [54]. Aggregates are larger
molecules compared to monomers, and hence they scatter light much
more. This enables us to examine the presence of aggregates in the sys-
tem and also how they are formed. Two types of scatteringmethods are
used in experimental studies of biotherapeutics: static light scattering
(SLS) and dynamic light scattering (DLS). For both methods, scattered
light from a laser is detected and analyzed to reveal information on
various important parameters such as the size, shape and molecular
weight (MW) of molecules. SLS is based on the angle dependence of
the scattered light and enables detecting absolute MW of the protein
and aggregate. If the sample is heterogeneous, then it may need to be
separated into constituents. Therefore, SLS systems are generally linked
with a molecular separation method such as high pressure liquid chro-
matograph (HPLC) or flow field fractionation system. DLS uses only the
right-angle detection and does not require a molecular separation
method. It is used to measure hydrodynamic radius of molecules in a
system. It can detect a wide range of sizes of molecules and aggregates.
Many groups also apply light-scattering detection in other ways to
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collect information on protein aggregation, e.g., using a UV-Vis spectro-
photometer or fluorimeters [55].

HPLC is the main method used in aggregation studies of proteins
[49,56]. It can be operated in different modes; size-exclusion (SEC),
ion-exchange, or hydrophobic-hydrophobic interaction chromatogra-
phy. SEC is a widely used method, where the sample is pushed through
a tightly packed column. In the absence of any sample-column interac-
tions, small molecules are eluted last from the column because they
spend most of their time inside the column and thus they are delayed.
Large molecules, i.e., protein aggregates, cannot fit in many of the
cavities provided in the column, and hence they are eluted first. Other
molecules come out of the column based on their sizes in between
aggregates and monomers. The size of the protein of interest can be
characterized by running SECwith proteins in different sizes and gener-
ating a size calibration curve. In doing so, using the same buffer, pH and
flow rate for all proteins could help reduce the variations in elution
times. Operating a combined system of SEC-SLS could also be helpful
determining MW of eluted species from the column. The eluting peaks
of the sample is observed with a UV absorbance detector, refractive
index detector, or a fluorescence detector. The major limitation of the
HPLC method is the time it takes to conduct an experiment. Depending
on the system under study, one sample can take about 30 min. Another
limitation is that very large particles cannot be detected with HPLC as
they would not be able to go into the system. Column blockage is com-
monly observed in protein aggregation studies with HPLC. Also large
particles may elute in the void volume and may not be revealed with
the detector.
Fig. 2. Snapshots of the Kv1.1–ShK and Kv1.3–ShK complexes. Only the strongly interacting re
pairs, two views of the complex are presented. In both cases, the pore inserting lysine (K22) b
4. Applications to Biobetters

As emphasized in Methods, accurate determination of the protein-
ligand complex is the most crucial step in design of biobetters whether
it is for improving their affinity, selectivity or stability. Thus a proper val-
idation of a complex structure using a variety of experimental checks is
essential before proposing any mutations on a ligand. The applications
discussed below are successful examples of this approach but there
are many other complex structure predictions, which lack proper vali-
dation and therefore cannot be trusted for design purposes.

4.1. Improving Selectivity of Toxin Peptides

Potassium channels are targeted by many toxins, which could be
utilized as therapeutics in treatment of diseases caused by their dys-
function [57]. Computational studies of toxin binding to potassium
channels [2,3,40] have been facilitated thanks to the early determina-
tion of their crystal structures [58]. Here we will focus on Kv1 channels,
and in particular Kv1.3, which is an established target for the treatment
of autoimmune diseases [59]. ShK toxin from sea anemone binds to
Kv1.3 with a picomolar affinity, and hence is well suited for develop-
ment as a therapeutic agent [59]. However, ShK has a similarly high
affinity for Kv1.1 in the nervous system, and, to avoid side effects, it is
essential to find analogs of ShK that are selective for Kv1.3 over Kv1.1.
This is precisely the type of problem that can be addressed using the
computational methods discussed here. In an initial study, the complex
structures for Kv1.1–ShK and Kv1.3–ShK were constructed and
sidues involved in the binding are indicated explicitly. In order to show all the interacting
locks the pore.



Fig. 3. Aggregation of protein and some of the potential issues observed due to aggregation.
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validated using the available mutation data and binding free energies
[60]. Comparison of the binding modes (Fig. 2) indicates some possible
mutations for improving the Kv1.3/Kv1.1 selectivity, e.g., K18 and R29
on ShK make strong charge interactions with Kv1.1 but not with
Kv1.3. Thus mutation of these residues to alanine should reduce its
affinity for Kv1.1 without affecting Kv1.3 affinity. In the next step, free
energy calculations were performed for the K18A and R29A mutations
[43]. The latter changed the binding mode and was not useful but
K18A was predicted to improve the Kv1.3/Kv1.1 selectivity by more
than 2 kcal/mol, which was confirmed in subsequent experiments [43].

The scorpion toxin HsTx1 has a similarly high affinity for Kv1.3 and
also exhibits 700-fold selectivity for Kv1.3 over Kv1.1 [61]. HsTx1 has
a more stable structure than ShK, and may offer a better alternative as
a therapeutic for autoimmune diseases. A similar computational study
was performed for binding of HsTx1 to Kv1 channels [62]. The complex
structures were validated using the binding free energies determined
from PMF calculations. Comparison of the binding modes of HsTx1
with Kv1.1 and Kv1.3 showed that R14 in HsTx1 is strongly coupled to
a glutamate in Kv1.1 but has no interactions with Kv1.3. Thus, the
R14A mutation could further enhance the Kv1.3/Kv1.1 selectivity of
HsTx1. This was followed up by performing free energy calculations
for the binding of HsTx1[R14A] to Kv1.1 and Kv1.3, and more than
2 kcal/mol gain the in Kv1.3/Kv1.1 selectivity was predicted, which
was confirmed in subsequent functional assay experiments [63].
While HsTx1 is more stable than ShK against degradation by enzymes
[64], oral availability is still a problem. Various means have been pro-
posed to improve the biopharmaceutical properties of peptide drugs
such as cyclization [65], replacing the disulfide bridges with cystathio-
nine bridges [66], and using lactam bridges to stabilize helical
pharmacophores [67]. Yet another avenue for obtaining stable drugs is
to use star polymers with functionalized ends [68].
4.2. Biobetters from Monoclonal Antibodies

Monoclonal antibodies (mAbs) are the leadingmolecules in the bio-
tech industry [69]. They have great pharmaceutical significance thanks
to their unmatched specificity and affinity, and hundreds of mAbs are
in the late stages of development [70]. Due to their large size, improving
their properties poses a more challenging problem but it is still within
the reach of current high performance computers. Improving the affin-
ity/selectivity profile of a mAb follows the same script as already
discussed for toxins. We will therefore focus on the aggregation prob-
lem here, which affects mAbs from development to administration. A
typical path for aggregation of proteins and the ensuing consequences
are shown schematically in Fig. 3. The critical step in aggregation is
thepartial unfolding of the protein,which exposes hydrophobic regions,
followed by dimer formation that exploits the exposed regions. Thus
prevention requires finding the weak points in the protein that are
involved in unfolding and performing mutations at those points to
prevent unfolding. If that fails, one can also try mutations that will
reduce the binding affinity of another monomer.
Thus the first step in a computational study of protein aggregation is
to find the partially unfolded conformations. Most of the existing
approaches for predicting aggregation-prone regions of proteins are
based on bioinformatics methods that search for hydrophobic regions
in the amino acid sequence and use static protein structures [71].
While this approach has had some success [72], a comprehensive
understanding of aggregation requires a dynamic method that will
help to find the conformations leading to the dimer formation. MD
simulations provide the best method for studying conformational
changes is proteins but the partial unfolding of a protein is a rare process
and it could take a very long time to observe. This can be overcome
by performing MD simulations at higher temperatures, which will
speed up unfolding of the protein [73]. Once the dominant unfolded
conformer is identified, its complex structures with itself and the
room temperature structure can be constructed using docking and
MD. The binding free energies of the two complexes can be calculated
to reveal which one is more likely to initiate aggregation. The last step
is to performmutations thatwill either prevent unfolding of the protein
(which is expected to be harder to achieve) or reduce the binding affin-
ity in themost stable dimer structure. The latter is similar to solving the
selectivity problem for toxin peptides and follows an identical recipe.
Because of the large size of mAbs, a proof of concept studywas first per-
formed for lysozyme, which does not aggregate, and its D67H mutant,
which aggregates (D. Patel and S. Kuyucak, unpublished). Unfolding of
the mutant lysozyme was indeed observed in high temperature MD
simulations and this structure was shown to form a stable dimer with
itself. Thewild type lysozyme did not unfold during the same high tem-
perature MD simulations, confirming the robustness of this approach
for studies of unfolding in other proteins. In particular, application of
this method to mAbs is likely to deliver novel ways to prevent their
aggregation.
5. Summary and Outlook

Thanks to the continuing increase in computing power and develop-
ments in computational methods, we nowhave the ability to determine
the structure of protein–ligand complexes and their binding free ener-
gies accurately. Suchmethodswill be very useful in rational drug design
in general and will facilitate development of biobetters from existing
peptide and protein- based drugs. The possibility of constructing accu-
rate complex models means that one can make rational choices for
mutations to improve the affinity/selectivity profile or stability of a
peptide drug lead. The effect of the chosen mutations on the binding
free energy of a ligand can be determined from free energy calculations,
which will minimize the experimental efforts. Although we have used
peptide toxins targeting potassium channels for illustration purposes,
the computational methods described here are quite general and can
be applied to any receptor–ligand system, as long as their individual
structures are available. In particular, developing biobetters from
mAbs will greatly benefit from the computation-driven approach
espoused here.
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