
1

Vol.:(0123456789)

Scientific Reports | (2020) 10:14634 | https://doi.org/10.1038/s41598-020-71450-8

www.nature.com/scientificreports

Effect of sequence padding
on the performance of deep
learning models in archaeal protein
functional prediction
Angela Lopez‑del Rio1,2*, Maria Martin3, Alexandre Perera‑Lluna1,2 & Rabie Saidi3

The use of raw amino acid sequences as input for deep learning models for protein functional
prediction has gained popularity in recent years. This scheme obliges to manage proteins with
different lengths, while deep learning models require same-shape input. To accomplish this, zeros are
usually added to each sequence up to a established common length in a process called zero-padding.
However, the effect of different padding strategies on model performance and data structure is yet
unknown. We propose and implement four novel types of padding the amino acid sequences. Then,
we analysed the impact of different ways of padding the amino acid sequences in a hierarchical
Enzyme Commission number prediction problem. Results show that padding has an effect on model
performance even when there are convolutional layers implied. Contrastingly to most of deep learning
works which focus mainly on architectures, this study highlights the relevance of the deemed-of-low-
importance process of padding and raises awareness of the need to refine it for better performance.
The code of this analysis is publicly available at https​://githu​b.com/b2sla​b/paddi​ng_bench​mark.

Since the breakthrough of deep learning (DL)1, deep neural networks are being successfully applied in compu-
tational biology2,3. This is due to their capacity for automatically extracting meaningful features from raw data4.
Specifically, DL is useful in the context of biological sequences, such as proteins or RNA, because it can learn
directly from the sequence and hence, capture nonlinear dependencies and interaction effects. Some exam-
ples of applications of DL on biological sequences include prediction of specifities of DNA and RNA binding
proteins5, DNA function quantification6, de novo peptide design7, detection of conserved DNA fragments8,
prediction of protein associated GO terms9 or quantification of the impact of genetic variation on gene regula-
tory mechanisms3. The specific DL architectures able to leverage the inner structure of sequential biological data
are Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). CNNs entail translational
invariance10 and can be used to find relevant patterns with biological meaning5,8,11,12. For their part, bidirectional
RNNs (and the derived Long Short-Term Memory and Gated Recurrent Units) are appropiate for modelling
biological sequences since they are suited for data with a sequential but non-causal structure, variable length,
and long-range dependencies13–16. Both architectures are usually combined, as in DEEPre17, where a CNN-RNN
model performs a hierarchical classification of enzymes.

Proteins are long linear sequences constituted by amino acid residues attached covalently. These amino acid
residues are represented by letters that cannot be directly processed by the mathematical operations used by DL
models. Choosing how to digitally encode amino acids is a crucial step in this context, since it can affect to the
overall performance of the models18. A comprehensive review and assessment on different amino acid encoding
methods19 shows that position specific scoring matrix (PSSM), an evolution-based position dependent meth-
odology, achieves the best performance on protein secondary structure prediction and protein fold recognition
tasks. However, this type of encoding is very consuming computationally20 and its applicability is limited to
proteins with known homologous sequences19, which could highly decrease the generalisation capabilities of
the predictor for non evolutionary related proteins. Traditionally, proteins have also been encoded into feature

OPEN

1B2SLab, Department d’Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica
de Catalunya, 08028 Barcelona, Spain. 2Department of Biomedical Engineering, Institut de Recerca Pediàtrica
Hospital Sant Joan de Dèu, 08950 Esplugues de Llobregat, Spain. 3European Molecular Biology Laboratory,
European Bioinformatics Institute (EMBL-EBI), Hinxton CB10 1SD, UK. *email: angela.lopez.del.rio@upc.edu

https://github.com/b2slab/padding_benchmark
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-71450-8&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2020) 10:14634 | https://doi.org/10.1038/s41598-020-71450-8

www.nature.com/scientificreports/

vectors21,22. These encoding features are generally aggregative and not bijective, such as signatures, physicochemi-
cal properties or amino acid composition. From aggregative features, the original sequence cannot be recovered,
resulting in a loss of protein information.

The analogy between text and proteins, understood as sequences of characters with a meaning, has motivated
the application of Natural Language Processing (NLP) techniques to amino acid sequences. Along these lines,
machine-learning derived embeddings23–26 and one-hot encoding7,9,12,14,17,27 have become very popular. Specifi-
cally, the latter method has been widely used in protein-based DL models since neural networks are able to extract
features from raw data. A schematic explanation of one-hot encoding is shown in Fig. 1B. Every amino acid of a
protein sequence is represented by a binary vector of length n+ 1 , n being the number of different amino acids
and placeholders. In this vector, all but the corresponding entry for that amino acid is set to zero. As a result, a
protein of length L is represented by a (n+ 1)× L binary matrix.

The main problem of one-hot encoding is that each protein has a different length, while all input vectors
should be of the same size to be fed into the model. To overcome this issue, sequence padding and truncation
are usually applied7,9,12,14. This means establishing a common length for all proteins and then, truncating longer
proteins to that length or filling shorter proteins with an “artificial” character up until that length (see Fig. 1A).
This process of completing a sequence is called padding and the character used for filling could be any that is
not used in the sequences themselves. To this matter, zero character (“0”) is the most commonly used. Padding
zeros can be added at any position of the sequence, for example at the N- and C- terminals of the sequences28. In
practice, they are usually added at the end7,14. However, details on the concrete steps of sequences padding are
often omitted as they are deemed of low importance for the results of the study9,12,17,27. Even when this informa-
tion is given, there is no proper justification on the padding choice7,14,28. This is partly due to the lack of exhaustive
studies on the effect of padding the sequences. Up to our knowledge, the work of Reddy et al.29 is the only study
on the effect of sequence padding on deep learning models. It was applied on a NLP sentiment analysis task and
only pre- and post- padding types were tested. Since it is a different application domain and the options they
test are limited, a more comprehensive study for the case of biological sequences is needed. Likewise, alternative
types of padding to those usually implemented (zeros at the end of the sequence, at the beginning or both) have
not been yet explored.

Domains of application involving recurrent neural networks also make use of mask layers, in order to inform
the model to skip the padding positions in the objective function and gradients30. However, masking lacks gen-
eral support for convolutional, feed-forward, flatten or pooling layers. Since many of the amino acid sequence
models in the literature contain some of these layers8,9,12,14,27, and considering that recurrent layers have been
proven not to always be the best choice in sequence-based models31, it is still important to evaluate the potential
effects of padding.

In this paper, we report a systematic analysis on how different types of padding affect to protein-based
DL models performance. We evaluate this effect on three different DL architectures: only feed-forward neural
networks (only_denses), feed-forward neural networks coupled with a convolutional layer (1_conv) and feed-
forward neural networks coupled with a stack of convolutional layers (stack_conv). We also introduce four novel

Figure 1.   Schematic explanation of one-hot encoding, zero-padding and truncation of amino acid sequences
(A) Amino acid sequences of different lengths are shaped to the common dimension of 7 by truncating or
padding zeros at the end. (B) Amino acid sequence at common length L is transformed to a binary matrix
(n+ 1)× L , being n the number of different amino acids and placeholders. Each column of this matrix is full of
zeros, being one only in the position of the corresponding amino acid.

3

Vol.:(0123456789)

Scientific Reports | (2020) 10:14634 | https://doi.org/10.1038/s41598-020-71450-8

www.nature.com/scientificreports/

padding types (mid-, strf-, rnd-, and zoom-) and we classify them along with the known types (pre-, post- and
ext-) into dense and sparse paddings. Dense paddings are those keeping zeros together in a block (pre- at the
beginning, post- at the end, mid- in the middle and ext- at both ends), while in sparse paddings, zeros are inter-
spersed on the sequence (randomly in the case of rnd- and uniformly for strf-) or amino acids are duplicated
(zoom-). Finally, we quantify the effect for each type of padding. The chosen task for this study is a hierarchical
classification of enzymes with two levels: the first is a binary classification of proteins into enzymes/non-enzymes
(task 1), and the second is a multi-label prediction of the enzyme type (task 2).

Results
Performance metrics.  A summary of the F1-score (macro average), accuracy and Area under the receiver
operating characteristic curve (AUC from now) on test for each architecture, each type of padding and each task
(only task 1 in the case of AUC) is shown in Table 1. Since the trends observed for these metrics analogous, we
will focus on F1-score. Fig. 2 shows the macro F1-score on test for each type of padding in each of the tested

Table 1.   Summary of F1-score (macro average), accuracy and AUC on the test set. Results are reported for all
the different types of padding for both task 1 and task 2 in each one of the tested architectures (except AUC,
which is only available for Task 1). Mean ± standard deviation of the 10 folds.

Padding type 1_conv only_denses stack_conv

Task 1 F1-score

aug 0.756± 0.041 0.900± 0.011 0.790± 0.022

ext 0.842± 0.022 0.896± 0.013 0.875± 0.010

mid 0.868± 0.016 0.911± 0.018 0.874± 0.026

post 0.873± 0.010 0.900± 0.014 0.879± 0.024

pre 0.858± 0.011 0.899± 0.013 0.863± 0.028

rnd 0.786± 0.014 0.896± 0.025 0.812± 0.011

strf 0.867± 0.008 0.930± 0.011 0.851± 0.010

zoom 0.868± 0.005 0.893± 0.021 0.862± 0.014

Task 2 F1-score

aug 0.536± 0.025 0.531± 0.022 0.504± 0.026

ext 0.554± 0.022 0.543± 0.034 0.540± 0.023

mid 0.558± 0.021 0.542± 0.027 0.557± 0.024

post 0.550± 0.025 0.509± 0.075 0.554± 0.024

pre 0.541± 0.020 0.541± 0.030 0.527± 0.028

rnd 0.452± 0.026 0.448± 0.034 0.455± 0.020

strf 0.550± 0.024 0.548± 0.026 0.547± 0.024

zoom 0.543± 0.019 0.456± 0.063 0.515± 0.026

Task 1 Accuracy

aug 0.758± 0.037 0.901± 0.011 0.790± 0.023

ext 0.843± 0.023 0.896± 0.014 0.875± 0.010

mid 0.868± 0.016 0.911± 0.018 0.874± 0.027

post 0.873± 0.010 0.900± 0.014 0.879± 0.024

pre 0.858± 0.011 0.899± 0.013 0.863± 0.028

rnd 0.790± 0.013 0.897± 0.025 0.815± 0.011

strf 0.868± 0.008 0.930± 0.011 0.852± 0.010

zoom 0.869± 0.005 0.893± 0.021 0.863± 0.014

Task 2 Accuracy

aug 0.548± 0.009 0.536± 0.012 0.527± 0.015

ext 0.539± 0.016 0.544± 0.025 0.549± 0.017

mid 0.539± 0.017 0.545± 0.018 0.569± 0.011

post 0.530± 0.011 0.532± 0.024 0.560± 0.016

pre 0.532± 0.009 0.542± 0.016 0.545± 0.018

rnd 0.455± 0.011 0.473± 0.020 0.509± 0.017

strf 0.556± 0.021 0.556± 0.012 0.565± 0.015

zoom 0.550± 0.014 0.528± 0.021 0.531± 0.010

Task 1 AUC​

aug 0.859± 0.021 0.951± 0.010 0.891± 0.013

ext 0.927± 0.011 0.966± 0.003 0.949± 0.005

mid 0.945± 0.009 0.972± 0.006 0.952± 0.010

post 0.945± 0.007 0.969± 0.003 0.956± 0.007

pre 0.935± 0.006 0.967± 0.004 0.949± 0.008

rnd 0.871± 0.011 0.946± 0.014 0.891± 0.009

strf 0.939± 0.006 0.978± 0.003 0.927± 0.006

zoom 0.937± 0.004 0.978± 0.005 0.944± 0.005

4

Vol:.(1234567890)

Scientific Reports | (2020) 10:14634 | https://doi.org/10.1038/s41598-020-71450-8

www.nature.com/scientificreports/

architectures, both for task 1 and task 2. The same figure but for accuracy can be found in Fig. S1 of the Support-
ing Information. Figures S2–S7 show F1-score results per label (non-enzyme/enzyme in the case of task 1 and
1–7 enzyme types in the case of task 2) for each task and each of the architectures.

According to Table 1 and Fig. 2, although the different architectures seem to have similar F1-score values,
only_denses architecture is the one that achieves the best performance for task 1 (paired Wilcoxon test, two-sided,
p = 9e−15 vs 1_conv and p = 4e−13 vs stack_conv). Regarding task 2, we can see at Fig. 2 that the trend is not as
clear as in task 1. 1_conv has the best performance (paired Wilcoxon test, two-sided, p = 9e−4 vs only_denses,
p = 2e−5 vs stack_conv), while there are no statistical differences between stack_conv and only_denses.

Regarding metrics per label, in task 1 (Figs. S2, S4 and S6) best recall results for non-enzymes were achieved
in convolutional architectures, but the opposite trend is shown for the baseline architecture (only_denses). For
task 2, classification of enzyme types 1, 4 and 6 achieved lower performance than 2 and 5. This applies to the
three architectures (Figs. S3, S5 and S7). As for enzyme type 7, results show high variability in comparison with
the other types due to the limited number of samples of this class.

Effect on input space.  We studied the distribution of the activations of the 1D Convolutional layer for
the 1_conv model to analyse the effect of the padding type in the input space by means of a Principal Compo-
nents Analysis (PCA). Figure 3 displays the density plot showing the principal components (PC) 1 and 2 of the
activations from the 1D convolutional layer of the 1_conv architecture for each type of padding on each fold in
task 2. In Fig. S8 of the Supporting Information, the same representation for task 1 is shown. Focusing on Fig. 3
for task 2, the distribution of the activations is very similar for dense types of padding (ext-, mid-, post- and
pre-). These dense activations are grouped in two clusters separated along the PC1. Sparse paddings (rnd-, strf-,
zoom-) activations have a distribution very different to that from dense paddings. In this case, activation points

Figure 2.   Macro F1-score on test for each type of padding in each tested architecture. Each boxplot comprises
10 data points (which is the number of folds).

5

Vol.:(0123456789)

Scientific Reports | (2020) 10:14634 | https://doi.org/10.1038/s41598-020-71450-8

www.nature.com/scientificreports/

are condensed in one area, although each one of these types of padding has its own structure. Regarding enzyme
types, according to the structure of the distributions, there seems to be two different groups: enzyme types 2,
3 and 4 are very similar between them and in turn, different to types 1, 5, 6 and 7. Table S7 of the Supporting
Information quantifies the effect of the enzyme and the padding types on the PC1 of the activations using a linear
model. All the terms of the model are significant.

Explanatory models.  We used linear models to further explain the performance metrics and the effect of
different variables (padding type, enzyme type, architecture) to the DL models behaviour. These explanatory
models were also used to address specific questions regarding the effect of padding.

The full additive linear model in Eq. (1) describes the F1-score values on test and it is shown on the Table S1 of
the Supporting Information. It shows that some types of padding have indeed an effect on models performance,
both for task 1 and 2. For example, for all the architectures (since it is an additive model) in task 1, aug-, pre-,
ext- and rnd- have worse performance when compared to the reference padding type (post-) (p value < 0.05 ). In
the same setting but for task 2, rnd- and zoom have significantly worse performance than post- (p value < 0.01).

Figure 4 and Tables S2–S6 gather the answers to our specific questions on the effect of padding on the dif-
ferent architectures and enzyme types. The colour represents in each case the difference between each category
and the reference category of that factor. The sign of the corresponding estimate is represented if that difference

Figure 3.   Density representation of the PCA of the activations of the convolutional layer. Figure shows PC1
vs PC2 of the activations of the 1D Convolutional layer for the 1_conv model in task 2, for the 10 folds. This
representation comes from applying a PCA to the convolutional filter activations after the prediction of 14
enzymatic sequences of different EC number using each padding type. Then, the graphical representation was
stratified by padding and enzyme type. We can see that according to the structure of the distributions, there
seems to be two different groups of enzymes: 2, 3, 4 and 1, 5, 6, 7. Regarding types of padding, the activations
for dense paddings are similar between them (two clusters separated along PC1) and different from sparse
paddings.

6

Vol:.(1234567890)

Scientific Reports | (2020) 10:14634 | https://doi.org/10.1038/s41598-020-71450-8

www.nature.com/scientificreports/

Figure 4.   Linear models on F1-score for both tasks 1 and 2 focusing on five specific questions. The “No
interaction” facet represent estimates of additive terms of the model, while the other facet represent the
interaction between two factors. Models regarding questions A, B and C have no interaction terms and thus,
they only have the “No interaction” facet. Only coloured tiles correspond to model coefficients; the white ones
are outside the model specification. The colour of each category of a term represents the value of the estimate:
red tiles correspond to positive estimates, specified with a “+”, blue tiles correspond to negative estimates,
specified by “−” and grey tiles are close to zero. Framed categories are those that have a significant effect on each
question (adjusted p value < 0.05 ). An example on how to interpret this figure: in Model B task 2, switching
from post_padding (reference) to pre_padding in stack_conv (reference) implies a decrease in performance.

7

Vol.:(0123456789)

Scientific Reports | (2020) 10:14634 | https://doi.org/10.1038/s41598-020-71450-8

www.nature.com/scientificreports/

is statistically significant. The constant term of a model (Intercept) shows the prediction when all the categorical
variables have their reference values.

A. Does padding position affect performance?.  Figure 4A and Table S2 show that the classification
performance of the baseline model (only_denses) for task 1 is the same for all the types of dense padding, except
for strf-padding, which is better than post- (predicted F1-score of 0.926 vs 0.896). In the same way for task 2,
only strf- significantly outperforms post-padding (0.472 vs 0.432), while zoom- has a worse performance (0.379).

B. What is the effect of switching between dense paddings?.  Figure 4B and Table S5 for task 1
show that for stack_conv, there are no differences in performance between dense paddings. Regarding task 2,
only pre-padding is significantly worse than post-padding (0.457 vs 0.484) for stack_conv.

C. What is the effect of changing from the standard dense padding to sparse padding?.  Fig-
ure 4C and Table S4 show that for stack_conv in both tasks, sparse paddings have significantly worse perfor-
mances than dense paddings. For task 1, post- significantly outperforms rnd-, strf- and zoom-padding (pre-
dicted F1-scores of 0.868 vs 0.801, 0.840 and 0.851, respectively). For task 2, post- also outperforms rnd- and
zoom-padding (0.498 vs 0.400 and 0.460, respectively).

D. Is an ensemble of paddings beneficial?.  We tested for the three architectures if data augmentation
regarding padding (aug-padding) improved the performance when compared to post-padding (representing the
dense paddings) and strf-padding (representing the sparse paddings). To quantify the changes, we used aug-
padding as reference level in padding type. Figure 4D and Table S5 show that both post- and strf- significantly
outperform aug-padding both for task 1 and task 2.

For task 1, with the baseline architecture (stack_conv) aug-padding gets the worst predicted F1-score (0.786),
while it is 0.875 and 0.847 for post- and strf- respectively. For the reference padding type (aug-), the stack_conv
architecture performs worse than only_denses (0.785 vs 0.895) but better than 1_conv (0.785 vs 0.752). Inter-
actions show that both strf- and post- have a more positive effect on performance with respect to the baseline
(aug-) for 1_conv (0.863 and 0.868 vs 0.752 from aug-) than for stack_conv (0.847 and 0.875 vs 0.786). On the
contrary, changing from aug- to strf- and post- have less performance improvement for only_denses (0.895
from aug- vs 0.926 and 0.896) than for stack_conv (0.786 vs 0.847 and 0.875), although even so only_denses
still outperforms stack_conv.

Regarding task 2, with the baseline architecture aug-padding also gets the worst performance when compared
to post- and strf-padding (0.421 vs 0.471 and 0.464). For baseline padding type, both 1_conv and only_denses
significantly outperform stack_conv (0.453 and 0.449 vs 0.421). Interactions show that 1_conv reacts the same
way to changes of padding type than stack_conv. But in the case of only_denses, changing from aug- to post-
padding (0.449 vs 0.426) has less performance improvement than for stack_conv (0.421 vs 0.471), causing aug- to
outperform post-.

E. Does the effect of padding type on performance depends on the enzyme type?.  We checked
for all the types of architectures and for dense and sparse paddings (represented by post- and strf-, respectively)
the effect of enzyme type on model performance (only for task 2). Results (Fig. 4E and Table S6) show that for
both padding types, the performance for enzymes with the first EC number digit 2 (0.619), 3 (0.555), 5 (0.598),
6 (0.532) and 7 (0.597) is better than for digits 1 (0.457) and 4 (0.454). Interactions are not significant, mean-
ing this trend applies to all the architectures. This is consistent with the results of the previous questions, where
enzyme types 4, 1 and sometimes 6 are shown to decrease performance.

Discussion
It is not the aim of this paper to study differences on performance between architectures. However, in general
terms only_denses has shown to achieve the best performance for task 1 while both convolutional architectures
work better for task 2 (see Tables 1, S1–S4 and S6, and Fig. 2-4). Quantitatively, for the full additive model
(eq. 1) in task 1, only_denses get a predicted F1-score of 0.916 vs 0.864 of stack_conv and 0.853 of 1_conv for
the baseline post-padding type. Using the same model for task 2, predicted F1-score of only_denses is 0.444
versus 0.454 of stack_conv and 0.464 of 1_conv. The reason why only_denses is the best architecture for task 1
could be that the task of classifying amino acid sequences between enzymes and non-enzymes is more related
to the presence/absence or count of certain amino acids than to their position within the sequence. In other
words, if we could consider them to be amino acid sets instead of sequences as it happens in other fields32. On
the contrary, classifying enzymes into their types is a more complex task that might imply amino acid patterns
and position information, thus a convolutional architecture is a better choice.

Along the same lines, we have seen that task 1 has a better performance than task 2 for all the architectures
(Table 1 and Fig. 2). F1-score ranges from 0.756± 0.041 to 0.930± 0.011 for task 1, while for task 2 it is com-
prised between 0.448± 0.034 and 0.558± 0.021 . Task 1 results are similar to those obtained by DEEPre17 for
their equivalent Level 0 prediction, but results obtained for task 2 are worse than their report for Level 1. This
was expected, since we use the same architecture for a simple binary classification and for a multi-class classifi-
cation problem. A more complex, optimized model may improve the performance for the first digit prediction
problem, but this was out of the scope of this study. We chose the architectures of both tasks to be as simple,
comparable and interpretable as possible.

8

Vol:.(1234567890)

Scientific Reports | (2020) 10:14634 | https://doi.org/10.1038/s41598-020-71450-8

www.nature.com/scientificreports/

We have confirmed that padding type has an effect on model performance (see Tables S1–S6 and 1, Fig. 4). In
Fig. 3 and S8 we could see that indeed, models reflect differences for each type of padding in their input space.

In general, there are no differences between dense paddings (see Fig. 4A,B and Tables S2–S3), neither for
convolutional nor for only_denses architectures. This applies for both task 1 and task 2, although for the latter
pre-padding underperforms the rest of dense paddings (predicted F1-score 0.457 from pre- vs 0.484 from post-).
Therefore, dense paddings are interchangeable for fully feed-forward and dense architectures and we could stick
to the default option (post-padding).

There are differences between sparse paddings. For the baseline model (only_denses) in both tasks (Fig. 4A
and Table S2), strf_padding has shown to outperform the rest of the paddings: for task 1, strf- has a predicted
F1-score of 0.926 vs 0.896 from post-; in task 2, strf- has an estimate of 0.472 while for post- it is 0.432; macro-
average for the F1-score on test is 0.930 ± 0.011 for task 1 and 0.548 ± 0.034 for task 2 (Table 1) . This might be
because feed-forward neural networks are position-sensitive and moving a block of zeros along the sequence
(as in different types of dense padding) can alter the way the networks process them. Strf- does not comprise
a block of zeros, but they are spread uniformly along the sequence. This distribution seems to compensate this
position sensitivity by aligning certain relative positions of the protein where the model might be detecting
abundance changes.

On the contrary, this improvement of performance caused by strf-padding does not apply for stack_conv
architecture (Fig. 4C and Table S4). In this case, all sparse paddings perform worse than the baseline post-padding
(except for strf- in task 2): for task 1, the predicted F1-score of post-padding is 0.868 vs 0.840, 0.801 and 0.851
from strf-, rnd- and zoom- respectively; for task 2, predicted F1-score is 0.498 for post- vs 0.400 and 0.459 for
rnd- and zoom-. Thus, convolutional models works better with dense paddings than with sparse ones.

The differences in activations of the convolutional layers in Fig. 3 further support the classification of paddings
into dense and sparse and are in line with the results that we have just reported. The activations for the dense
paddings showed to be very similar between them. This is expected due to the translational invariance of the
convolutional layers10: if zeros are kept together they should be processed in the same way by the convolutional
layers, no matter where they are located. In turn, the activations of dense paddings are very different from the
sparse ones (Fig. 3). Sparse paddings have also a similar structure, where the activations are condensed in only
one centered group.

We have also tested if data augmentation regarding padding (i.e. artificially increasing the size of a dataset by
representing one protein by different possibilities of the padded one-hot encoded amino acid sequence) improved
model performance as in image deep learning models33. Our results (Fig. 4D and Table S5 of the Supporting
Information) have shown that aug-padding underperforms dense and sparse paddings both for fully dense and
convolutional architectures and for both tasks: for stack_conv task 1 aug- achieves a predicted F1-score of 0.786
vs 0.875 and 0.847 from post- and strf-, respectively; for task 2, 0.421 from aug- vs 0.470 from post- 0.464 and
from strf-. In Fig. 2 it also shows to have the worst performance in both tasks for convolutional architectures.
Hence, an ensemble of mixed dense and sparse paddings does not improve the performance of the models in
this case. Augmented data using only sparse paddings or only dense paddings might work better, because then
sequences would be in similar activation spaces.

We observed that models underperformed in enzyme types 1 (oxidoreductases) and 4 (lyases). This was
noticeable by displaying the raw metrics (Figs. S3, S5 and S7) and further confirmed through the explanatory
models (Fig. 4 and Table S6, the predicted F1-scores for enzymes 2, 3, 5, 6 and 7 are 0.619, 0.555, 0.598, 0.532
and 0.597, respectively, while it is 0.457 and 0.454 for 1 and 4). It does not seem to be related to the number of
samples (Fig. S9 of the Supporting Information), to sequence length (see Fig. S10 of the Supporting Information)
or to the distribution of the activations (Fig. 3). Therefore, we assume that this is caused because these enzyme
types are inherently more difficult to classify, as it happens in34. EC number prediction can be challenging in
some cases due to divergent evolution (two enzymes with a completely different EC may actually be very similar
in sequence)35 and parallel evolution of enzyme function (two completely unrelated enzymes catalyse the same
reaction and thus, share EC number)36.

In Fig. 3 there also seems to be two groups of enzymes according to the distribution of the activations: 1, 5,
6 and 7 vs 2, 3 and 4. This could be partly related to the sequence length: Fig. S10 of the Supporting Informa-
tion show that enzyme types 2, 3 and 4 are shorter than 1, 5, 6 and 7 (p = 9e−54 for Mann–Whitney–Wilcoxon
test for independent samples, two-sided); moreover, these differences are not so visible for zoom_padding, for
which models cannot count zeros. On the other hand, Table S7 of the Supporting Information reports negative
coefficients for enzyme types 2, 3 and 4, and positive coefficients for enzymes 5, 6 and 7 (enzyme type 1 is the
reference) in the explanatory linear model for PC1, which further supports this grouping.

The results of this study have been obtained for amino acid sequences. It would be needed as a future work
to investigate if this effect of padding on model performance can be translated to other biological sequences that
are also one-hot encoded and padded, such as RNA37,38 and miRNA39 or DNA sequences6.

Conclusion
The effect of padding amino acid sequences when they are one-hot encoded had not been comprehensively
addressed in the literature yet. The lack of this analysis has caused numerous studies to disregard this step, most
of the times taking the “default” option and in some cases, even omitting the details around it. In this paper, we
have shown that padding position has an effect on model performance.

We have tested seven types of padding using three different deep learning architectures in a hierarchical
enzyme classification problem. It is the first study analysing the relevance of padding one-hot encoded amino
acid sequences and its impact on the performance of the studied task.

9

Vol.:(0123456789)

Scientific Reports | (2020) 10:14634 | https://doi.org/10.1038/s41598-020-71450-8

www.nature.com/scientificreports/

Our results show that padding the amino acid sequence has an effect on the performance of models. Therefore,
more attention should be given to this often omitted step of data pre-processing when building deep learning
models for one-hot encoded proteins.

We propose and analyse novel ways of padding proteins when one-hot encoding them for machine learn-
ing models (strf-, zoom-, rnd-, mid-). Up until our knowledge, these types have been neither mentioned in the
literature nor implemented and made publicly available. We provide the code for their application (https​://githu​
b.com/b2sla​b/paddi​ng_bench​mark), since we have shown that some of them could be more suited for their
specific task or architecture.

Our results on EC number classification show that there are no differences between dense paddings. Thus,
we can stick to the traditional post-padding, which has proved to outperform the other padding types for con-
volutional architectures. Regarding sparse paddings, our newly proposed strf-padding has shown to be the best
choice for fully feed-forward neural networks, outperforming both dense paddings and the other types of sparse
paddings. Lastly, data augmentation regarding the padding (aug-padding) does not improve performance. In
contrast, it seems to add noise that causes performance to decrease.

This analysis has been applied to the specific task of EC number prediction. Although we cannot extrapolate
these results to other tasks or other deep learning architectures, this is a starting point that highlights the need
to avoid neglecting the padding step when one-hot encoding amino acid sequences, since we have shown that
it has an effect on model performance.

Material and methods
Material.  Different types of padding were evaluated on the UniprotKB/Swiss-Prot database40 (version
2019_05) protein entries for taxonomy Archaea. For computational reasons we established an upper threshold
of 1,000 amino acids for sequence length, leaving 19,385 proteins for training the models (more than 99% of the
original entries). For the enzyme classification task performed for the padding analysis, Enzyme Commission
number (EC number) annotation was used. EC number is a numeric classification schema for enzymes related
to the chemical reactions they catalyze. Each EC number is constituted by 4 numbers separated by dots, being
each one a progessively more specific classification. We only used the first digit of the EC number, which refers
to the class of enzyme (1:oxidoreductases, 2: transferases, 3: hydrolases, 4: lyases, 5:isomerases, 6: ligases and
7: translocases) and considered the entries without EC number annotation as non-enzymes. 214 entries with
more than one EC number were expanded as additional samples, having a total of 19,599 samples. Table 2 shows
the enzyme type distribution of the dataset and Fig. S9 of Supporting Information represents this distribution.
Data was divided 70/15/15% in training, validation and test sets. The training set was used to fit the model, the
validation set was used to evaluate the model fit in each epoch and tune hyperparameters accordingly, and the
test set was used to externally evaluate the final model fit. To check the consistency of the results, this splitting
was randomly performed 10 times, so each model was trained and tested in each one of these data partitions.

Amino acids encoding and protein padding.  Amino acids were represented by one-hot encoding.
Seven different padding types were applied to those sequences shorter than 1000 amino acids (see Fig. 5): (I)
post-padding, adding zeros at the end of the sequences; (II) pre-padding, adding zeros at the beginning of
the sequence; (III) mid-padding (middle), adding the zeros in the middle of the sequence; (IV) strf-padding
(stratified), distributing the zeros uniformly across the sequences; (V) ext-padding (extreme), adding zeros at
both ends of the sequence in a balanced way (half of the padding pre- and half of the padding post-); (VI) rnd-
padding (random), adding zeros at random positions of the sequence; (VII) zoom-padding, similar to stratified
padding but instead of zeros, contiguous amino acids are repeated; this is the only padding type that “modifies”
the sequence length. Additionally, (VIII) aug-padding (augmented) will assess the use of data augmentation
regarding padding: each sequence will be represented by the seven different padding strategies.

We divided the types of padding in two groups: (1) dense paddings, those strategies that keep the sequence
to a great extent, i.e. post-padding, pre-padding, ext-padding, mid-padding and (2) sparse paddings, which
comprises those types of padding which repeatedly modify the structure of the sequence by inserting elements
in between: strf-padding, rnd-padding and zoom-padding.

Table 2.   Distribution of UniprotKB/Swiss-Prot database proteins for taxonomy Archaea. Distribution is
shown according to the enzyme type, which is determined by the first digit of the EC number. Entries without
EC number are considered as non-enzymes.

Non-enzymes 8,727

Total enzymes 10,872

Enzyme type

1 1,187

2 3,843

3 2,123

4 1,281

5 603

6 1,715

7 120

https://github.com/b2slab/padding_benchmark
https://github.com/b2slab/padding_benchmark

10

Vol:.(1234567890)

Scientific Reports | (2020) 10:14634 | https://doi.org/10.1038/s41598-020-71450-8

www.nature.com/scientificreports/

Classification task: hierarchical models.  We tackled the enzyme classification task as a hierarchical
problem with a level-by-level prediction strategy, as in17 (see Fig. 6), although we only approached the first two
levels of the structure. This decision was taken due to the data imbalance (see Fig. S9 on the Supporting Infor-
mation and Table 2) between non-enzymes and the less populated enzyme classes (e.g. class 7). We built two
prediction models. Firstly, a binary classification model that, given a sequence, predicts if it is an enzyme or not.
From now on, it will be referred as task 1. Secondly, a multilabel classification model with seven outputs that,
given a sequence classified as enzyme by the first model, predicts the class of the enzyme (the first digit of the EC
number). This will be referred as task 2.

Models architecture.  We analysed the padding effect on three DL architectures: 1. a model with only feed-
forward neural networks (it will be referred as only_denses), 2. a model with feed-forward neural networks and
one 1D convolutional layer (1_conv) and 3. a model with feed-forward neural networks and five 1D convolu-
tional layers stacked in parallel (stack_conv). The schematic representation of the four models can be found in
Figs. S11 and S12. CNNs from the second and third model are aimed to detect meaningful patterns in the amino
acid sequence. In all cases, dropout is used to prevent overfitting41. The only_denses model was considered as
baseline or reference model, to have the simplest reasonable deep learning model to which we could compare
against42 ; the 1_conv model was chosen to study the effect of adding a convolution to the model and stack_conv
was taken to check the effect on a convolutional architecture of relative complexity14,27. Further details of the
models and the corresponding hyperparameters can be found in the Supporting Information file.

We tried to fit a bi-LSTM model to also test the effect of padding on this architecture. However, this model
was too complex to converge within the range of parameters of the other three architectures (number of epochs,
optimizer, learning rate). As stated by Li et al.43, LSTMs have convergence issues when training long sequences
(length ≥ 1000). Because of this, we considered that the results of the bi-LSTM were not comparable to those
from the other architectures and thus, decided to remove it from the analysis.

Figure 5.   Different types of padding analysed in this study. Each color bin represents an amino acid. Black lines
represents zero padding.

Figure 6.   Hierarchical enzyme classification with two levels. Task 1 classifies enzyme/non-enzyme and if
enzyme, task 2 classifies by the first digit of the EC number.

11

Vol.:(0123456789)

Scientific Reports | (2020) 10:14634 | https://doi.org/10.1038/s41598-020-71450-8

www.nature.com/scientificreports/

Implementation.  Models were trained with an Adam optimizer44 for 200 epochs, with a batch size of 54
( learning rate = 1E-4 , β1 = 0.9 , β2 = 0.999 ). Models were implemented in Python (Keras45 2.2.4 using as back-
end TensorFlow46 1.8.0) and run on the GPU NVIDIA TITAN Xp and NVIDIA GeForce GTX 1070.

Performance metrics.  The final model is that of weights corresponding to the epoch with the maximum
validation accuracy in each case. Accuracy is the proportion of correct predictions. We tested each selected
model on the corresponding test set of that data partition. For evaluating and comparing the performance of the
different padding types, accuracy, F1-score for each label and macro F1-score on the test set were used. F1-score
is the harmonic mean of precision (proportion of positive class predictions that actually belong to the positive
class) and recall (proportion of correct positive class predictions out of all positive examples in the dataset). The
macro F1-score is computed by calculating F1-score for each label and getting their unweighted mean, hence
being insensitive to class imbalance. AUC was also computed for task 1 since it is a binary classification problem.
AUC represents the probability that the classifier will rank a randomly chosen positive sample higher than a
randomly chosen negative sample. Further details on the definition of these metrics can be found in the Support-
ing Information file. AUC was computed from raw predicted probabilities, while F1-score and accuracy were
calculated from the binarized predictions at threshold 0.5. To statistically compare these metrics between archi-
tectures and types of padding, nonparametric two-sided Wilcoxon tests for paired samples were carried out47.

Effect on input space.  To analyse the effect of the padding type in the input space, we studied the distribu-
tion of the activations of the 1D Convolutional layer for the 1_conv model. This layer has sixty-four filters of size
5 (see Fig. S5 of the Supporting Information).

We randomly selected seven proteins of each type (for task 1) and two proteins of each type (for task 2)
from the test set. For the two tasks separately, for each type of padding (except aug_padding) and each fold, we
used the final model to predict on those proteins. We extracted the activations of the 1D convolutional layer for
each prediction and separated each one of the sixty-four filters as a different sample. This resulted in a matrix
of dimensions 64× 1000 representing the activations for each prediction. Stacking the activation data of all the
predictions (10 folds ×7 types of padding ×14 enzymatic sequences = 980 activations matrices of size 64× 1000 )
separatedly for each task, we performed a PCA to study and compare the distribution of these activations.

Explanatory models.  The performance metrics were further described through linear models built upon
different variables that could affect to the model behaviour. These explanatory models have already been used for
similar purposes14,48 and provide a way of statistically quantifying and comparing the relevance of the considered
variables on the models performance.

Differences in performance between the different types of padding for both tasks were explained and tested
in terms of the following linear model:

This full additive model was used as a snapshot of the general contribution of each factor to the F1-score. Ref-
erence category for enzyme type was 0 (non-enzyme) for task 1 and enzyme type 1 for task 2, only_denses for
architecture and post_padding for padding type. However, to answer more specific questions about the effect of
padding on the different architectures and enzyme types, we built more precise, appropriate models in each case
(Eqs. (3), (2), (4)). Some of them included an interaction term (represented by var1 : var2) to check if the effect
of var1 on the F1-score depends on the value of var2. For example, adding type_padding : architecture would
let us identify those cases where the effect of changing the type of padding is different between architectures.
Reference category for enzyme type was still 0 for task 1 and enzyme type 1 for task 2, but for architecture and
padding type it varies in each case. Table 3 summarizes the questions addressed through the explanatory mod-
els, their equations and the reference levels in each case. We considered only_denses as reference in Question
A because it is the baseline model and we aimed to check if in this case, different paddings affect differently to

(1)F1 ∼ architecture+ enzyme_type+ type_padding

Table 3.   The explanatory model for each question is specified by the column Equation. The Architecture
column and the Padding type column show the architectures and padding types included in each comparison,
respectively. All the enzyme types are included for each question. Reference categories are indicated in bold.

Questions on the effect of padding addressed through the explanatory models.

Question Equation Architecture Padding type

A Does padding position affect performance? Eq. 2 only_denses post-, pre-, mid-, ext-, strf-, rnd-, zoom-, aug-

B What is the effect of switching between dense paddings? Eq. 2 stack_conv post-, pre-, mid-, ext-

C What is the effect of changing from the standard dense padding to sparse
padding? Eq. 2 stack_conv post-, strf-, rnd-, zoom-

D Is an ensemble of paddings beneficial? Eq. 3
stack_conv
1_conv
only_denses

aug-, post-, strf-

E Does the effect of padding type on performance depends on the enzyme
type? Eq. 4

stack_conv
1_conv
only_denses

post-, strf-

12

Vol:.(1234567890)

Scientific Reports | (2020) 10:14634 | https://doi.org/10.1038/s41598-020-71450-8

www.nature.com/scientificreports/

model performance. In questions B-E, stack_conv is chosen as reference architecture since it is the more com-
plex and thus, the closest to the state of the art. Question E was only applied to task 2 results because its aim is
to check the effect of enzyme types.

Linear models were built in the R statistical programming language49. P values were adjusted for multiple
testing by the False Discovery Rate (FDR) by Benjamini-Hochberg50.

Data availability
The UniprotKB/Swiss-Prot database (version 2019_05) protein entries analysed during the current study can be
accessed and downloaded through the following link: http://ftp.ebi.ac.uk/pub/datab​ases/unipr​ot/previ​ous_relea​
ses/relea​se-2019_05/knowl​edgeb​ase/unipr​ot_sprot​-only2​019_05.tar.gz . Since this data needs further filtering
to get only taxonomy Archaea, we have also uploaded data analysed in this article to the following repository:
https​://doi.org/10.6084/m9.figsh​are.11985​750. The code is publicly available at https​://githu​b.com/b2sla​b/paddi​
ng_bench​mark.

Received: 9 March 2020; Accepted: 6 August 2020

References
	 1.	 Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Advances in

Neural Information Processing Systems 25 (eds Pereira, F. et al.) 1097–1105 (Curran Associates Inc., Red Hook, 2012).
	 2.	 Angermueller, C., Pärnamaa, T., Parts, L. & Stegle, O. Deep learning for computational biology. Mol. Syst. Biol. https​://doi.

org/10.15252​/msb (2016).
	 3.	 Eraslan, G., Avsec, Ž, Gagneur, J. & Theis, F. J. Deep learning: New computational modelling techniques for genomics. Nat. Rev.

Genet. 20, 389–403. https​://doi.org/10.1038/s4157​6-019-0122-6 (2019).
	 4.	 Lecun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444, https​://doi.org/10.1038/natur​e1453​9 (2015).
	 5.	 Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence specificities of DNA- and RNA-binding proteins

by deep learning. Nat. Biotechnol. 33, 831–838. https​://doi.org/10.1038/nbt.3300 (2015).
	 6.	 Quang, D. & Xie, X. DanQ: A hybrid convolutional and recurrent deep neural network for quantifying the function of DNA

sequences. Nucleic Acids Res. 44, e107–e107. https​://doi.org/10.1093/nar/gkw22​6 (2016).
	 7.	 Müller, A. T., Hiss, J. A. & Schneider, G. Recurrent neural network model for constructive peptide design. J. Chem. Inf. Model.

https​://doi.org/10.1021/acs.jcim.7b004​14 (2017).
	 8.	 Li, Y., Quang, D. & Xie, X. Understanding sequence conservation with deep learning. bioRxiv. https​://doi.org/10.1145/31074​

11.31074​25 (2017).
	 9.	 Rifaioglu, A. S., Doğan, T., Martin, M. J., Cetin-Atalay, R. & Atalay, V. Deepred: Automated protein function prediction with

multi-task feed-forward deep neural networks. Sci. Rep. 9, 7344 (2019).
	10.	 Kauderer-Abrams, E. Quantifying translation-invariance in convolutional neural networks. arXiv.org (2017). arXiv​:1801.01450​.
	11.	 Evans, R. et al. De novo structure prediction with deep-learning based scoring. In 13th CASP (Abstracts) (2018).
	12.	 Öztürk, H., Özgür, A. & Ozkirimli, E. DeepDTA: Deep drug-target binding affinity prediction. Bioinformatics 34, i821–i829. https​

://doi.org/10.1093/bioin​forma​tics/bty59​3 (2018) (arXiv:1801.10193).
	13.	 Almagro Armenteros, J. J., Sønderby, C. K., Sønderby, S. K., Nielsen, H. & Winther, O. DeepLoc: Prediction of protein subcellular

localization using deep learning. Bioinformatics 33, 3387–3395. https​://doi.org/10.1093/bioin​forma​tics/btx43​1 (2017).
	14.	 Lopez-Del Rio, A., Nonell-Canals, A., Vidal, D. & Perera-Lluna, A. Evaluation of Cross-Validation Strategies in Sequence-Based

Binding Prediction Using Deep Learning. J. Chem. Inf. Model. 59, 1645–1657. https​://doi.org/10.1021/acs.jcim.8b006​63 (2019).
	15.	 Hochreiter, S., Heusel, M. & Obermayer, K. Fast model-based protein homology detection without alignment. Bioinformatics 23,

1728–1736. https​://doi.org/10.1093/bioin​forma​tics/btm24​7 (2007).
	16.	 Di Lena, P., Nagata, K. & Baldi, P. Deep architectures for protein contact map prediction. Bioinformatics 28, 2449–2457. https​://

doi.org/10.1093/bioin​forma​tics/bts47​5 (2012).
	17.	 Li, Y. et al. DEEPre: Sequence-based enzyme EC number prediction by deep learning. Bioinformatics 34, 760–769. https​://doi.

org/10.1093/bioin​forma​tics/btx68​0 (2018).
	18.	 Domingos, P. A few useful things to know about machine learning. Commun. ACM 55, 78–87. https​://doi.org/10.1145/23477​

36.23477​55 (2012).
	19.	 Jing, X., Dong, Q., Hong, D. & Lu, R. Amino acid encoding methods for protein sequences: A comprehensive review and assess-

ment. IEEE/ACM Trans. Comput. Biol. Bioinf.. https​://doi.org/10.1109/tcbb.2019.29116​77 (2019).
	20.	 Ahmad, S. & Sarai, A. PSSM-based prediction of DNA binding sites in proteins. BMC Bioinf. 6, 1–6. https​://doi.org/10.1186/1471-

2105-6-33 (2005).
	21.	 Lenselink, E. B. et al. Beyond the hype: Deep neural networks outperform established methods using a ChEMBL bioactivity

benchmark set. J. Chem. Inf. 9, 45. https​://doi.org/10.1186/s1332​1-017-0232-0 (2017).
	22.	 Strömbergsson, H., Lapins, M., Kleywegt, G. J. & Wikberg, J. E. S. Towards proteome-wide interaction models using the proteo-

chemometrics approach. Mol. Inf. 29, 499–508. https​://doi.org/10.1002/minf.20100​0052 (2010).
	23.	 Yang, K. K., Wu, Z., Bedbrook, C. N. & Arnold, F. H. Learned protein embeddings for machine learning. Bioinformatics 34,

2642–2648. https​://doi.org/10.1093/bioin​forma​tics/bty17​8 (2018).
	24.	 Asgari, E. et al. Continuous distributed representation of biological sequences for deep proteomics and genomics. PLoS One 10,

e0141287. https​://doi.org/10.1371/journ​al.pone.01412​87 (2015).
	25.	 Mazzaferro, C. Predicting protein binding affinity with word embeddings and recurrent neural networks. biorXiv.org. https​://doi.

org/10.1101/12822​3 (2017).

(2)F1 ∼ enzyme_type+ type_padding

(3)
F1 ∼ architecture+ enzyme_type+ type_padding

+ type_padding:architecture

(4)
F1 ∼ architecture+ enzyme_type+ type_padding

+ type_padding:enzyme_type

http://ftp.ebi.ac.uk/pub/databases/uniprot/previous_releases/release-2019_05/knowledgebase/uniprot_sprot-only2019_05.tar.gz
http://ftp.ebi.ac.uk/pub/databases/uniprot/previous_releases/release-2019_05/knowledgebase/uniprot_sprot-only2019_05.tar.gz
https://doi.org/10.6084/m9.figshare.11985750
https://github.com/b2slab/padding_benchmark
https://github.com/b2slab/padding_benchmark
https://doi.org/10.15252/msb
https://doi.org/10.15252/msb
https://doi.org/10.1038/s41576-019-0122-6
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nbt.3300
https://doi.org/10.1093/nar/gkw226
https://doi.org/10.1021/acs.jcim.7b00414
https://doi.org/10.1145/3107411.3107425
https://doi.org/10.1145/3107411.3107425
http://arxiv.org/abs/1801.01450
https://doi.org/10.1093/bioinformatics/bty593
https://doi.org/10.1093/bioinformatics/bty593
https://doi.org/10.1093/bioinformatics/btx431
https://doi.org/10.1021/acs.jcim.8b00663
https://doi.org/10.1093/bioinformatics/btm247
https://doi.org/10.1093/bioinformatics/bts475
https://doi.org/10.1093/bioinformatics/bts475
https://doi.org/10.1093/bioinformatics/btx680
https://doi.org/10.1093/bioinformatics/btx680
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.1109/tcbb.2019.2911677
https://doi.org/10.1186/1471-2105-6-33
https://doi.org/10.1186/1471-2105-6-33
https://doi.org/10.1186/s13321-017-0232-0
https://doi.org/10.1002/minf.201000052
https://doi.org/10.1093/bioinformatics/bty178
https://doi.org/10.1371/journal.pone.0141287
https://doi.org/10.1101/128223
https://doi.org/10.1101/128223

13

Vol.:(0123456789)

Scientific Reports | (2020) 10:14634 | https://doi.org/10.1038/s41598-020-71450-8

www.nature.com/scientificreports/

	26.	 Kimothi, D., Soni, A., Biyani, P. & Hogan, J. M. Distributed representations for biological sequence analysis. arXiv​.org. https​://doi.
org/10.1145/1235 (2016). arXiv​:1608.05949​v2.

	27.	 Jurtz, V. I. et al. An introduction to deep learning on biological sequence data: Examples and solutions. Bioinformatics 33, 3685–
3690. https​://doi.org/10.1093/bioin​forma​tics/btx53​1 (2017).

	28.	 Mirabello, C. & Wallner, B. RAWMSA: End-to-end deep learning using raw multiple sequence alignments. PLoS One. https​://doi.
org/10.1371/journ​al.pone.02201​82 (2019).

	29.	 Dwarampudi, M. & Reddy, N. V. S. Effects of padding on LSTMs and CNNs. arXiv​.orgarXiv​:1903.07288​ (2019).
	30.	 Parikh, A. P., Täckström, O., Das, D. & Uszkoreit, J. A decomposable attention model for natural language inference. arXiv​.org

(2016).
	31.	 Bai, S., Kolter, J. Z. & Koltun, V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling.

arXiv​.org (2018).
	32.	 Vinyals, O., Bengio, S. & Kudlur, M. Order matters: Sequence to sequence for sets. In 4th ICLR—Conference Track Proceedings

1–11 (2016). arXiv​:1511.06391​.
	33.	 Shorten, C. & Khoshgoftaar, T. M. A survey on image data augmentation for deep learning. J. Big Data. https​://doi.org/10.1186/

s4053​7-019-0197-0 (2019).
	34.	 Shen, H. B. & Chou, K. C. EzyPred: A top-down approach for predicting enzyme functional classes and subclasses. Biochem.

Biophys. Res. Commun. 364, 53–59. https​://doi.org/10.1016/j.bbrc.2007.09.098 (2007).
	35.	 Furnham, N. et al. Exploring the evolution of novel enzyme functions within structurally defined protein superfamilies. PLoS

Comput. Biol. 8, e1002403. https​://doi.org/10.1371/journ​al.pcbi.10024​03 (2012).
	36.	 Holliday, G. L. et al. MACiE: Exploring the diversity of biochemical reactions. Nucleic Acids Res. 40, 783–789. https​://doi.

org/10.1093/nar/gkr79​9 (2012).
	37.	 Shrikumar, A., Greenside, P. & Kundaje, A. Learning important features through propagating activation differences. arXiv​.org.

https​://doi.org/10.1007/BF006​48138​ (2017). arXiv​:1704.02685​.
	38.	 Pan, X. & Shen, H.-B. Predicting RNA–protein binding sites and motifs through combining local and global deep convolutional

neural networks. Bioinformatics 34, 3427–3436, https​://doi.org/10.1093/bioin​forma​tics/bty36​4 (2018).
	39.	 Zheng, X., Xu, S., Zhang, Y. & Huang, X. Nucleotide-level convolutional neural networks for pre-mirna classification. Sci. Rep. 9,

628 (2019).
	40.	 Consortium, U. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169. https​://doi.org/10.1093/nar/

gkw10​99 (2017).
	41.	 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).
	42.	 Skiena, S. S. The Data Science Design Manual (Springer, New York, 2017).
	43.	 Li, S., Li, W., Cook, C., Zhu, C. & Gao, Y. Independently recurrent neural network (indrnn): Building a longer and deeper rnn. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 5457–5466 (2018).
	44.	 Kingma, D. P. & Ba, J. L. Adam: A method for stochastic optimization. arXiv​.org (2014).
	45.	 Chollet, F. Keras (2015). https​://keras​.io (accessed September 10, 2018).
	46.	 Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems (2015). (accessed September 13, 2018).
	47.	 Wilcoxon, F. Individual Comparisons by Ranking Methods. Tech. Rep. (6) (1945).
	48.	 Picart-Armada, S. et al. Benchmarking network propagation methods for disease gene identification. PLoS Comput. Biol. 15, 1–24.

https​://doi.org/10.1371/journ​al.pcbi.10072​76 (2019).
	49.	 R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2015).
	50.	 Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat.

Soc. Ser. B Stat. Methodol. 57, 289–300 (1995).

Acknowledgements
The authors thank the NVIDIA Corporation for the donation of the Titan Xp GPU used to perform some of the
analysis of this article. The authors thank Sergio Picart-Armada for helpful discussions and statistical advice;
Rossana Zaru and Antonio Ribeiro for helping with the biological/enzymatic interpretation of the results and
Mahdi Mahmoudy for the technical help.

Author contributions
RS conceived the presented idea. ALdR designed the models and the computational framework and analysed
the data. RS and APL verified the analytical methods. MM supervised the findings of this work. ALdR wrote the
original manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by the Spanish Ministry of Economy and Competitiveness (www.minec​o.gob.es)
TEC2014-60337-R, DPI2017-89827-R, Networking Biomedical Research Centre in the subject area of Bioen-
gineering, Biomaterials and Nanomedicine (CIBER-BBN) and Share4Rare project (Grant Agreement 780262),
initiatives of Instituto de Investigación Carlos III (ISCIII). B2SLab is certified as 2017 SGR 952. This work was
also funded by the EMBL-European Bioinformatics Institute core funds.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https​://doi.org/10.1038/s4159​8-020-71450​-8.

Correspondence and requests for materials should be addressed to A.L.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/org
https://doi.org/10.1145/1235
https://doi.org/10.1145/1235
http://arxiv.org/abs/1608.05949v2
https://doi.org/10.1093/bioinformatics/btx531
https://doi.org/10.1371/journal.pone.0220182
https://doi.org/10.1371/journal.pone.0220182
http://arxiv.org/abs/org
http://arxiv.org/abs/1903.07288
http://arxiv.org/abs/org
http://arxiv.org/abs/org
http://arxiv.org/abs/1511.06391
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1016/j.bbrc.2007.09.098
https://doi.org/10.1371/journal.pcbi.1002403
https://doi.org/10.1093/nar/gkr799
https://doi.org/10.1093/nar/gkr799
http://arxiv.org/abs/org
https://doi.org/10.1007/BF00648138
http://arxiv.org/abs/1704.02685
https://doi.org/10.1093/bioinformatics/bty364
https://doi.org/10.1093/nar/gkw1099
https://doi.org/10.1093/nar/gkw1099
http://arxiv.org/abs/org
https://keras.io
https://doi.org/10.1371/journal.pcbi.1007276
http://www.mineco.gob.es
https://doi.org/10.1038/s41598-020-71450-8
www.nature.com/reprints

14

Vol:.(1234567890)

Scientific Reports | (2020) 10:14634 | https://doi.org/10.1038/s41598-020-71450-8

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2020

http://creativecommons.org/licenses/by/4.0/

	Effect of sequence padding on the performance of deep learning models in archaeal protein functional prediction
	Anchor 2
	Anchor 3
	Results
	Performance metrics.
	Effect on input space.
	Explanatory models.
	A. Does padding position affect performance?.
	B. What is the effect of switching between dense paddings?.
	C. What is the effect of changing from the standard dense padding to sparse padding?.
	D. Is an ensemble of paddings beneficial?.
	E. Does the effect of padding type on performance depends on the enzyme type?.

	Discussion
	Conclusion
	Material and methods
	Material.
	Amino acids encoding and protein padding.
	Classification task: hierarchical models.
	Models architecture.
	Implementation.
	Performance metrics.
	Effect on input space.
	Explanatory models.

	References
	Acknowledgements

