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ABSTRACT
Introduction  Distinguishing patients with intracerebral 
haemorrhage (ICH) from other suspected stroke cases 
in the prehospital setting is crucial for determining the 
appropriate level of care and minimising the onset-to-
treatment time, thereby potentially improving outcomes. 
Therefore, we developed prehospital prediction models to 
identify patients with ICH among suspected stroke cases.
Methods  Data were obtained from the Field 
Administration of Stroke Therapy-Magnesium prehospital 
stroke trial, where paramedics evaluated multiple 
variables in suspected stroke cases within the first 2 hours 
from the last known well time. A total of 19 candidate 
predictors were included to minimise overfitting and were 
subsequently refined through the backward exclusion of 
non-significant predictors. We used logistic regression and 
eXtreme Gradient Boosting (XGBoost) models to evaluate 
the performance of the predictors. Model performance 
was assessed using the area under the receiver operating 
characteristic curve (AUC), confusion matrix metrics 
and calibration measures. Additionally, models were 
internally validated and corrected for optimism through 
bootstrapping. Furthermore, a nomogram was built to 
facilitate paramedics in estimating the probability of ICH.
Results  We analysed 1649 suspected stroke cases, 
of which 373 (23%) were finally diagnosed with ICH. 
From the 19 candidate predictors, 9 were identified as 
independently associated with ICH (p<0.05). Male sex, arm 
weakness, worsening neurological status and high systolic 
blood pressure were positively associated with ICH. 
Conversely, a history of hyperlipidaemia, atrial fibrillation, 
coronary artery disease, ischaemic stroke and improving 
neurological status were associated with other diagnoses. 
Both logistic regression and XGBoost demonstrated good 
calibration and predictive performance, with optimism-
corrected sensitivities ranging from 47% to 49%, 
specificities from 89% to 90% and AUCs from 0.796 to 
0.801.
Conclusions  Our models demonstrate good predictive 
performance in distinguishing patients with ICH from 
other diagnoses, making them potentially useful tools for 
prehospital ICH management.

INTRODUCTION
Intracerebral haemorrhage (ICH), although 
comprising only 10%–15% of all stroke 

cases, is recognised as the most severe 
subtype of stroke, with the highest mortality 
rate and substantial disability among survi-
vors.1 2 Haematoma expansion, usually 
occurring within a few hours after symptom 
onset, plays a crucial role in the devastating 
outcomes after ICH, making it the key ther-
apeutic target.3 4 Implementing treatment 
strategies promptly, such as reversing anti-
coagulation, intensively lowering blood 
pressure and providing immediate access to 
neurosurgical care, has been found to lower 
significantly the 30-day mortality rates of 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Prehospital stroke scales currently in use are limited 
in their ability to identify intracerebral haemorrhage 
(ICH), as they were not originally designed for this 
purpose.

	⇒ Differentiating ICH from other causes of stroke 
symptoms in the prehospital setting has become a 
priority, as these patients would benefit from pre-
hospital blood pressure lowering and prompt triage 
to the closest, most appropriate stroke centre.

WHAT THIS STUDY ADDS
	⇒ In this secondary analysis of a prehospital clinical 
trial, we demonstrate that it is possible to distin-
guish patients with ICH from those experiencing 
stroke-like symptoms with acceptable predictive 
performance.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Our findings could help prehospital clinicians identi-
fy ICH in suspected stroke cases. This, in turn, could 
facilitate correct triage, shorten transport times and 
potentially reduce onset-to-treatment time for pa-
tients with ICH.

	⇒ Future research could explore the integration of the 
predictors identified in our study with newly devel-
oped point-of-care testing devices. This combined 
approach has the potential to improve significantly 
the accuracy of detecting ICH, enabling the initiation 
of treatment en route to hospital.
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patients with ICH.5 The INTERACT4 study has further 
emphasised the importance of rapid intervention, 
demonstrating the clear benefits of administering inten-
sive blood pressure-lowering treatments in the ambu-
lance for patients with ICH.6 However, this intervention 
was found to be harmful for those with a final diagnosis 
of ischaemic stroke (IS),6 highlighting the need for diag-
nostic certainty in the prehospital setting. Mobile stroke 
units (MSUs)—specialised ambulances equipped with a 
CT scanner—can confirm diagnosis and expedite treat-
ment.7 Despite their potential, multiple barriers hinder 
their widespread implementation.8 9 Given the time-
sensitivity of ICH management, improving prehospital 
care could play a key role in enhancing patient outcomes; 
thus, it deserves particular attention.

Current prehospital stroke care pathways prioritise 
transferring suspected stroke patients to an endovas-
cular therapy (EVT) capable centre, as patients with 
large vessel occlusion (LVO) can benefit from mechan-
ical thrombectomy.10 11 This treatment is limited by 
a narrow therapeutic time window to improve patient 
outcomes.12 Recently, a prehospital trial investigated 
the impact of bypassing the nearest stroke centre and 
directly transferring patients with ICH to an EVT-capable 
centre.13 The study found that this approach was associ-
ated with worse outcomes for ICH cases.13 Patients with 
ICH could benefit from early stabilisation of the airway, 
blood pressure control and reversal of anticoagulation 
therapy at the nearest acute stroke centre.14 Neverthe-
less, if transport time is not prohibitive, direct transfer 
to a hospital with neurosurgical capabilities could be 
favoured to ensure the early implementation of an ICH 
care bundle.5 Hence, distinguishing between stroke 
subtypes in the prehospital setting becomes a priority, 
more than just recognising patients with LVO to deter-
mine the optimal transport destinations for suspected 
stroke cases.

Numerous prehospital stroke triage scales are in use 
to facilitate the rapid identification of stroke. However, 
these scales have been designed to identify undifferen-
tiated stroke, rather than distinguishing between stroke 
subtypes.15 In fact, previous studies have demonstrated 
that these prediction tools have limited accuracy in 
detecting ICH,16 17 as well as in identifying patients with 
ICH who require neurosurgery.18 This further under-
scores the necessity of improving the prehospital identi-
fication of ICH. The purpose of this study is to develop 
prehospital prediction models to identify patients with 
ICH among suspected stroke cases.

METHODS
The Transparent Reporting of a multivariable prediction 
model for Individual Prognosis Or Diagnosis+Artificial 
Intelligence checklist was followed when conducting this 
study (online supplemental appendix).19

Data source and participant selection
The data were obtained from the Field Administration 
of Stroke Therapy-Magnesium (FAST-MAG) trial, which 
prospectively collected data from patients with suspected 
acute stroke in the prehospital setting.20 The dataset was 
deidentified by the original researchers, thus eliminating 
the need for ethical approval for this secondary data anal-
ysis. This dataset is particularly valuable for the purposes 
of our study, as it contains 1700 suspected stroke cases 
assessed within 2 hours of the last known well time, along 
with a sufficient set of variables collected in the prehos-
pital setting prior to the initiation of study drug infusion. 
For a detailed description of the trial design and methods, 
we refer the reader to the original publication.20

For this analysis, the outcomes were categorised into 
those with ICH and those with other diagnoses. Subarach-
noid haemorrhage was excluded from the analysis due to 
the distinct clinical features that set it apart from other 
suspected stroke cases.21 22

Sample size and selection of variables
Given a fixed sample size, we employed the sample 
size criteria from Riley et al, through the ‘pmsampsize’ 
package,23 24 to calculate the maximum number of candi-
date predictor variables that could be considered during 
model development to minimise the risk of overfitting. 
To determine this, we made the following settings in the 
package. First, the primary outcome of our study is binary 
(ICH vs other diagnoses). Second, the prevalence of ICH 
in the studied population was 23%, corresponding to a 
max(R2

CS) value of 0.66.25 We conservatively assumed that 
the models would explain 15% of the variability, leading 
to an anticipated R2

CS value of 0.15×0.66=0.10. Based on 
these parameters, the calculation results showed that we 
needed at least 1614 cases in total, including at least 372 
positive cases of ICH, to examine 19 predictor variables 
for inclusion in the models.

Based on our literature search in this area,26 the 19 
selected variables were age, male sex, history of hyper-
tension, diabetes mellitus, hyperlipidaemia, atrial fibril-
lation, coronary artery disease, IS, transient ischaemic 
attack (TIA), ICH, current alcohol use, facial droop, grip 
weakness or lack of strength, arm weakness (drift or falls 
down), unilateral weakness, decreased level of conscious-
ness (LOC), improvement in neurological status, deteri-
oration in neurological status and systolic blood pressure 
(SBP) levels. Diastolic blood pressure was not included in 
the analysis due to collinearity with SBP.

The neurological symptoms (weakness of the face, 
hand grip, arm or unilateral weakness) were assessed 
using the Los Angeles Prehospital Stroke Scale (LAPSS), 
a stroke recognition screening tool.27 LOC was evaluated 
in this study using the prehospital Glasgow Coma Scale 
(GCS) score. Decreased LOC was defined as a prehospital 
GCS score of <15. To assess the degree of change in the 
patient’s neurological status from their first arrival on 
the scene to arrival at the emergency department, para-
medics in the FAST-MAG trial used the Paramedic Global 
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Impression of Change (PGIC) scale.28 Improvement in 
neurological status was defined as a PGIC of 1–2, while 
deterioration in neurological status was defined as a PGIC 
of 4–5.

Statistical analysis, models development and validation
The data were used to develop three different models 
using different modelling methods: one logistic regression 
model and two eXtreme Gradient Boosting (XGBoost) 
models. There were less than 5% missing data for vari-
ables of interest; therefore, a complete case analysis was 
carried out.29

Descriptive statistics were performed to outline the 
baseline characteristics of the cohort. Categorical data 
were expressed as frequencies and percentages, and 
numerical data were presented as medians (IQR). 

Regardless of the univariable findings, all variables were 
used during the modelling and development process. 
The first XGBoost model was developed using all vari-
ables. Additionally, we employed backward elimination 
in multivariable logistic regression to select the stron-
gest predictors for the logistic regression model and 
the second XGBoost model, retaining only those inde-
pendent predictors that were statistically significant 
(p<0.05). ORs and 95% CIs for the included predictors 
were determined using the logistic regression model. 
We also used the XGBoost gain metric to determine the 
importance of these predictors on model performance 
throughout the boosting process, with a higher gain indi-
cating greater importance in generating predictions in 
the XGBoost model.

Table 1  Baseline characteristics, medical history, time intervals, symptoms and vital signs of the investigated cohort

Variables
All patients
(n=1649)

ICH
(n=373)

Other diagnoses
(n=1276) P value*

Demographic

 � Age (years), median (IQR) 71 (59–81) 64 (55–76) 72 (60–82) <0.001†

 � Number of male patients (relative number in %) 947 (57.4%) 250 (67.0%) 697 (54.6%) <0.001‡

Medical history

 � Hypertension 1285 (77.9%) 295 (79.1%) 990 (77.6%) 0.586‡

 � Diabetes mellitus 365 (22.1%) 70 (18.8%) 295 (23.1%) 0.087‡

 � Hyperlipidaemia 773 (46.9%) 133 (35.7%) 640 (50.2%) <0.001‡

 � Atrial fibrillation 363 (22.0%) 30 (8.0%) 333 (26.1%) <0.001‡

 � Coronary artery disease 346 (21.0%) 44 (11.8%) 302 (23.7%) <0.001‡

 � Prior IS 108 (6.5%) 11 (2.9%) 97 (7.6%) 0.002‡

 � Prior TIA 151 (9.2%) 23 (6.2%) 128 (10.0%) 0.030‡

 � Prior ICH 23 (1.4%) 9 (2.4%) 14 (1.1%) 0.098‡

 � Current alcohol use 644 (39.1%) 169 (45.3%) 475 (37.2%) 0.006‡

Time intervals

 � Onset-to-prehospital evaluation (mins), median (IQR) 23 (14–42) 23 (14–39) 24 (14–43) 0.232†

 � Prehospital-to-hospital arrival (mins), median (IQR) 32 (27–39) 32 (27–39) 33 (28–39) 0.569†

 � Onset-to-hospital arrival (mins), median (IQR) 58 (46–79) 58 (45–75) 59 (46–80) 0.154†

Symptoms

 � Facial droop 1406 (85.3%) 320 (85.8%) 1086 (85.1%) 0.808‡

 � Grip weakness or lack of strength 1526 (92.5%) 363 (97.3%) 1163 (91.1%) <0.001‡

 � Arm weakness (drift or falls down) 1499 (90.9%) 367 (98.4%) 1132 (88.7%) <0.001‡

 � Unilateral weakness 1645 (99.8%) 373 (100.0%) 1272 (99.7%) 0.628‡

 � Decreased level of consciousness 429 (26.0%) 76 (20.4%) 353 (27.7%) 0.006‡

 � Improvement in neurological status 528 (32.0%) 62 (16.6%) 466 (36.5%) <0.001‡

 � Deterioration in neurological status 92 (5.6%) 50 (13.4%) 42 (3.3%) <0.001‡

Vital signs

 � SBP (mm Hg), median (IQR) 160 (140–180) 176 (160–194) 155 (138–175) <0.001†

*P values were calculated using the Mann-Whitney U test for continuous variables or the χ2 test for categorical variables to assess 
differences between ICH and other diagnoses; p values less than 0.05 indicated statistical significance.
†Mann-Whitney U test.
‡χ2 test
ICH, intracerebral haemorrhage; IS, ischaemic stroke; SBP, systolic blood pressure; TIA, transient ischaemic attack.
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We used the full sample without splitting it into training 
and test sets, as recommended by Riley et al.25 The models 
were internally validated with 1000 bootstrap resamples 
to correct for optimism in predictive measures, including 
sensitivity, specificity, positive predictive value and nega-
tive predictive value, as well as in discrimination and cali-
bration performance. Optimism was calculated as the 
average difference in performance measures between the 
bootstrap samples and the original sample. The optimism-
corrected estimates were obtained by subtracting the 
optimism from the performance measures of the orig-
inal models. For all models, a probability cut-off of 0.4 
was selected for classifications to enhance sensitivity while 
maintaining high specificity. Furthermore, sensitivity and 
specificity for each model were corrected for optimism 
and evaluated over the entire range of probability cut-offs.

The discrimination was assessed by the area under the 
receiver operating characteristic curve (AUC) to evaluate 
how effectively the models distinguished between the 
two groups of interest. An AUC of 1.0 indicates perfect 
discrimination, while an AUC of 0.5 suggests that classi-
fication is no better than random prediction. Calibration 
for the models was evaluated through calibration curves, 
slopes and intercepts to analyse the alignment between 
predicted and actual outcomes. Graphically, a 45° line 
signifies perfect calibration, whereas any deviation from 
this line reflects the extent of miscalibration. Numerically, 
the slope and intercept of the calibration curve describe 
the degree of calibration. A model is considered perfectly 
calibrated if the calibration curve has a slope of 1 and an 
intercept of 0.

Table 2  ORs after backward selection and feature importance scores from XGBoost

Variables OR (95% CI) Importance (gain)

Male 1.90 (1.44 to 2.49)*** 0.06

Hyperlipidaemia 0.68 (0.51 to 0.89)** 0.04

Atrial fibrillation 0.30 (0.20 to 0.46)*** 0.12

Coronary artery disease 0.53 (0.36 to 0.78)** 0.05

Prior IS 0.41 (0.21 to 0.81)* 0.02

Arm weakness (drift or falls down) 6.74 (2.86 to 15.89)*** 0.08

Improvement in neurological status 0.37 (0.27 to 0.51)*** 0.11

Deterioration in neurological status 4.24 (2.57 to 6.98)*** 0.11

SBP 1.03 (1.02 to 1.03)*** 0.41

*p<0.05, **p<0.01, ***p<0.001.
IS, ischaemic stroke; SBP, systolic blood pressure; XGBoost, eXtreme Gradient Boosting.

Figure 1  Logistic regression model nomogram for estimating the probability of ICH in suspected stroke cases. ICH, 
intracerebral haemorrhage; IS, ischaemic stroke; SBP, systolic blood pressure.
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Lastly, a nomogram was constructed based on the 
corrected logistic regression to facilitate the distinction 
between ICH and other diagnoses. In the nomogram, 
each predictor was assigned a score, which was summed 
up to a total point corresponding to the predicted prob-
ability of ICH. The variable with the highest predictive 
strength was assigned a maximum of 100 points, while 
other variables were assigned lower maximum values 
proportional to their effects. All statistical analyses were 
performed by using R Software (R Core Team, Vienna, 
Austria, V.4.2.2).

Patient and public involvement
Neither patients nor the public were involved in the 
design of this study.

RESULTS
Clinical characteristics
Of the 1700 patients enrolled in the FAST-MAG trial,20 
1649 met our eligibility criteria. Among these, 373 (23%) 
were diagnosed with ICH, while 1276 had other diag-
noses, including 1013 (61%) with IS, 199 (12%) with TIA, 
63 (4%) with stroke mimics (SM) and 1 (0.1%) with an 
unclassifiable diagnosis. Most of the included variables 
showed significant differences between ICH and other 
diagnoses (p<0.05). The baseline characteristics of the 
investigated cohort are summarised in table 1.

Selection of predictors
Following backward elimination, the variables selected 
for final inclusion in the logistic regression and second 
XGBoost models were male sex, history of hyperlipi-
daemia, atrial fibrillation, coronary artery disease, prior 
IS, arm weakness, improvement in neurological status, 
deterioration in neurological status and SBP levels. The 
ORs with 95% CIs for the logistic regression model and 
the feature importance scores for the second XGBoost 
model are outlined in table 2.

The developed nomogram for estimating the likelihood 
of ICH in suspected stroke cases is shown in figure 1. For 
instance, consider a male patient (12 points) without a 
history of atrial fibrillation (23 points), who presents with 
unilateral arm weakness (36 points) and experiences a 
deterioration in neurological status during transport (27 
points+19 points for the lack of improvement) and has 
an SBP of 176 mm Hg (58 points). The total score would 
be 175 points, corresponding to a 0.4 (40%) probability 
of ICH.

Performance and internal validation of the models
The performance measures of the original and optimism-
corrected models are summarised in table  3. Overall, 
the models demonstrated good performance in distin-
guishing ICH from other diagnoses.

In the internal validation, the models showed compa-
rable discrimination after optimism correction by boot-
strapping (figure  2). The first XGBoost model with all Ta
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19 variables achieved an optimism-corrected sensitivity 
of 47% (95% CI 42.0% to 51.1%), a specificity of 90% 
(95% CI 88.6% to 91.7%) and an AUC of 0.801 (95% 
CI 0.783 to 0.819). Using the nine predictor variables 
from backward elimination, the logistic regression model 
yielded an optimism-corrected sensitivity of 49% (95% CI 
44.3% to 54.4%), a specificity of 89% (95% CI 87.6% to 
91.0%) and an AUC of 0.796 (95% CI 0.770 to 0.822). 
Meanwhile, the second XGBoost model had an optimism-
corrected sensitivity of 48% (95% CI 42.8% to 53.0%), a 
specificity of 90% (95% CI 88.6% to 91.8%) and an AUC 
of 0.799 (95% CI 0.778 to 0.820). Figure 3 summarises the 
corrected sensitivity and specificity of the three models 
at different probability cut-offs, which can be adjusted to 
improve either sensitivity or specificity as required.

Additionally, we found that the calibration curves for 
each prediction method were in good agreement with the 
classifications and actual observations after verification 
by bootstrap resampling (figure  4). All the calibration 

curves of the models were closely aligned with the 45° 
line, with the optimism-corrected slopes and intercepts 
ranging from 0.912 to 1.061 and –0.019 to 0.031, respec-
tively (table 3).

DISCUSSION
Patients with ICH often require interventions that are 
highly time-sensitive and are typically available only in 
specialised hospitals. Consequently, developing a prehos-
pital prediction model to distinguish these patients 
from patients with other conditions that present with 
similar symptoms has become increasingly important. 
Such prediction methods could also facilitate the selec-
tion of patients for future prehospital intervention 
trials.30 Recently, several prediction models have been 
proposed to distinguish patients with ICH in the prehos-
pital setting.21 31 32 However, these models were validated 
only to distinguish between stroke subtypes, without 

Figure 2  ROC curves for the models with original and optimism-corrected AUCs and their 95% CIs. (A) XGBoost with 19 
variables, (B) logistic regression, (C) XGBoost with nine variables. AUCs, area under the curves; ROC, receiver operating 
characteristic; XGBoost, eXtreme Gradient Boosting.

Figure 3  Corrected sensitivity and specificity at various probability cut-offs. (A) XGBoost with 19 variables, (B) logistic 
regression, (C) XGBoost with nine variables. XGBoost, eXtreme Gradient Boosting.
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considering other SM conditions, which account for 26% 
of suspected stroke cases.33 Hence, they may not capture 
the complexity of prehospital care adequately. Machine 
learning algorithms have also been employed to predict 
ICH and other types of strokes, but the specific predic-
tors used to distinguish ICH from other conditions were 
not reported.34 35 Here, we developed prehospital predic-
tion models using a traditional method (logistic regres-
sion) and a machine learning approach (XGBoost) and 
provided a nomogram to distinguish patients with ICH 
from those with other conditions.

The AUCs of the models in this study ranged from 0.796 
to 0.801 after bootstrap correction for optimism. Our 
models achieved higher AUCs compared with the study 
by Geisler et al (0.75),31 comparable to those reported 
by Uchida et al (0.81–0.82),35 but were lower than those 
reported by Hayashi et al (0.866).34 Although Hayashi et 
al34 achieved a higher AUC, their study included a wide 
range of 52 predictive features to improve performance. 
In contrast, we adhered to the guidelines proposed by 
Riley et al25 to minimise overfitting and ensure a precise 
estimation of the number of variables that could be 
considered. Additionally, none of the existing prehospital 
models for ICH reported calibration measures, which 
are crucial since models with satisfactory discrimination 
may still have poor calibration,36 limiting their prehos-
pital utility. Our models, however, demonstrated good 
discrimination and calibration performance. The nine 
predictors identified in this study are easy to obtain in the 
prehospital setting and are represented in a nomogram, 
facilitating decision-making by prehospital clinicians and 
enhancing its practical application.

In terms of distinguishing features, previous prehos-
pital prediction studies have found that younger age is 
associated with ICH,21 22 while a history of diabetes,21 
atrial fibrillation,21 22 hyperlipidaemia,22 coronary artery 
disease22 and IS32 are associated with other diagnoses. 
These findings mostly agree with our results (table  2), 
although we found that male sex is significantly and 

independently associated with ICH (OR 1.90, p<0.001). 
Regarding neurological symptoms, the paramedics in 
the FAST-MAG study used LAPSS, which consists of three 
items to assess unilateral deficits (face, hand grip and 
arm). Of these three items, only arm weakness was strongly 
associated with ICH in our study (OR 6.74, p<0.001). This 
finding partially aligns with that of Geisler et al,31 where 
motor weakness of the arm or leg was included in their 
final model.

Interestingly, impaired LOC was not found to be associ-
ated with ICH at the time of the paramedics’ arrival. This 
contradicts previous models, which reported an associa-
tion between decreased LOC and an increased likelihood 
of ICH.31 32 Part of the explanation for our finding can be 
attributed to the characteristics of the data, as we inves-
tigated patients within the first 2 hours of the time when 
they were last known to be well, whereas other predic-
tion studies did not account for the duration between 
symptom onset and prehospital evaluation.31 32 Notably, 
within a median of 32 min (IQR, 27–39) of prehospital 
care (table 1), a decline in neurological status was signifi-
cantly associated with ICH (OR 4.24, p<0.001), while an 
improvement in neurological status was associated with 
other diagnoses (OR 0.37, p<0.001). This neurological 
deterioration may be due to haematoma expansion after 
ICH, which has been previously investigated in the prehos-
pital setting using MSUs and found to occur frequently 
within the first 2 hours after symptom onset.3 Hence, it is 
important to mitigate the risk of haematoma expansion 
within this critical period through necessary interven-
tions, such as lowering SBP levels to 130–140 mm Hg.37 
This was proven to be effective in improving outcomes in 
the INTERACT4 trial for patients enrolled within 2 hours 
after symptom onset in the prehospital setting.6 In this 
regard, prehospital SBP had the highest gain score in the 
XGBoost model and the highest point value in the nomo-
gram (table 2 and figure 1), with higher SBP levels being 
associated with a higher probability of ICH, consistent 
with other prehospital models.21 31 32

Figure 4  Calibration curves of the models. (A) XGBoost with 19 variables, (B) logistic regression, (C) XGBoost with nine 
variables. XGBoost, eXtreme Gradient Boosting.
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Using a probability cut-off of 0.4, our models iden-
tified nearly half of the ICH cases and accurately ruled 
out 90% of other diagnoses. This could assist prehos-
pital personnel in determining the appropriate level of 
hospital care, avoiding long transport times and thereby 
potentially reducing the onset-to-treatment time for 
patients with ICH. Additionally, it may help in prenoti-
fying the receiving hospital of a suspected ICH, further 
expediting specialist assessment and treatment on the 
patient’s arrival. However, a higher level of diagnostic 
certainty is necessary before considering initiating treat-
ment in an ambulance. This ensures patient safety and 
avoids the risk of administering potentially harmful ther-
apies to the wrong patient, such as treating a patient with 
IS with intensive blood pressure-lowering interventions.6

To improve diagnostic accuracy and reduce errors, 
future research might consider using the predictors iden-
tified in our study in combination with a simple point-
of-care diagnostic test (POCT) to aid decision-making in 
the prehospital setting. While some POCT technologies 
are being developed,26 measuring brain-related blood 
biomarkers using POCT devices is a promising solution.38 
This method is low-cost and can be evaluated easily in the 
field. Among the brain-related biomarkers, glial fibril-
lary acidic protein (GFAP) could serve as a diagnostic 
biomarker for distinguishing ICH from IS and SM condi-
tions within the first few hours after the onset of symp-
toms.39 It is hypothesised that GFAP is rapidly released 
into the bloodstream in cases of ICH due to blood–brain 
barrier disruption from the initial haematoma, but in 
patients with IS, the release is delayed.39 A meta-analysis of 
12 studies showed that plasma GFAP had a pooled sensi-
tivity of 78% (95% CI 67% to 86%) and a specificity of 
95% (95% CI 88% to 98%) in distinguishing patients with 
ICH from IS and SM conditions.40 Given the high speci-
ficity, combining such a diagnostic method with a simple 
assessment of predictors could provide a cost-effective 
alternative to MSUs to expedite the treatment of patients 
with ICH in the field. However, this hypothesis has yet to 
be tested in a large prehospital trial of suspected stroke 
patients.

Limitations
This study has several limitations. First, our analysis was 
confined to patients enrolled in the FAST-MAG trial, 
which was largely composed of white and Hispanic popu-
lations in the USA and excluded patients with SBP greater 
than 220 mm Hg or those in a comatose state. Conse-
quently, the applicability of our findings to the general 
population is unclear. Second, we did not externally vali-
date the models because a similar database is currently 
unavailable. Although bootstrap validation takes model 
overoptimism into account, and it is considered superior 
to data splitting,25 further prehospital studies are needed 
to confirm the robustness and generalisability of our 
models. Additionally, other common ICH-related symp-
toms, such as headache and vomiting, were not collected 
in FAST-MAG study, yet they might have been helpful in 

increasing the accuracy of distinguishing patients with 
ICH in our models; thus, they are worth investigating in 
future research.

CONCLUSIONS
We have developed prehospital models that show prom-
ising results in distinguishing patients with ICH from 
other patients presenting with stroke-like symptoms, 
achieving moderate sensitivity and high specificity. This 
could assist in making informed decisions about patient 
destinations. However, external validation is necessary to 
confirm the performance and reliability of our models. 
Future research should also explore integrating POCT 
devices to further enhance the accuracy of identifying 
ICH, potentially enabling earlier initiation of appropriate 
treatments in the prehospital phase for these patients.
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