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Abstract

Collective behavior, and swarm formation in particular, has been studied from several per-

spectives within a large variety of fields, ranging from biology to physics. In this work, we

apply Projective Simulation to model each individual as an artificial learning agent that inter-

acts with its neighbors and surroundings in order to make decisions and learn from them.

Within a reinforcement learning framework, we discuss one-dimensional learning scenarios

where agents need to get to food resources to be rewarded. We observe how different types

of collective motion emerge depending on the distance the agents need to travel to reach

the resources. For instance, strongly aligned swarms emerge when the food source is

placed far away from the region where agents are situated initially. In addition, we study the

properties of the individual trajectories that occur within the different types of emergent col-

lective dynamics. Agents trained to find distant resources exhibit individual trajectories that

are in most cases best fit by composite correlated random walks with features that resemble

Lévy walks. This composite motion emerges from the collective behavior developed under

the specific foraging selection pressures. On the other hand, agents trained to reach nearby

resources predominantly exhibit Brownian trajectories.

1 Introduction

Collective behavior is a common but intriguing phenomenon in nature. Species as diverse as

locusts, and some families of fish or birds exhibit different types of collective motion in very

different environments and situations. Although the general properties of swarms, schools and

flocks have been widely studied (see e.g. [1] for a review), the emergence of global, coordinated

motion from the individual actions is still a subject of study. Different approaches, ranging

from statistical physics to agent-based models, have led to new insights and descriptions of the

phenomenon. Statistical physics models are very successful at describing macroscopic proper-

ties such as phase transitions and metastable states [2–4], but in order to apply the powerful

tools of statistical mechanics, these models normally simplify the individuals to particles that

interact according to certain rules dictated by the physical model adopted, as for instance the
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Ising-type interaction of the spins in a lattice. A different type of models are the so-called self-

propelled particle (SPP) models [5–8], which enable higher complexity in descriptions at the

individual level but still allow one to employ the tools of statistical physics. They describe indi-

viduals as particles that move with a constant velocity and interact with other individuals via

fixed sets of rules that are externally imposed. In SPP models, the description of the interac-

tions is not restricted to physically accepted first principles, but can include ad hoc rules based

on specific experimental observations.

In this work, we follow a different approach and model the individuals as artificial learning

agents. In particular, we apply Projective Simulation (PS) [9], which is a model of agency that

can incorporate learning processes via a reinforcement learning mechanism. The individuals

are thus described as PS agents that interact with their surroundings, make decisions accord-

ingly and learn from them based on rewards provided by the environment. This framework

allows for a more detailed, realistic description in terms of the perceptual apparatus of the

agent. One of the main differences with respect to previous models is that the interaction rules

between agents are not imposed or fixed in advance, but they emerge as the result of learning

in a given task environment. This type of agent-based models that employ artificial intelligence

to model behavior are gaining popularity in the last few years. Artificial neural networks

(ANN) have been used, for instance, in the context of navigation behaviors [10, 11] and rein-

forcement learning (RL) algorithms have been applied to model collective behavior in different

scenarios, such as pedestrian movement [12] or flocking [13, 14].

In contrast to other learning models such as neural networks, PS provides a transparent,

explicit structure that can be analyzed and interpreted. This feature is particularly useful in

modeling collective behavior, since we can study the individual decision making processes,

what the agents learn and why they learn it. This way, we can directly address the questions of

how and why particular individual interactions arise that in turn lead to collective behaviors.

Initial work by Ried et al. [15], where the authors use PS to model the density-dependent

swarm behavior of locusts, laid the foundations of the present work.

Since the interaction rules are developed by the agents themselves, the challenge is to design

the environment and learning task that will give rise to the individual and, consequently, col-

lective behavior. In previous works, the agents are directly rewarded for aligning themselves

with the surrounding agents [15] or for not losing neighbours [14]. Instead of rewarding a spe-

cific behavior, in this work we set a survival task that the agents need to fulfill in order to get

the reward, and then analyze the emergent behavioral dynamics.

As a starting hypothesis, we consider the need to forage as an evolutionary pressure and

design a learning task that consists in finding a remote food source. Due to this particular sur-

vival task, our work relates to the investigation of foraging theories and optimal searching

behavior.

There is a vast number of studies devoted to the analysis of foraging strategies in different

types of environments e.g., [16–19]. In the particular case of environments with sparsely dis-

tributed resources (e.g. patchy landscapes), there are two main candidates for the optimal

search model: Lévy walks [20–22] and composite correlated random walks (CCRW) [23, 24].

The former are described by a single distribution of step lengths that is characterized by a

power-law p(ℓ) * ℓ−μ with exponent 1< μ� 3, whereas the latter consider that the movement

is composed of two different modes, characterized by two exponential distributions with dif-

ferent decay rates. Although the mathematical models behind them are fundamentally differ-

ent, they have some common features that make the movement patterns hard to distinguish

[24–28]. In broad terms, both models can produce trajectories that are a combination of short

steps (with large turning angles in 2D), which are useful for exploring the patch area, and long,

straight steps, which are efficient to travel the inter-patch distances. Even though both models
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have theoretical [22, 23] and experimental (e.g. [29, 30]) support, it is not yet clear if animal

foraging patterns can be described and explained by such models or if they are too complex to

admit such simplifications.

Furthermore, regarding the Lévy walks, there is an ongoing debate on the question whether

they emerge under certain animal foraging strategies. Currently there exist two main hypothe-

ses, referred to as the evolutionary and the emergentist. The evolutionary hypothesis (also

called Lévy flight foraging (LFF) hypothesis) states that certain species have evolved according

to natural selection to develop an optimal foraging strategy consisting of Lévy walk movement

patterns (see e.g. [31] and references therein). On the other side, the emergentist hypothesis

argues that the LFF hypothesis is not sufficient to account for the complexity of animal behav-

ior since it does not explain certain anomalies observed experimentally (see [32] and refer-

ences therein). It argues that Lévy walks can emerge spontaneously as a consequence of the

features of the environment, which lead to certain responses from the foraging organism.

Thus, these responses are not part of an evolved strategy developed over the course of genera-

tions, but can arise from innate behaviors and lead to Lévy patterns spontaneously when the

animal is confronted with certain environmental conditions.

Due to the fact that our learning task is directly related to foraging strategies, we link the

present work to the aforementioned studies by analyzing the individual trajectories the agents

produce as a consequence of the behavior developed in the different learning contexts.

The paper is organized as follows: an introduction to Projective Simulation and a detailed

description of the model and the learning setup are given in Sec. 2. In Sec. 3, we present differ-

ent learning tasks and analyze the resulting learned behaviors. In Sec. 4, we study the emergent

group dynamics and individual trajectories within the framework of search models to deter-

mine if they can be described as Lévy walks or composite correlated random walks. Finally, we

summarize the results and conclude in Sec. 5.

2 Methods and model

A wide range of models and techniques have been applied to the study of collective behavior.

In this work, we apply Projective Simulation, a model for artificial agency [9, 33–37]. Each

individual is an artificial agent that can perceive its surroundings, make decisions and perform

actions. Within the PS model, the agent’s decision making is integrated into a framework for

reinforcement learning (RL) that allows one to design concrete scenarios and tasks that the

individuals should solve and then study the resulting strategies developed by the agents. We

remark that the notion of strategy employed throughout this work does not imply that the

agents are able to plan. We use the word “strategy” to refer to the behavior the agents develop

given a certain learning task. In addition, each agent’s motor and sensory abilities can be mod-

eled in a detailed, realistic way.

In our model of collective behavior, the interaction rules with other individuals are not

fixed in advance; instead the agents develop them based on their previous experience and

learning. The most natural interpretation of this approach is that it describes how a group of

given individuals change their behavior over the course of their interactions, for example

human children at play. However, our artificial learning agents can also be used to model sim-

pler entities that do not exhibit learning in the sense of noticeable modifications of their

responses over the course of a single individual’s lifetime, but only change their behavior over

the course of several generations. In this case, a single simulated agent does not correspond to

one particular individual, in one particular generation, but rather stands as an avatar for a

generic individual throughout the entire evolution of the species. The environmental pressures

driving behavioural changes over this time-scale can be easily encoded in a RL scenario, since
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the reward scheme can be designed in such a way that only the behaviors that happen to be

beneficial under these pressures are rewarded. This allows us to directly test whether the envi-

ronmental pressures are a possible causal explanation for the observed behavior or not. Our

approach interprets the reinforcement of certain responses from an evolutionary perspective.

It differs from genetic algorithms, extended classifier systems [38], and similar advanced

machine learning methodology in that it does not model evolution in an explicit manner. Such

machinery, e.g., the encoding of genes, mutations, and crossover, usually comes at the cost of a

larger model complexity (number of free parameters; see [33]) and additional computational

overhead. Alternatively, neural network models might be employed, but these are typically dif-

ficult to interpret and thus not useful in our context. Unlike genetic algorithms, Projective

Simulation provides a model of agency that describes a stochastic decision-making process of

each individual, which can be used beyond mere optimization by focusing on the resulting

causal explanations.

Although other reinforcement learning algorithms may be used to model a learning agent,

Projective Simulation is particularly suitable for the purpose of modeling collective behavior,

since it provides a clear and transparent structure that gives direct access to the internal state

of the agent, so that the deliberation process can be analyzed in an explicit way and can be

related to the agent’s behavior. This analysis can help us gain new insight into how and why

the individual interactions that lead to collective behaviors emerge.

2.1 Projective simulation

Projective Simulation (PS) is a model for artificial agency that is based on the notion of epi-

sodic memory [9]. The agent interacts with its surroundings and receives some inputs called

percepts, which trigger a deliberation process that leads to the agent performing an action on

the environment.

In the PS model, the agent processes the percepts by means of an internal structure called

episodic and compositional memory (ECM), whose basic units are called clips and represent

an episode of the agent’s experience. Mathematically, the ECM can be represented as a

directed, weighted graph, where each node corresponds to a clip and each edge corresponds to

a transition between two clips. All the edge weights are stored in the adjacency matrix of the

graph, termed h matrix. For the purpose of this work, the most basic two-layered structure is

sufficient to model simple agents. Percept-clips are situated in the first layer and are connected

to the action-clips, which constitute the second layer (see Fig 1). Let us define these compo-

nents of the ECM more formally.

• The percepts are mathematically defined as N-tuples s ¼ ðs1; s2; . . . ; sNÞ 2 S, where S is the

Cartesian product S � S1 � S2 � . . .� SN . As it can be seen from this mathematical defini-

tion, the percept s has several categories, represented by Si. Each component of the tuple is

denoted by si 2 f1; . . . ; jSijg, where jSij is the number of possible states of Si. The total

number of percepts is thus given by jS1j � � � jSN j.

• Analogously, the actions are defined as a ¼ ða1; a2; . . . ; aNÞ 2 A, where A � A1 �A2 �

. . .�AN and ai 2 f1; . . . ; jAijg, where jAij is the number of possible states of Ai. The total

number of actions is given by jA1j � � � jAN j.

As an example, consider an agent that perceives both its internal state, denoted by S1, with

two possible percepts S1 ¼ fhungry; not hungryg, and some visual input, denoted by S2,

with S2 ¼ fI see food; I do not see foodg. Thus, one out of the four possible percepts could
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be s = (hungry, I see food). In this case, the possible actions may be

A ¼ fgo for food; turn aroundg.
Fig 1 represents the structure of the ECM in our model, which consists of a total of 25 per-

cepts and 2 actions (see Sec. 2.2 for a detailed description).

Let us introduce how the agent interacts with the environment and makes decisions via the

ECM. When the agent receives a percept, the corresponding percept-clip inside the ECM is

activated, starting a random walk that only ends when an action-clip is reached, which triggers

a real action on the environment. The transition probability P(j|i) from a given percept-clip i
to an action-clip j is determined by the corresponding edge weight hij as,

PðjjiÞ ¼
hij
P

khik
; ð1Þ

where the normalization is done over all possible edges connected to clip i. This process, start-

ing with the presentation of a perceptual input that activates a percept clip and finishing when

the agent performs an action on the environment, is termed an (individual) interaction round.

The structure of the ECM allows one to easily model learning by just updating the h matrix

at the end of each interaction round. The h matrix is initialized with all its elements being 1, so

that the probability distribution of the actions is uniform for each percept. Reinforcement

learning is implemented by the environment giving a reward to the agent every time that it

performs the correct action. The reward increases the h-values, and thus the transition proba-

bilities, of the successful percept-action pair. Hence, whenever the agent perceives again the

same percept, it is more likely to reach the correct action. However, in the context of this

work, we are setting a learning task in which the agent should perform a sequence of several

actions to reach the goal and get the reward. If the reward is given only at the last interaction

round, only the last percept-action pair would be rewarded. Thus, some additional mechanism

is necessary in order to store a sequence of several percept-action pairs in the agent’s memory.

This mechanism is called glow and the matrix that stores the information about this sequence

is denoted by g. The components gij, corresponding to the percept-action transition i! j, are

Fig 1. Structure of the ECM. The ECM consists of two layers, one for the percepts and one for the actions. Percepts

and actions are connected by edges whose weight hij determines the transition probability from the given percept to

each action (see Sec. 2.2 for details on the model).

https://doi.org/10.1371/journal.pone.0243628.g001
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initialized to zero and are updated at the end of every interaction round according to:

gðtþ1Þ

ij ¼ ð1 � ZÞgðtÞij þ
0 if edge was not traversed

1 if edge was traversed;

( )

ð2Þ

where 0� η� 1 is the glow parameter, which damps the intensity of the given percept-action

memory. For η close to one, the actions that are taken at interaction rounds in temporal vicin-

ity to the rewarded action are more intensely remembered that the initial actions. If η = 0, all

actions the agent performed until the rewarded interaction are equally remembered. The g
matrix is updated in such a way that the percept-action pairs that are used more often to get to

the reward are proportionally more rewarded than the pairs that were rarely used. Note that

the agent is not able to distinguish an ordered sequence of actions, but this is not necessary for

the purpose of this work.

In the context of our learning task, the agent receives a reward from the environment at the

end of the interaction round at which it reaches a goal. Then, the learning is implemented by

updating the h matrix with the rule,

hðtþ1Þ ¼ hðtÞ þ R � g; ð3Þ

where R� 0 is the reward (only non-zero if the agent reached the goal at the given interaction

round) and g is the updated glow matrix. Technically, the glow matrix is updated first, and

then, if the agent is rewarded, the h matrix is updated.

Since we model collective behavior, we consider a group of several agents, each of which

has its own and independent ECM to process the surrounding information. Details on the spe-

cific learning task and the features of the agents are given in the following section.

2.2 Details of the model

We consider an ensemble of N individuals that we model as PS learning agents, which possess

the internal structure (ECM) and the learning capabilities described in section 2.1. This

description of the agents can be seen as a simplified model for species with low cognitive

capacities and simple deliberation mechanisms, or just as a theoretical approach to study the

optimal behavior that emerges under certain conditions.

With respect to the learning, we set up a concrete task and study the strategy agents develop

to fulfill it. In particular, we consider a one-dimensional circular world with sparse resources,

which mimics patchy landscapes such as deserts, where organisms need to travel long dis-

tances to find food. Inspired by this type of environments, we model a task where agents need

to reach a remote food source to get rewarded. The strategy the agents learn via the reinforce-

ment learning mechanism does not necessarily imply that the individual organisms should be

able to learn to develop it, but can also be interpreted as the optimal behavior that a species

would exhibit under the given environmental pressures.

Let us proceed to detail the agents’ motor and sensory abilities. The positions that the agents

can occupy in the world are discretized {0, 1, 2. . .W}, where W is the world size (total number

of positions). Several agents can occupy the same position. At each interaction round, the

agent can decide between two actions: either it continues moving in the same direction or it

turns around and moves in the opposite direction. The agents move at a fixed speed of 1 posi-

tion per interaction round. For the remainder of this work, we consider the distance between

two consecutive positions of the world to be our basic unit of length. Therefore, unless stated

otherwise, all distances given in the following are measured in terms of this unit. We remark

that, in contrast to other approaches where the actions are defined with respect to other

PLOS ONE Development of swarm behavior in foraging artificial learning agents

PLOS ONE | https://doi.org/10.1371/journal.pone.0243628 December 18, 2020 6 / 38

https://doi.org/10.1371/journal.pone.0243628


individuals [39], the actions our agents can perform are purely motor and only depend on the

previous orientation of the agent.

Perception is structured as follows: a given agent, termed the focal agent, perceives the rela-

tive positions and orientations of other agents inside its visual range (radius with center at the

agent’s position) VR, termed its neighbors. The percept space S (see Sec. 2.1) is structured in

the Cartesian product form S 2 Sf × Sb, where Sf is the region in front of the focal agent and Sb
the region at the back. More precisely, each percept s = (sf, sb) contains the information of the

orientation of the neighbors in each region with respect to the focal agent and if the density of

individuals in this region is high or low (see Fig 2). Each category of percepts can take the val-

ues sf, sb 2 {0, <3r,�3r,<3a,�3a} (25 percepts in total), which mean:

• 0. No agents

• <3r. There are less than 3 neighbors in this region and the majority of them are receding

from the focal agent.

• �3r. There are 3 or more neighbors in this region and the majority of them are receding

from the focal agent.

• <3a. There are less than 3 neighbors in this region and the majority of them are approaching

the focal agent.

• �3a. There are 3 or more neighbors in this region and the majority of them are approaching

the focal agent.

In the following discussions, we refer to the situation where the focal agent has the same ori-

entation as the neighbors as a percept of positive flow (majority of neighbors are receding at

the front and approaching at the back). If the focal agent is oriented against its neighbors

(these are approaching at the front and receding at the back), we denote it as a percept of nega-
tive flow. Note that the agents can only perceive information about the neighboring agents

inside their visual range, but they are not able to see any resource or landmark present in the

surroundings. This situation can be found in realistic, natural environments where the

Fig 2. Graphical representation of the percepts’ meaning. Only the front visual range (colored region) is considered,

which corresponds to the values that category sf can take. The focal agent is represented with a larger arrow than the

frontal neighbors. The agent can only see its neighbors inside the visual range and it can distinguish if the majority are

receding (light blue) or approaching (dark blue) and if they are less or more than three.

https://doi.org/10.1371/journal.pone.0243628.g002
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distance between resources is large and the searcher has no additional input while moving

from one patch to another. Furthermore, the important issue of body orientation is thereby

taken into account in our model [32].

The interactions between agents are assumed to be sequential, in the sense that one agent at

a time receives a percept, deliberates and then takes its action before another agent is given its

percept. Technically, agents are given a label at the beginning of the simulation to keep track of

the interaction sequence but we remark that they are placed at random positions in the world.

There are two reasons for assuming a sequential interaction. For one, in a group of real ani-

mals (or other entities), different individuals typically take action at slightly different times,

with perfect synchronization being a remarkable and costly exception. The second argument

in favor of sequential updating is that it ensures that a given agent’s circumstances do not

change from the time it receives its percept until the time when its acts. If the actions of all

agents were applied simultaneously, a given focal agent would not be able to react to the

actions of the other agents in the same round. Such a simplification would not allow us to take

into account any sequential, time-resolved interactions between different agents of a group. In

the real situation, while one focal agent is deliberating, other agents’ actions may change its

perceptual input. Therefore, an action that may have been appropriate at the beginning of the

round, would no longer be appropriate at this agent’s turn.

The complete simulation has the structure displayed in Fig 3, where:

• With each ensemble of N = 60 agents, we perform a simulation of 104 trials during which the

agents develop new behaviors to get the reward (RL mechanism). This process is denoted as

learning process or training from this point on.

• Each trial consists of n = 50 global interaction rounds. At the beginning of each trial, all

agents of the ensemble are placed in random positions within the initial region (see Fig 4).

• We define a global interaction round to be the sequential interaction of the ensemble, where

agents take turns to perform their individual interaction round (perception-deliberation-

action). Note that each agent perceives, decides and moves only once per global interaction

round.

Fig 3. Structure of the simulation. Each ensemble of agents is trained for 104 trials, where each trial consists of 50

global interaction rounds (g.i.r.). At each g.i.r., the agents interact sequentially (see text for details).

https://doi.org/10.1371/journal.pone.0243628.g003
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The learning task is defined as follows: at the beginning of each trial, all the agents are

placed at random positions within the first 2VR positions of the world, with orientations also

randomized. Each agent has a fixed number n of interaction rounds over the course of a trial

to get to a food source, located at positions F and F0 (Fig 4). At each interaction round, the

agent first evaluates its surroundings and gets the corresponding percept. Given the percept, it

decides to perform one out of the two actions (“go” or “turn”). After a decision is made, it

moves one position. If the final position of the agent at the end of an interaction round is a

food point, the agent is rewarded (R = 1) and its ECM is updated according to the rules speci-

fied in Sec. 2.1. Each agent can only be rewarded once per trial. Note that the h matrices of the

agents are only updated following Eq (3), and we do not consider any other transformation to

explicitly model evolution as it could be done, in principle, using genetic algorithms to explic-

itly represent evolutionary mechanisms of mutation, crossover etc. (see also the discussion at

the beginning of Sec. 2).

We consider different learning scenarios by changing the distances dF at which food is posi-

tioned. However, note that a circular one-dimensional world admits a trivial strategy for

reaching the food without any interactions, namely going straight in one direction until food

is reached. Thus, in order to emulate the complexity that a more realistic two-dimensional sce-

nario has in terms of degrees of freedom of the movement, we introduce a noise element that

randomizes the orientation of each agent every sr steps (it changes orientation with probability

1/2). Not all agents randomize the orientations at the same interaction round, which would

lead to random global behavior. This randomization can be also interpreted biologically as a

fidgeting behavior or even as a built-in behavior to escape predators [40]. Protean movement

has been observed in several species [41–44] and there exist empirical studies that show that

unpredictable turns [45] and complex movement patterns [46] decrease the risk of predation.

In addition, if the memory of the organism is not very powerful, we can also consider that, at

these randomization points, it forgets its previous trajectory and needs to rely on the

Fig 4. 1D environment (world). Agents are initialized randomly within the first 2VR positions. Food is located at

positions F and F0. dF is the distance from the center of the initial region C to the food positions.

https://doi.org/10.1371/journal.pone.0243628.g004
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neighbors’ orientations in order to stabilize its trajectory. The agent can do so, since the ran-

domization takes place right before the agent starts the interaction round.

Under these conditions, we study how the agents get to the food when the only input infor-

mation available to them is the orientation of the agents around them.

3 Results I: Learned behavior in different scenarios

We consider different learning scenarios characterized by the distance dF (see Fig 4). We study

how the dynamics that the agents develop in order to reach the food source change as the dis-

tance dF increases. In particular, we focus on two extreme scenarios: one where the resource is

within the initial region (dF< VR) —agents are initialized within the first 2VR positions of the

world—, and the other one where the resource is at a much larger distance. As a scale for this

distance, we consider how far an agent can travel on average with a random walk, which is

dRW ¼
ffiffiffi
n
p

providing that it moves one position per interaction round. Hence, the other

extreme scenario is such that dF� dRW. Note that the scale of dF for this regime depends on

the total number n of interaction rounds that the agents perform in one trial. The maximum

value of dF that we can choose thus depends on the maximum distance the agents can travel

within n rounds following an unbiased random walk (for n = 50, this threshold is approxi-

mately at dF = 21).

The situation where dF< VR mimics an environment with densely distributed resources,

whereas the regime with dF� dRW resembles a resource-scarce environment where a random

walk is no longer a valid strategy for reaching food sources.

The parameters of the model that are used in all the learning processes are given in Table 1.

Providing that dRW ¼
ffiffiffiffiffi
50
p

’ 7, we consider values of dF ranging from 2 to 21 and focus on

the cases with dF = 4, 21 as the representative examples of resource-dense and resource-scarce

environments, respectively. All agents start the learning process with a newly initialized h
matrix, so they perform each action (“go” or “turn”) with equal probability. Fig 5 shows the

learning curves for three different scenarios, where the food is placed at dF = 4, 10, 21. The

learning processes are independent from each other, that is, the distance dF does not change

within one complete simulation of 104 trials. In this way, we can analyze the learned behaviors

separately for each dF. The learning curve displays the percentage of agents that reach the food

source and obtain a reward at each trial. As a baseline for comparison, we also set the same

learning task with dF = 21 for non-interacting (n.i.) agents (we set VR = 0, so they cannot see

the neighbors). The n.i. agents learn to go straight almost deterministically —the probability

for the action “go” at the end of the learning process is almost 1 for percept (0, 0)—. Therefore,

these agents perform a random walk with n/sr = 50/5 = 10 steps of length sr = 5, which allows it

to cover a distance of 5
ffiffiffiffiffi
10
p

’ 16 positions. The rest of percepts are never encountered, so the

initial h values remain the same. Due to the periodic randomization of the agents’ orientation,

it can be seen that they do not reach the efficiency rate of the interacting agents (see Fig 5) and

only one out of three agents reaches the reward at each trial. Fig 5 shows that, for dF = 4, the

Table 1. Description of the parameters used in the learning simulations with PS.

Agent Environment

Description Value Description Value

Visual range (VR) 6 Number of agents (N) 60

Reorient. freq. (sr) 5 World size (W) 500

Glow (η) 0.2 Int. rounds per trial (n) 50

Reward (R) 1 Number of trials 104

https://doi.org/10.1371/journal.pone.0243628.t001
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food source is so close (inside the initial region) that the agents get the reward in all the trials

from the beginning. On the other hand, the tasks with dF = 10, 21 show a learning process that

takes more trials for the agents to come up with a behavior that allows them to get to the

reward. In particular, only 40% of the agents are able to reach the goal with the initial behavior

(Brownian motion) in the scenario with dF = 10 and this percentage drops to almost 0% in the

case with dF = 21. Note that it takes more trials for the agents to learn how to get to the furthest

point (dF = 21) than it takes for dF = 10 (see inset in Fig 5). The interacting agents start outper-

forming the n.i. agents in the task with dF = 21 at trial 200, where they start to form aligned

swarms, as one can also see from the increase in the alignment parameter at the same trial (see

Sec. 3.2.1 for details).

3.1 Individual responses

The behavior the agents have learned at the end of the training can be studied by analyzing the

final state of the agents’ ECM, from where one obtains the final probabilities for each action

depending on the percept the agents get from the environment (see Eq (1)). These final proba-

bilities are given in Fig 6 for the learning tasks with dF = 4, 21.

Tables of Fig 6 show the probability of taking the action “go” for each of the 25 percepts.

We focus on the learning tasks with dF = 4, 21, which represent the two most distinctive behav-

iors that we observe.

Let us start with the case of dF = 21 (Fig 6(a)), which corresponds to a task where the food is

located much further away than the distance reachable with a random walk. In this case, highly

aligned swarms emerge as the optimal collective strategy for reaching the food (see also Sec.

3.2 and figures therein), since the orientations of the surrounding neighbors allow the focal

Fig 5. Learning curves for dF = 4, 10, 21 and dF = 21 for non-interacting (n.i.) agents. The curve shows the

percentage of agents that reach the food source and obtain a reward of R = 1 at each trial. For each task, the average is

taken over 20 (independent) ensembles of 60 agents each and the shaded area indicates the standard deviation.

Zooming into the initial phase of the learning process, the inset figure shows a faster learning in the task with dF = 10

than in the task with dF = 21. In the case of dF = 21, no agent is able to reach the food source in the first trial, and it

takes the interacting agents approx. 200 trials to outperform the n.i. agents.

https://doi.org/10.1371/journal.pone.0243628.g005
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agent to stabilize its orientation against the periodic randomization. The individual responses

that lead to such collective behavior can be studied by looking at table (a): the diagonal corre-

sponds to percepts with a clear reaction leading to alignment, i.e. to keep going when there is a

positive flow of neighbors and to turn if there is a negative flow. More specifically, one can see

that when the agent is in the middle of a swarm and aligned with it, the probability that it

Fig 6. Learned behavior at the end of the training process. The final probabilities in the agents’ ECM for the action

“go” are shown for each of the 25 percepts (5x5 table). (a) and (b) Final probabilities learned in the scenarios with dF =

21 and dF = 4 respectively. The average is taken over 20 ensembles (each learning task) of 60 agents each. Background

colors are given to easily identify the learned behavior, where blue denotes that the preferred action for that percept is

“go” and orange denotes that it is “turn”. More specifically, the darker the color is, the higher the probability for that

action, ranging from grey (p’ 0.5), light (0.5< p< 0.7) and normal (0.7� p< 0.9) to dark (p� 0.9). Figures (c) and

(d) show what the tables would look like if the behavior is purely based on alignment (agent aligns to its neighbors with

probability 1) or cohesion (agent goes towards the region with higher density of neighbors with probability 1),

respectively. See text for details.

https://doi.org/10.1371/journal.pone.0243628.g006
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keeps going is 0.99 for dense swarms [percept (�3r,�3a)] and 0.90 for sparse swarms [percept

(<3r, <3a)]. In the same situations, the agent that is not aligned turns around with probability

0.97 for dense swarms [percept (�3a,�3r)] and 0.57 for sparse swarms [percept (<3a,<3r)].

Outside the diagonal, one observes that the probability of turning is high when a high density

of agents are approaching the focal individual from the front (last row) and the agents in the

back are not approaching. We can also analyze the learned behavior at the back edge of the

swarm, which is important to keep the cohesion of the swarm. When an agent is at the back of

a dense swarm and aligned with it [percept (�3r, 0)], the probability of keeping the orientation

is 0.81. If instead, the agent is oriented against the swarm [percept (0,�3r)] the probability of

turning around to follow the swarm is 0.65. This behavior is less pronounced when the swarm

is not so dense [percepts (<3r, 0), (0, <3r)], in fact, when a low density of neighbors at the

back are receding from the focal agent [percept (0,<3r)], the focal agent turns around to rejoin

the swarm with probability 0.4, which results in this agent leaving the swarm with higher prob-

ability. If the agent is alone [percept (0, 0)], it keeps going with probability 0.77.

A very different table is observed for dF = 4 (Fig 6(b)). In this task, the food source is located

inside the initial region where the agents are placed at the beginning of the trials, so the agents

perceive, in general, high density of neighbors around them. For this reason, they rarely

encounter the nine percepts encoding low density —that correspond to the ones at the center

of the table, with grey background (Table (b) in Fig 6)— throughout the interaction rounds

they perform until they get the reward. The corresponding probabilities are the initialized

ones, i.e. 1/2 for each action. For the remaining percepts, we observe that the agents have

learned to go to the region with higher density of neighbors, which leads to very cohesive

swarms (see also Sec. 3.2.2). Since the food source is placed inside the initialization region in

this case —which is also within the region agents can cover with a random walk—, there is a

high probability that there are several agents already at the food source when an agent arrives

there, so they learn to go to the regions with higher density of agents. This behavior can be

observed, for instance, for percepts in the first column (high density at the back) and second,

third and fourth row (low/no density at the front), where the agents turn around with high

probability. In addition, we observe that there is a general bias towards continuing in the same

direction, which can be seen for example in percepts with the same density in both regions

(e.g. percepts at the corners of the table). The tendency to keep walking is always beneficial in

one-dimensional environments to get to the food source (non-interacting agents learn to do

so deterministically, as argued for Fig 5). In general, we observe that, in order to find the

resource point at dF = 4, agents do not need to align with their neighbors because the food is

close enough that they can reach it by performing a Brownian walk.

Fig 6(c) and 6(d) show what the tables would look like if the agents had deterministically

(with probability 1) learned just to align with the neighbors (c) or just to go to the region inside

the visual range with higher density of neighbors (d). In these figures, percepts for which there

is no pronounced optimal behavior have grey background.

In Fig 7, we select four representative percepts that show the main differences in the indi-

vidual behaviors and plot the average probability of taking the action “go” at the end of a wide

range of different learning scenarios where the distance to the food source is increasingly

large. We observe that there are two clear regimes with a transition that starts at dF = 6. This is

the end of the initial region (see Fig 4, with VR = 6 in our simulations) where the agents are

positioned at the beginning of each trial (see S1 Appendix for details on why this transition

occurs at dF = 6). The main difference between regimes is that, when the food is placed near

the initial positions of the agents, they learn to “join the crowd”, whereas, if the food is placed

farther away, they learn to align themselves and “go with the flow”. More specifically, for dF<
6, the orientations of the surrounding neighbors do not play a role, but the agents learn to go
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to the region (front/back) with higher number of neighbors, which leads to unaligned swarms

with high cohesion. On the contrary, for the tasks with dF> 6, the agents tend to align with

their neighbors. This difference in behavior can be observed, for instance, in the dark blue

(squares) curve of Fig 7, which corresponds to the percept “positive flow and higher density at

the back”. We observe that for dF = 2, 4, the preferred action is “turn” (the probability of taking

action “go” is low), since there are more neighbors at the back. However, for dF = 10, 14, 21,

the agents tend to continue in the same direction, since there is a positive flow (neighbors have

the same orientation as the focal agent). Analogously, the brown curve (triangles) shows the

case where there is a negative flow and higher density at the front, so agents trained to find

nearby food (dF = 2, 4) have high probability of going, whereas agents trained to find distant

food (dF = 10, 14, 21) have high probability of turning.

We remark that, even though the learning task is defined in terms of the distances dF, the

results from this section and S1 Appendix show that the main features of these two types of

dynamics do not only depend on the choice of the absolute value of dF, but also on the location

where the food is placed relative to the initial distribution of the agents. Therefore, we observe

that the two regimes correspond to the situations when (i) the food is placed within the initial

region where the other agents are also situated at the beginning and (ii) when the food is

placed far away from the initial region. In case (i) agents learn to rely on the information about

the positions of the neighbors and in (ii) they learn to rely on the information about their

Fig 7. Final probability of taking the action “go” depending on the learning task (increasing distance to food

source dF) for four significant percepts. The percepts are (< 3r,< 3a), (< 3r,� 3a), (< 3a,< 3r), (� 3a,< 3r),

respectively (see legend). The average is taken over the agents’ ECM of 20 independently trained ensembles (1200

agents) at the end of the learning process. Each ensemble performs one task per simulation (dF does not change during

the learning process).

https://doi.org/10.1371/journal.pone.0243628.g007

PLOS ONE Development of swarm behavior in foraging artificial learning agents

PLOS ONE | https://doi.org/10.1371/journal.pone.0243628 December 18, 2020 14 / 38

https://doi.org/10.1371/journal.pone.0243628.g007
https://doi.org/10.1371/journal.pone.0243628


orientations. Note that for instance agents trained with dF = 4 have low probability of taking

the action “go” (which leads to alignment) if the initial region is 2VR (Fig 7), whereas they take

the action “go” with higher probability if the initial region is reduced to VR (see Fig 1 in S1

Appendix).

In general, we observe that agents with the same motor and sensory abilities can develop

very different behaviors in response to different reward schemes. Agents start with the same

initial ECM in all the learning scenarios, but depending on the environmental circumstances,

in our case the distance to food, some responses to sensory input happen to be more beneficial

than others in the sense that they eventually lead the agent to get a reward. For instance, agents

that happen to align with their neighbors are the ones that reach the reward when the food is

far away, so this response is enhanced in that particular scenario, but not in the one with

nearby food.

3.2 Collective dynamics

In this section, we study the properties of the collective motion that emerges from the learned

individual responses analyzed in the previous section. We focus on two main properties of the

swarms, namely alignment and cohesion. Figs 8 and 9 show the trajectories of the agents of

one ensemble before (Fig 8) any learning process and at the end of the learning processes with

dF = 4, 21 (Fig 9). One can see that the collective motion developed in the two scenarios differs

greatly in terms of alignment and cohesion. Thus, we quantify and analyze these differences in

the following.

3.2.1 Alignment. The emergence of aligned swarms as a strategy for reaching distant

resources is studied by analyzing the order parameter, defined as

� ¼
1

N
j
X

i¼1::N

vij; ð4Þ

Fig 8. Trajectories (position vs. time) of an ensemble of 60 agents in one trial prior to any learning process. The

vertical axis displays the position of the agent in the world and the horizontal axis the interaction round (note that the

trial consists of n = 50 rounds). Each line corresponds to the trajectory of one agent. However, some agents’ trajectories

overlap, which is indicated by the color intensity. The trajectory of one particular agent is highlighted for clarity.

https://doi.org/10.1371/journal.pone.0243628.g008
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where N is the total number of agents and vi 2 {1, −1} the orientation of each agent (clockwise

or counterclockwise). The order parameter or global alignment parameter goes from 0 to 1,

where 0 means that the orientations of the agents average out and 1 means that all of them are

aligned. In addition, we also evaluate the local alignment parameter, since the visual perception

of the agent only depends on its local surroundings, and so does the action it takes. In this

case, the order parameter ϕi is computed for each agent i, considering only the orientation of

its neighbors.

Fig 9. Trajectories of all agents of an ensemble in the last trial of the learning process for (a) dF = 21 and (b) dF =

4. Ensembles of agents trained to find distant food form aligned swarms (a), whereas agents trained to find nearby

food form cohesive, unaligned swarms (b). With the same number of interaction rounds, aligned swarms (a) cover

larger distances than cohesive swarms (b). In addition, observe that trajectories in panel (b) spread less than in Fig 8.

https://doi.org/10.1371/journal.pone.0243628.g009
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Fig 10 shows how agents that need to find nearby food do not align, whereas those whose

task is to find distant resources learn to form strongly aligned swarms as a strategy for getting

the reward, as can be seen from the increase in the order parameter over the course of the

training. The inset in Fig 10 shows that agents with the reward at dF = 21 start to align with the

neighbors from trial 200, which leads to the conclusion that increasing the alignment is the

behavior that allows them to get to the reward (note that the agents start to be rewarded also

from trial 200, as can be seen in the inset of Fig 5). The large standard deviation in the dF = 21

case is due to the fact that, in some trials, agents split in two strongly aligned groups that move

in opposite directions (see Fig 3 (a) in S1 Appendix for details).

3.2.2 Cohesion. In this section, we study the cohesion and stability of the different types

of swarms. In particular, we quantify the cohesion by means of the average number of neigh-

bors (agents within visual range of the focal agent),

M ¼
1

N

XN

i¼1

mi; ð5Þ

where mi is the number of neighbors of the ith agent.

Fig 11 shows the evolution of the average number of neighbors through the learning pro-

cesses with dF = 4, 21. In the training with dF = 21, we observe a decay in M in the first 200 tri-

als, due to the fact that agents start to learn to align locally (see S1 Appendix and Fig 4 therein

for details), but the global alignment is not high enough to entail an increase in the average

number of neighbors. Therefore, as agents begin to move in straight lines for longer intervals

(instead of the initial Brownian motion), they tend to leave the regions with a higher density of

agents and M drops. From trial 200 onwards, agents start to form aligned swarms —global

alignment parameter increases (see inset of Fig 10)— to get to the food, which leads to an

Fig 10. Evolution of the global alignment parameter through the learning processes with dF = 4,21. At each trial,

there is one data point that displays the average of the order parameter, first over all the (global) interaction rounds of

the trial and then over 20 different ensembles of agents, where each ensemble learns the task independently. Shaded

areas represent one standard deviation.

https://doi.org/10.1371/journal.pone.0243628.g010
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increase in M (see inset of Fig 11). In the training with dF = 4, agents learn quickly (first 50 tri-

als) to form cohesive swarms, so M increases until a stable value of 36 neighbors is attained.

Up to this point, all the analyses have been done with trials of 50 interaction rounds. How-

ever, this is insufficient for assessing the stability of the swarm. For this purpose, we take the

already trained ensembles and let them walk for longer trials —the agents do not learn any-

thing new in these simulations, i.e. their ECMs remain unchanged— so that we can analyze

how the cohesion of the different swarms evolves with time. We place the agents (one ensem-

ble of 60 agents per simulation) in a world that is big enough so that they cannot complete one

cycle within one trial. This resembles infinite environments insofar as agents that leave the

swarm have no possibility of rejoining it. This allows us to study the stability of the swarm

cohesion and the conditions under which it disperses.

Fig 12 shows the trajectories of ensembles of agents trained with different distances dF. In

the case with dF = 21 (Fig 12(a)), there is a continuous drop of agents from the swarm until the

swarm completely dissolves. On the other hand, agents trained with dF = 4 (Fig 12(b)) present

higher cohesion and no alignment (see inset of Fig 12(b)). Note that this strong cohesion

makes individual trajectories spread less than the Brownian motion exhibited by agents prior

to the training (see Fig 8). The evolution of the average number of neighbors throughout the

simulation is given in Fig 13, where we compare the cohesion of ensembles of agents trained

with dF = 2, 4, 21. In the latter case, the agents leave the swarm continuously, so the average

number of neighbors decreases slowly until the swarm is completely dissolved. For dF = 2

(dF = 4) the individual responses are such that the average number of neighbors increases

(decreases) in the first 30 rounds until the swarm stabilizes and from then on M stays at a sta-

ble value of 57 (35) neighbors. The average number of neighbors is correlated to the swarm

size, which we measure by the difference between the maximum and minimum world posi-

tions occupied by the agents (modulo world size W = 500). As one can see in Fig 12(b), all

Fig 11. Evolution of the average number of neighbors around each agent through the learning processes with dF =

4,21. At each trial, there is one data point that displays the average of M, first over all the (global) interaction rounds of

the trial and then over 20 different ensembles of agents, where each ensemble learns the task independently. Shaded

areas represent one standard deviation.

https://doi.org/10.1371/journal.pone.0243628.g011
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agents remain within the swarm. If the swarm size increases, the average number of neighbors

decreases, since the agents are distributed over a wider range of positions. The swarm stabilizes

at a given size depending on the individual responses learned during the different trainings.

For instance, swarms formed by agents trained with dF = 2 stabilize at swarm sizes of approxi-

mately 9 positions, whereas those trained with dF = 4 stabilize at larger swarm sizes (around 17

positions, see e.g. inset of Fig 12(b)), which explains the lower value of M observed in Fig 13

for dF = 4.

3.2.3 Comparison between learning scenarios. Finally, we compare how the alignment

and cohesion of the swarms change as a function of the distance at which the resource is placed

Fig 12. Trajectories of an ensemble of 60 agents, in a world of size W = 8000, shown over 5000 interaction rounds.

(a) Agents trained with dF = 21 form a swarm that continuously loses members until it dissolves completely. (b) Agents

trained with dF = 4 form a highly cohesive swarm for the entire trial. The centered inset of this plot shows the first

2500 rounds, with a re-scaled vertical axis to observe the movement of the swarm. Insets on the right zoom in to 20

interaction rounds so as to resolve individual trajectories.

https://doi.org/10.1371/journal.pone.0243628.g012
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in the training. Fig 14 shows the average local and global alignment parameters, together with

the average number of neighbors (at the end of the training) as a function of the distance dF
with which the ensembles were trained. We observe that the farther away the resource is

placed, the more strongly the agents align with their neighbors (local alignment) in order to

reach it. This is directly related to the individual responses analyzed in Fig 7, where one can

see that for dF� 6 the agents react to positive and negative flow by aligning themselves with

their neighbors. Specifically, the observed collective dynamics can be explained in terms of

individual responses as follows. The probability of turning around when there is a negative

flow and there are not a lot of neighbors (orange-diamonds curve in Fig 7) becomes higher as

the dF increases, from’0.3 at dF = 6 to 0.6 at dF = 21. The change in the other individual align-

ment responses (in particular, the other curves in Fig 7) is not so large in the region where dF
> 6, which suggests that the increase in the local alignment and cohesion we observe for dF>
6 is mostly due to the strength of the tendency the agents have to turn around when there is a

negative flow, even when there are not a lot of neighbors. In addition, the lower values of the

global alignment parameter observed in the grey (circles) curve in Fig 14 for dF� 6 correspond

to the behavior analyzed in Sec. 3.2.1, where it is shown that strongly aligned swarms split into

two groups in some of the trials (see S1 Appendix for details). With respect to the average

number of neighbors, we observe that almost all the agents are within each other’s visual range

when dF = 2. As dF increases, swarms become initially less cohesive, but once dF> 6, they

become strongly aligned and consequently once again more cohesive (see discussion in Sec.

3.2.2 and S1 Appendix for details).

3.3 Foraging efficiency

In this section, we study how efficient each type of collective motion is for the purpose of for-

aging. First, we perform a test where we evaluate how the trained ensembles explore the

Fig 13. Evolution of the average number of neighbors throughout the trial of 5000 interaction rounds. Average is

taken over 20 ensembles of 60 agents each, where for each ensemble the simulation is performed independently.

Shaded areas indicates one standard deviation.

https://doi.org/10.1371/journal.pone.0243628.g013
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different world positions. For this test, we analyze which positions in the world are visited by

which fraction of agents. The results are given in Fig 15. We observe that, for positions within

the initial region, agents trained with dF = 4 perform better than the others, since they do a ran-

dom walk that allows them to explore all these positions exhaustively (as evidenced by high

percentages of agents that explored positions before the edge of the initial region in Fig 15).

On the other hand, agents trained with dF = 6, 21 perform worse when exploring nearby

regions, since they form aligned swarms and move straight in one direction. This behavior pre-

vents the agents that are initialized close to the edge of the initial region from exploring the

positions inside it. The closer the position is to the edge of the initial region, the more agents

visit it because they pass through it when traveling within the swarm. Thus, we conclude that

the motion of these swarms is not the optimal to exploit a small region of resources that are

located close to each other (a patch).

Non-interacting (n.i.) agents trained with dF = 21 perform slightly better at the intermediate

distances than agents trained with dF = 4, since they typically travel five steps in a straight line

before being randomly reoriented, thereby covering an expected total of 16 positions in one

trial (see Sec. 3). Both curves (grey diamonds and orange squares) show a faster decay in this

region than the other two cases (dF = 6, 21), which is due to the fact that agents do not walk

straight for long distances in these two types of dynamics, since they do not stabilize them-

selves by aligning.

Agents trained with dF = 21 reach the best performance for longer distances. In particular,

their performance is always better than the performance of agents trained with dF = 6, showing

that the strategy developed by agents trained with dF = 21, namely strong alignment, is the

most efficient one for traveling long distances (distance from patch to patch). Agents trained

with dF = 6 do not align as strongly (see local alignment curve in Fig 14) and there are

more agents that leave the swarm before reaching the furthest positions (see also Fig 3 in

Fig 14. Average number of neighbors (in percentage), global and local alignment parameter as a function of the

distance dF. Note that dF is the distance to the point where food is placed during the training. Each point is the average

of the corresponding parameter over all interaction rounds (50) of one trial, and over 100 trials. 20 already trained

ensembles are considered.

https://doi.org/10.1371/journal.pone.0243628.g014
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S1 Appendix), which explains the lower performance at intermediate/long distances (the light

blue curve (triangles) has a linear decrease that is stronger in this region than the dark blue

curve (circles)). Note that the maximum distance reached by agents is 56; this is simply due to

the fact that each trial lasts 50 rounds and the initial positions are within C±6 (see Fig 4).

In addition, we study the swarm velocity for the different types of collective motions. To do

so, we compute the average net distance traveled per round. Considering that the swarm walks

for a fixed number of rounds (50), we define the normalized swarm velocity as,

hxi ¼
1

N

XN

i¼1

si
50
; ð6Þ

where N is the number of agents and si is the net distance traveled by the ith agent from the ini-

tial position (xi,(r=1)) to the final position after 50 interaction rounds (xi,(r=50)), that is,

si ¼ min ððxi; ðr¼50Þ � xi; ðr¼1ÞÞmodW; ðxi; ðr¼1Þ � xi; ðr¼50ÞÞmodWÞ; ð7Þ

where r stands for interaction round and W is the world size. Note that the maximum distance

agents can travel in 50 rounds is 50 because they move at a fixed speed of 1 position per round.

Fig 16 displays the swarm velocity as a function of the distance dF at which food was placed

during the learning process. Agents trained to find distant resources (e.g. dF = 14, 21) are able

to cover a distance almost as large as the number of rounds for which they move. However,

while the ensembles trained to find nearby resources (e.g. dF = 2, 4) form very cohesive

swarms, they are less efficient in terms of net distance traveled per interaction round. We

observe that the transition between the two regimes happens at dF = 6 —corresponding to the

Fig 15. Percentage of agents that visit the positions situated at a distance from C given on the horizontal axis.

Since C is located at world position 6 (see Fig 4), a distance of e.g. 10 on the horizontal axis refers to the world positions

16 and 496. The already trained ensembles walk for one trial of 50 interaction rounds. For each of the four trainings

(see legend), the performance of 20 ensembles is considered.

https://doi.org/10.1371/journal.pone.0243628.g015
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end of the initialization region—, which is consistent with the transitions observed in Figs 7

and 14 (see discussion in S1 Appendix for more details).

4 Results II: Analysis of the trajectories

In this section, we analyze the individual trajectories that result from the different types of

swarm dynamics. In order to gather enough statistics, we consider ensembles of agents that

have been trained under various conditions, as described above, and let them walk for longer

trials so that the individual trajectories are long enough to obtain reliable results. During this

process, the agents do not learn anything new anymore; that is, the agents’ ECMs remain as

they are at the end of the training. Thus, we study the trajectories that emerge from the behav-

ior at the end of the learning process, which can be interpreted as the behavior developed on

the level of a population in order to adapt to given environmental pressures. The individuals’

capacity for learning does not play a role in this analysis.

We focus on the two most representative types of swarms we have observed, i.e. the swarms

that emerge from the training with close resources (e.g. dF = 4), characterized by strong cohe-

sion; and the swarms that result from the training with distant resources (e.g. dF = 21), charac-

terized by strong alignment. For easier readability, in the following we will refer to the swarms

formed by agents trained with dF = 4 as cohesive swarms, and to the swarms formed by agents

trained with dF = 21 as aligned swarms.
In the simulations for this analysis, we let each ensemble of agents perform 105 interaction

rounds —where each agent moves one position per interaction round— in a world of size

W = 500 and analyze the individual trajectories. An example of such individual trajectories for

the case of agents trained with dF = 21 is given in Fig 17. We observe that some agents leave

the swarm at certain points; however, due to the ‘closed’ nature of our world model, they have

the possibility of rejoining the swarm once it completes a cycle and starts a new turn around

the world. Due to these environmental circumstances, the agents exhibit two movement

Fig 16. Swarm velocity hξi as a function of the training distance dF. Each point is the average over the agents of 20

independently trained ensembles that have performed 50 independent trials each.

https://doi.org/10.1371/journal.pone.0243628.g016
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modes: when they are alone and when they are inside the swarm. By looking at Fig 17, one can

see how agents exhibit directional persistence when they move within the swarm, since they

have learnt to align themselves with their neighbours as a strategy for stabilizing their orienta-

tions. However, trajectories become more tortuous as agents leave the swarm and walk on

their own. Note that it is only possible for individuals to leave the swarm [47] because of the

weaker cohesion exhibited by aligned swarms (see Sec. 3.2.2). This bimodal behavior can

occur in nature (see e.g. collective motion and phase polyphenism in locusts [48, 49]), where

individuals may benefit from collective alignment, for instance, to travel long distances in an

efficient way, but they move independently to better explore nearby resources (see Sec. 3.3 for

details on exploration efficiency of the different collective dynamics).

In the following sections, we characterize the trajectories and assess how well the agents’

movement patterns fit to well-known foraging models such as Lévy walks or composite corre-

lated random walks.

4.1 Theoretical foraging models

This work is directly related to foraging theory, since the task we set for the learning process is

to find food in different environmental conditions. For this reason, we will analyze our data to

determine whether the movement patterns that emerge from this learning process support any

of the most prominent search models. For environments with scarce resources (e.g. patchy

landscapes), these models are the Lévy walks [22] and the composite correlated random walks

(CCRW) [23].

In order to analyze the trajectories and determine which type of walk fits them best, the dis-

tribution of step lengths is studied, where a step length is defined as the distance between two

consecutive locations of an organism. Intuitively, the optimal strategy for navigating a patchy

Fig 17. Trajectories of one ensemble of 60 agents that were trained with dF = 21. The world size is W = 500. Color

intensity indicates the number of agents following the same trajectory, i.e. moving within the swarm. Some agents

leave the swarm and then rejoin it when the swarm completes the cycle and starts a new turn. Only the first 5000

interaction rounds (of a total of 105) are shown.

https://doi.org/10.1371/journal.pone.0243628.g017
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landscape allows for both an exhaustive exploration inside patches and an efficient displace-

ment between patches, employing some combination of short and long steps. Lévy walks have

a distribution of step lengths in which short steps have higher probability of occurrence but

arbitrarily long steps can also occur due to its power-law (PL) tail. In two- and three-dimen-

sional scenarios, the direction of motion is taken from a uniform distribution from 0 to 2π,

which implies that Lévy walks do not consider directionality in the sense of correlation in

direction between consecutive steps [32]. On the other hand, CCRW and the simpler version

thereof, composite random walks (CRW), consist of two modes, one intensive and one exten-

sive, which are mathematically described by two different exponential distributions of the step

lengths. The intensive mode is characterized by short steps (with large turning angles in 2D) to

exploit the patch, whereas the extensive mode —whose distribution has a lower decay rate— is

responsible for the inter-patch, straight, fast displacement. CCRW in addition allow for corre-

lations between the directions of successive steps.

Even though the models are conceptually different, the resulting trajectories may be diffi-

cult to distinguish [24, 50, 51], even more if the data is incomplete or comes from experiments

where animals are difficult to track. In the past years, many works have been published that try

to provide techniques to uniquely identify Lévy walks [52–54] and to differentiate between the

two main models [24, 55, 56]. For instance, some of the experiments that initially supported

the hypothesis that animals perform Lévy walks [25, 26, 57] were later reanalyzed to support

the conclusion that more sophisticated statistical techniques are, in general, needed [27, 28, 55,

58]. Apart from that, there exist several studies that relate different models of collective dynam-

ics to the formation of Lévy walk patterns under certain conditions [59, 60]. For instance, it

has been shown [61] that Lévy walk movement patterns can arise as a consequence of the inter-

action between effective leaders and a small group of followers, where none of them has infor-

mation about the resource.

In our study, we consider the three models we have already mentioned (PL, CCRW and

CRW), together with Brownian motion (BW) as a baseline for comparison. Since our model is

one-dimensional, a distribution of the step lengths is sufficient to model the trajectories we

observe, and no additional distributions, such as the turning angle distributions, are needed.

In addition, the steps are unambiguously identified: a step has length ℓ if the agent has moved

in the same direction for ℓ consecutive interaction rounds. Finally, since space in our model is

discretized, we consider the discrete version of each model’s probability density function

(PDF). More specifically, the PDFs we consider are,

1. Brownian motion (BW):

p ð‘Þ ¼ ð1 � e� lÞ e� lð‘� 1Þ; ‘ � 1; ð8Þ

where λ is the decay rate and the minimum value a step length can have is, in our case,

known to be 1, since agents move at a constant speed of one position per interaction round.

2. Composite random walk (CRW):

p ð‘Þ ¼ p ð1 � e� bI Þ e� bI ð‘� 1Þ þ ð1 � pÞ ð1 � e� bEÞ e� bEð‘� 1Þ; ‘ � 1; ð9Þ

where p is the probability of taking the intensive mode, βI is its decay rate and βE is the

decay rate of the extensive mode. In this case, again, the minimum step length is 1.
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3. Composite correlated random walk (CCRW):

pI ð‘jIÞ ¼ ð1 � e� lI Þ e� lI ð‘� 1Þ; ‘ � 1; ð10Þ

pE ð‘jEÞ ¼ ð1 � e� lEÞ e� lEð‘� 1Þ; ‘ � 1; ð11Þ

pðm0 ¼ Ejm ¼ IÞ ¼ 1 � gII; ð12Þ

pðm0 ¼ Ijm ¼ EÞ ¼ 1 � gEE; ð13Þ

where pI(ℓ|I) and pE(ℓ|E) are the PDFs of the step lengths ℓ corresponding to the intensive

and extensive mode respectively. Denoting the mode in which the agent is as m and the

mode to which the agent transitions as m0, p(m0 = E|m = I) is the transition probability from

the intensive to the extensive mode and p(m0 = I|m = E), from the extensive to the intensive

mode. λI, λE, γII and γEE are parameters of the model. The main difference between the

CRW and the CCRW models is that, in the latter, the step lengths are correlated, i.e. the

order of the sequence of step lengths, and thus the order in which the movement modes

alternate, matters. The CCRW is modeled as a hidden Markov model (HMM) (see [56, 62])

with two modes, the intensive and the extensive. Fig 18 shows the details of the model and

the notation for the transition probabilities between modes.

4. Power-law (PL):

p ð‘Þ ¼
‘
� m

zðm; 1Þ
; ‘ � 1; ð14Þ

where the normalization factor zðm; 1Þ ¼
P1

a¼0
ðaþ 1Þ

� m
is the Hurwitz zeta function [63].

The parameter μ gives rise to different regimes of motion: Lévy walks are characterized by a

heavy-tailed distribution, with exponents 1< μ� 3, which produces superdiffusive trajec-

tories, whereas μ> 3 corresponds to normal diffusion, as exhibited by Brownian walks. We

Fig 18. Hidden Markov model for the CCRW. There are two modes, the intensive and the extensive, with probability

distributions given by pI and pE (see text for details). The probability of transition from the intensive (extensive) to the

extensive (intensive) mode is given by 1 − γII (1 − γEE), where γII and γEE are the probabilities of remaining in the

intensive and extensive mode respectively. δ is the probability of starting in the intensive mode.

https://doi.org/10.1371/journal.pone.0243628.g018
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note that the above distribution starts at ℓ = 1, which is the shortest possible distance that

our agents move in a straight line. The scale of this minimum step length is determined by

the embodied structure of the organism and is typically considered to be one body length

[32]. Some other works (e.g. [53, 63]) consider a variant of the above distribution that only

follows the PL form for steps longer than some threshold ℓ0, for example when analysing

experimental data that become increasingly noisy at short step-lengths. However, since the

step lengths resulting from our simulations are natively discrete, the unbounded PL distri-

bution given in Eq (14) seems appropriate. Moreover, if one were to introduce a lower

bound ℓ0 > 1, one would need to add more parameters in the model to account for the

probabilities p(ℓ) for all 1� ℓ< ℓ0, which we consider an unnecessary complication. This is

particularly relevant when it comes to comparing PL to BW, CRW or CCRW as models for

fitting our data: since none of the other models include lower bounds, we achieve a more

consistent comparison by a parsimonious approach that includes all step lengths ℓ� 1 in

the PL model and thereby abstains from additional free parameters.

4.2 Visual analysis

In this section, we study the general characteristics of the trajectories of both types of swarm

dynamics. We start by analyzing how diffusive the individual trajectories are depending on

whether the agents belong to an ensemble trained with dF = 21 (dynamics of aligned swarms)

or dF = 4 (dynamics of cohesive swarms). More specifically, we analyze the mean squared dis-

placement (MSD), defined as,

hdr2i ¼ hjxðtÞ � x0j
2
i; ð15Þ

where x0 is the reference (initial) position and x(t) is the position after time t elapsed. In gen-

eral, the MSD increases with the time elapsed as hδr2i*tα. Depending on the exponent α, the

diffusion is classified as normal diffusion (α = 1), subdiffusion (α< 1) or superdiffusion (α>
1), which is called ballistic diffusion when α = 2. For instance, a Brownian particle undergoes

normal diffusion, since its MSD grows linearly with time.

Fig 19 shows that the dynamics of aligned swarms leads to superdiffusive individual trajec-

tories (ballistic, with α = 2), whereas the trajectories of agents that belong to cohesive swarms

exhibit close-to-normal diffusion. The anomalous diffusion (superdiffusion) exhibited by the

agents trained with dF = 21 (curve with blue circles in Fig 19) favors the hypothesis that the

swarm behavior may induce Lévy-like movement patterns, since Lévy walks are one of the

most prominent models describing superdiffusive processes. However, CCRW can also pro-

duce superdiffusive trajectories [23, 24]. In contrast, agents trained with dF = 4 do not align

with each other and the normal diffusion shown in Fig 19 is indicative of Brownian motion.

The analysis presented above already shows a major difference between the two types of

swarm dynamics but it is in general not sufficient to determine which theoretical model (Lévy

walks or CCRW) best fits the data from aligned swarms. According to [24], one possible way

to distinguish between composite random walks and Lévy walks is to look at their survival dis-

tributions, which is the complement of the cumulative distribution function, giving the frac-

tion of steps longer than a given threshold. Lévy walks would exhibit a linear log-log

relationship when this type of distribution is plotted, whereas CCRW exhibit a non-linear rela-

tion. Fig 20 compares the survival distributions of two trajectories, one from each type of

swarm, to those predicted by the best-fitting models of each of the four classes. The maximum

length observed in the dF = 4-trajectory is of the order of 10, whereas in the case of the dF =

21-trajectory, it is one order of magnitude larger. The most prominent features one infers
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from these figures are that all models except PL seem to fit the data of the dF = 4-trajectory,

and that Brownian motion is clearly not a good model to describe the dF = 21-trajectory. In

addition, Fig 20(a) is curved and seems to be better fit by the CCRW. However, when other

trajectories of agents trained with dF = 21 are plotted in the same way, we see that data seems

to better follow the straight line of the PL rather than the CCRW (see for example Fig 4 in S2

Appendix).

While visual inspection may be an intuitive way of assessing model fit, and one that is easy

to apply at small scales, it would be preferable to use a method that yields quantitative and

objective, repeatable assessments of how well various models fit a given data set. Moreover, we

generated 600 individual trajectories per type of swarm, in order to support statistically mean-

ingful conclusions, and at this scale visual inspection quickly becomes infeasible. For this rea-

son, we now turn to a more rigorous statistical analysis of the individual trajectories.

4.3 Statistical analysis

In order to determine which of the mentioned models best fits our data, we perform the fol-

lowing three-step statistical analysis for each individual trajectory: (i) first, we optimize each

family of models to get the PDF that most likely fits our data via a maximum likelihood estima-

tion (MLE) of the model parameters. (ii) Then, we compare the four different candidate mod-

els among them by means of the Akaike information criterion (AIC) [64] and (iii) finally, we

apply an absolute fit test for the best model. We repeat this analysis for agents trained with dF
= 4 and dF = 21, yielding a total of 600 individual trajectories per type of training (10 ensembles

of aligned swarms and 10 of cohesive swarms, where each ensemble has 60 agents). The simu-

lation of 105 interaction rounds is performed for each ensemble independently. In order to do

Fig 19. Mean squared displacement (MSD). Log-log (base 2) plot of the MSD as a function of the time interval for

two types of trajectories: trajectories performed by agents trained with dF = 21 (blue curve, circles) and by agents

trained with dF = 4 (orange curve, triangles). We observe that the former present ballistic diffusion, whereas the latter

exhibit close-to-normal diffusion. 600 individual trajectories (10 ensembles of 60 agents) are considered for each case.

https://doi.org/10.1371/journal.pone.0243628.g019
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the statistical analysis, each individual trajectory is divided into steps, which are defined in our

case as the distance the agent travels without turning. We obtain sample sizes that range from

4000 to 17000 steps for trajectories of agents trained with dF = 21 and from 20000 to 40000

steps in the case with dF = 4.

Fig 20. Survival probability as a function of the step length. The survival probability is the percentage of step lengths

larger than the corresponding value on the horizontal axis. Each panel depicts the data from the trajectory of one agent

picked from (a) aligned swarms and (b) cohesive swarms, so that this figure represents the most frequently observed

trajectory for each type of dynamics. The survival distributions of the four candidate models are also plotted. The

distributions for each model are obtained considering the maximum likelihood estimation of the corresponding

parameters (see Sec. 4.3 for details). The curve for the CCRW model is obtained by an analytic approximation of the

probabilities of each step length, given the maximum likelihood estimation of its parameters. Since the order of

the sequence of step lengths is not relevant for this plot, we estimate the probabilities of each step length as

pð‘Þ ¼ p0ð1 � e� l̂ I Þe� l̂ I ð‘� 1Þ þ ð1 � p0Þð1 � e� l̂E Þe� l̂Eð‘� 1Þ (see Eq (9)) with p0 ’ 1

1� gII

1

1� gII
þ 1

1� gEE

� �� 1

.

https://doi.org/10.1371/journal.pone.0243628.g020
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The following provides more detail on the analysis, starting with the MLE method, which

consists in maximizing the likelihood of each model candidate with respect to its parameters.

The likelihood function is generally defined as,

Lðyj‘i¼1::SÞ ¼
YS

i¼1

p ð‘i; yÞ; ð16Þ

where S is the sample size and p(ℓi, θ) is the PDF of the given model —that depends on the

model parameters θ— evaluated at the data point ℓi. Details on the maximization process and

the computation of the likelihood function in the case of CCRW, which is more complicated

since consecutive step lengths ℓi are not sampled independently, are given in S2 Appendix. In

the following, we denote the values of the parameters that maximize the likelihood and the

value of the maximum likelihood with hatted symbols.

Table 2 shows the MLE parameters we have obtained for each model and for each swarm

type. We observe that, in the dF = 21 case, the decay rates of the exponential distributions

(l̂; b̂E; l̂E) are very small (approx. of the order of 0.01) compared to the decay rates in the dF =

4 case (approx. of the order of 0.3), which implies that the former allows for longer steps to

occur with higher probability. The decay rates of the intensive modes (b̂I; l̂I) are comparable

to the BW decay rate of dF = 4 because they account for the shorter, more frequent steps,

which occur in both types of dynamics —in the dF = 21 case, agents perform shorter steps

when they leave the swarm and move on their own—. Also note that the power-law coefficient

μ’ 1.6 in the dF = 21 case implies that the PL model is that of a Lévy walk.

Once the value of the maximum likelihood L̂ is obtained for each model, it is straightfor-

ward to compute its Akaike value,

AIC ¼ 2k � 2 ln ðL̂Þ; ð17Þ

where k is the number of parameters of the model. The model with the lowest AIC (AICmin) is

the best model (out of the ones that are compared) to fit the data [64]. In order to compare the

models in a normalized way, the Akaike weights are obtained from the Akaike values as,

wi ¼
e� 1

2
DiðAICÞ

PK
k¼1

e� 1
2
DkðAICÞ

ð18Þ

Table 2. Average values of the MLE parameters for the different models.

Model dF = 21 dF = 4

BW l̂ 0.083 ± 0.032 0.305 ± 0.052

CRW b̂I
0.37 ± 0.15 0.6 ± 1.1

b̂E
0.0126 ± 0.0069 0.302 ± 0.048

p̂ 0.879 ± 0.040 0.196 ± 0.059

PL m̂ 1.59 ± 0.10 1.657 ± 0.066

CCRW d̂ 0.23 ± 0.31 0.12 ± 0.13

l̂I
0.37 ± 0.15 0.36 ± 0.21

l̂E
0.0134 ± 0.0066 0.300 ± 0.047

ĝII 0.839 ± 0.078 0.749 ± 0.060

ĝEE 0.013 ± 0.020 0.09 ± 0.26

600 trajectories are analyzed for each type of swarm.

https://doi.org/10.1371/journal.pone.0243628.t002
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where wi is the Akaike weight of the ith model, and Δi(AIC) = AICi − AICmin, with AICi the

Akaike value of the ith model. The interpretation of wi is not straightforward but, as it was

argued in [65], “Akaike weights can be considered as analogous to the probability that a given

model is the best approximating model”. K is the total number of models under comparison,

so that the Akaike weights are normalized as
PK

i¼1
wi ¼ 1. In S2 Appendix, we present detailed

tables with the results of this statistical analysis for three trajectories, two for training with dF =

21 and one with dF = 4.

Fig 21 shows the results of the Akaike weights obtained for each of the 600 trajectories ana-

lyzed for each type of swarm. In the case of the aligned swarms (Fig 21(a)), we observe that the

BW model is discarded in comparison to the other models, since its Akaike weight is zero for

Fig 21. Violin plots that represent the Akaike weights obtained for each model. (a) Akaike weights of trajectories of

agents trained with dF = 21 (aligned swarms). (b) Akaike weights of trajectories of agents trained with dF = 4 (cohesive

swarms). 600 individual trajectories —per type of swarm— were analyzed for each plot. The ‘•’ symbol represents the

median and the vertical lines indicate the range of values in the data sample (e.g. PL model in figure (a) has extreme

values of 0 and 1). Shaded regions form a smoothed histogram of the data (e.g. the majority of Akaike weights of the

CCRW model in figure (a) have value 1, and there are no values between 0.2 and 0.8). See text for more details.

https://doi.org/10.1371/journal.pone.0243628.g021
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all trajectories. 85% of trajectories have Akaike weight of 1 for the CCRW model [66] and 0 for

the rest of the models, whereas 14% of trajectories have Akaike weight of 1 for the PL model

and 0 for the rest.

On the other hand, the cohesive swarms (Fig 21(b)) show high Akaike weights for all mod-

els except the PL. 92% of trajectories have Akaike weights 0.87, 0.12 and 0.01 for the BW,

CRW and CCRW models, respectively. The remaining 8% of trajectories have wCCRW = 1.

In order to exclude the worry that the CCRW and CRW are chosen even though they have

more parameters than the power-law or the BW, we also consider the Bayesian information

criterion (BIC), which penalizes more strongly the number of parameters of the model. The

BIC value is given by,

BIC ¼ k ln ðSÞ � 2 ln ðL̂Þ; ð19Þ

where S is the sample size, k the number of parameters of the model and L̂ the maximum like-

lihood. Fig 22 shows the results of this analysis, where we consider that a model best fits the

data of a given trajectory if it has the lowest BIC value (BICmin) and its difference with respect

to the rest of the models is larger than 10 (Δi BIC> 10, where Δi BIC = BICi − BICmin) [64].

Fig 22 leads to the same conclusions regarding the aligned swarms, i.e. 85% of the trajecto-

ries are best fit by CCRW and 14% are best fit by PL. However, for the cohesive swarms, the

BW is the best model to fit the data of 90% of the trajectories according to the BIC criterion.

Therefore, we conclude that the dynamics shown by the cohesive swarms lead to individual

Brownian motion. Regarding the aligned swarms, our results are in agreement with previous

works that claim that “selection pressures give CCRW Lévy walk characteristics” [67]. The

majority of individual trajectories are best fit by CCRW with two exponential distributions

whose means are l̂ � 1
I ’ 2:7 and l̂ � 1

E ’ 75, which give the movement patterns Lévy-walk fea-

tures. In addition, a considerable percentage of trajectories are indeed best fit by a power-law

distribution with exponent μ = 1.6, that is, a Lévy walk.

Fig 22. Percentage of trajectories that are best fit by each model according to the BIC criterion. A model is

considered to best fit the data of a given trajectory if it has the lowest BIC value and its difference with respect to the

rest of the models is larger than 10. 600 individual trajectories —per type of swarm— were analyzed for each

histogram.

https://doi.org/10.1371/journal.pone.0243628.g022
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Finally, we study the goodness-of-fit (GOF) of the different models. For models that deal

with i.i.d. variables (BW, CRW, PL), it is enough to perform a likelihood ratio test, whose p-

value indicates how well the data is fit by the model. Within our framework, a low p-value,

namely p< 0.05, means that the model can be rejected as a description for the observed data

with a confidence of 95%. The closer p is to 1, the better the model fits the data. In the case of

CCRW, a more involved method is needed due to the correlation in the data. Specifically, we

first compute the uniform pseudo-residuals (see [62]) and then we perform a Kolmogorov-

Smirnov (KS) test to check for uniformity of the mid-pseudo-residuals. Details on the methods

used in both GOF tests are given in S2 Appendix. Even though a visual inspection of Fig 20

suggests that the CRW, PL, CCRW models fit the data reasonably well, a quantitative analysis

gives p-values of p< 0.01 for most of the trajectories fitted by the BW and PL models. Some

trajectories fitted by the CRW model give better fittings, e.g. the best p-values are p = 0.97

and p = 0.36 for a trajectory of an agent trained with dF = 4 and dF = 21, respectively. In the

CCRW case, we give the average value of the KS distance obtained in the 600 trajectories,

which is DKS = 0.134±0.016 and DKS = 0.189±0.046 for dF = 4 and dF = 21-trajectories respec-

tively (note that a perfect fit gives DKS = 0 and the worst possible fitting gives DKS = 1). More

details on the GOF tests and their results are given in S2 Appendix.

A closer inspection reveals that this relatively poor fit is mostly due to irregularities in the

tails of the observed distributions. However, more importantly, we note that the trajectories

were in fact not drawn from a theoretical distribution chosen for its mathematical simplicity,

but result from individual interactions of agents that have learned certain behaviors. In this

regard, with respect to the sometimes low goodness-of-fit values, our simulations lead to simi-

lar challenges as the analysis of experimental data from real animals (see e.g. [56]). Nonethe-

less, the above analysis does provide a more robust account of key features of the collective

dynamics.

5 Discussion

We have studied the collective behavior of artificial learning agents, more precisely PS agents,

that arises as they attempt to survive in foraging environments. More specifically, we design

different foraging scenarios in one-dimensional worlds in which the resources are either near

or far from the region where agents are initialized.

This ansatz differs from existing work in that PS agents allow for a complex, realistic

description of the sensory (percepts) and motor (actions) abilities of each individual. In partic-

ular, agents can distinguish how other agents within visual range are oriented and if the den-

sity of agents is high or low in the front and at the back of their visual area. Based on this

information, agents can decide whether to continue moving in their current direction or to

turn around and move in the opposite direction. Crucially, there are no fixed interaction rules,

which is the main difference that sets our work apart from previous approaches, like the self-

propelled particle (SPP) models or other models from statistical physics. Instead, the interac-

tions emerge as a result of the learning process agents perform within a framework of rein-

forcement learning. The rewards given as part of this learning process play a role analogous to

environmental pressures in nature, by enhancing the behaviors that led the agent to be

rewarded. Therefore, by varying the task and reward scheme and studying the resulting behav-

iors, our approach allows us to test different causal explanations for specific observed behav-

iors, in the sense of environmental pressures proposed to have led to these behaviors.

In this work, we have considered scenarios where the food is situated inside or far from the

region where agents are initialized and we have observed that the initially identical agents

develop very different individual responses —leading to different collective dynamics—
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depending on the distance they need to cover to reach the reward (food source). Agents learn

to form strongly aligned swarms to get to distant food sources, whereas they learn to form

cohesive (but weakly aligned) swarms when the distance to the food source is short.

Since we model each individual as an artificial learning agent, we are able not only to study

the collective properties that arise from the given tasks, but also to analyze the individual

responses that agents learn and that, in turn, lead to the swarm formation. Thus, we observe

for instance that the tendency to align with the neighbors in the dF = 21 case increases with the

density of neighbors surrounding the agent. In the case of a training with dF = 4, we observe

that the individuals tend to move to the region with higher number of neighbors, which leads

to high cohesion at the collective level.

We note that the task faced by our artificial agents, of reaching a food source, is closely

related to the behaviors studied in the context of foraging theory. For this reason, we compare

the individual trajectories that result from the learning process to the principal theoretical

models in that field. We show that most of the individual trajectories resulting from the train-

ing with distant resources —which leads to strongly aligned swarms— are best fitted by com-

posite correlated random walks consisting of two modes, one intensive and one extensive,

whose mean step lengths are l̂ � 1
I ’ 2:7 and l̂ � 1

E ’ 75, respectively. A smaller fraction of these

trajectories is best fitted by power-law distributions with exponents m̂ ffi 1:6, that is, Lévy

walks. The exponent of the power-law distribution we obtain is close to 2, which is the optimal

Lévy walk for maximizing the rate of target encounters in environments with sparsely distrib-

uted, renewable resources [22, 31, 68]. Moreover, our results are in agreement with the study

of Reynolds [67] that shows that animals can approximate Lévy walks by adopting a composite

correlated random walk.

In contrast, agents that were trained to find nearby resources and follow the dynamics of

cohesive swarms present normal-diffusive, Brownian-like trajectories that do not exhibit two

movement modes but just one.

One crucial point of this analysis is that our simulated agents move in a multi-agent context

and their movement patterns are therefore determined by the swarm dynamics they have

developed through the learning process. In particular, we provide a new perspective and addi-

tional insight on the studies mentioned above regarding Lévy walks and CCRW, since the indi-

vidual trajectories that are best fit by these two models arise from a collective motion with very

specific features such as strong alignment and decaying cohesion. This, together with the fact

that the individual responses emerge as a result of the learning process, provides an example of

how trajectories with features that resemble Lévy walks can emerge from individual mecha-

nisms that are not generated by a Lévy walk process. In this sense, our work provides an

unusual example to consider within the emergentist versus evolutionary debate on Lévy walks

(see e.g. [31, 32]). In particular, our work supports the former view point insofar as the agents

do not have built-in interaction rules that come from a certain mathematical model such as

that of the Lévy walk, but nevertheless exhibit trajectories that resemble Lévy walks as a result

of the swarm dynamics that emerged from certain foraging environmental pressures.

To conclude, we have applied a model of artificial agency (PS) to different foraging scenar-

ios within the framework of collective motion. We have shown that, without any prior hard-

wired interaction rules, the same agents develop different individual responses and collective

interactions, depending on the distance they need to travel to reach a food source. Agents

form strongly aligned swarms to stabilize their trajectories and reach distant resources,

whereas they form cohesive, unaligned swarms when the resources are near. In addition, we

have shown that Lévy-like trajectories can be obtained from individual responses that do not

have a simple theoretical model as the underlying process, but instead are generated and arise
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from the interplay of a fine-grained set of learned individual responses and the swarm behavior

that emerges from them at a collective level.

This work provides a new framework for the study of collective behavior, which supports

more detailed and realistic representations of individuals’ sensory and motor abilities and dif-

ferent types of environmental pressures. It would be interesting to apply this approach to the

more complex collective behaviors that arise in two- and three-dimensional environments.

Furthermore, the PS model allows for a variety of new scenarios to explore in the context of

behavioral biology, since different reward schemes can easily be implemented and studied.

Supporting information

S1 Appendix. Additional analysis. In this appendix, we provide additional information about

the dynamics presented in Sec. 3 of the main text. In particular, we analyze why there is transi-

tion at dF = 6 from the regime where agents form cohesive swarms to the one in which they

form aligned swarms to reach the food source. Furthermore, we extend the analysis of align-

ment and cohesion presented in Sec. 3.2 of the main text.

(PDF)

S2 Appendix. Statistical methods. We describe the statistical methods applied to obtain the

results of Sec. 4. First, we explain how to optimize the likelihood function of each of the four

models we consider, with a focus on the CCRW model. In addition, we describe the goodness-

of-fit tests that we perform, that is, a log-likelihood ratio for the BW, CRW and PL models and

a test based on uniform pseudo-residuals for the CCRW model.

(PDF)
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Writing – review & editing: Andrea López-Incera, Katja Ried, Thomas Müller, Hans J.

Briegel.

References
1. Zafeiris A, Vicsek T. Collective motion. Physics Reports. 2012; 517:71–140. https://doi.org/10.1016/j.

physrep.2012.03.004

2. Yates CA, Erban R, Escudero C, Couzin ID, Buhl J, Kevrekidis IG, et al. Inherent noise can facilitate

coherence in collective swarm motion. PNAS. 2009; 106(14):5464–5469. https://doi.org/10.1073/pnas.

0811195106 PMID: 19336580

3. Kolpas A, Moehlis J, Kevrekidis IG. Coarse-grained analysis of stochasticity-induced switching between

collective motion states. PNAS. 2007; 104(14):5931–5935. https://doi.org/10.1073/pnas.0608270104

4. Bode NW, Franks DW, Wood AJ. Making noise: emergent stochasticity in collective motion. J Theor

Biol. 2010; 267:292–299. https://doi.org/10.1016/j.jtbi.2010.08.034

PLOS ONE Development of swarm behavior in foraging artificial learning agents

PLOS ONE | https://doi.org/10.1371/journal.pone.0243628 December 18, 2020 35 / 38

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0243628.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0243628.s002
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1016/j.physrep.2012.03.004
https://doi.org/10.1073/pnas.0811195106
https://doi.org/10.1073/pnas.0811195106
http://www.ncbi.nlm.nih.gov/pubmed/19336580
https://doi.org/10.1073/pnas.0608270104
https://doi.org/10.1016/j.jtbi.2010.08.034
https://doi.org/10.1371/journal.pone.0243628
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24. Benhamou S. How many animals really do the Lévy walk? Ecology. 2007; 88(8):1962–1969. https://doi.

org/10.1890/06-1769.1

25. Viswanathan GM, Afanasyev V, Buldyrev SV, Murphy EJ, Prince PA, Stanley HE. Lévy flight search
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