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Abstract
Aim: Decisions on wildlife conservation, management, and epidemiological risk are 
best based on robust evidence. The continual improvement of species distributions, 
such that they can be relied upon in decision‐making, is important. Here we seek to 
refine aspects of a generic modelling approach and improve the utility of species 
distribution maps.
Location: Great Britain (GB).
Methods: We applied a modeling framework based on hierarchical Bayesian species 
distribution models exploiting opportunistic occurrence records from citizen science 
datasets to predict both current and potential distributions for each of the six deer 
species known to be present in GB. Using the resulting maps, we performed a simple 
analysis of the overlap between species to illustrate possible contact, which we inter‐
pret as the relative risk of potential disease spread given an introduction.
Results: Predicted distribution maps showed good agreement with the broader scale 
occurrence reported by a recent national deer survey with an average True Skill 
Statistics and AUC of 0.69 and 0.89, respectively. Aggregation of the maps for all 
species highlighted regions of central and eastern England as well as parts of Scotland 
where extensive areas of range overlap could result in interspecific contact with con‐
sequences for risk assessments for diseases of deer. However, if populations are al‐
lowed to expand to their predicted potential, then areas of overlap, and therefore 
disease interspecific transmission risk, will become extensive and widespread across 
all of mainland Britain.
Main conclusions: The generic modeling approach outlined performed well across all 
of the deer species tested, offering a robust and reliable tool through which current 
and potential animal distributions can be estimated and presented. Our application, 
intended to inform quantitative risk assessments, demonstrates the practical use of 
such outputs to generate the valuable evidence required to inform policy decisions 
on issues such as management strategy.
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1  | INTRODUC TION

The wise management of natural resources demands high‐quality 
information on which to base sound decisions (Regan et al., 2005). 
Fundamental to proportionate and evidence‐lead approaches to 
wildlife management are robust descriptions of where species 
are (their distribution) in the landscape. Increasingly, this can be 
achieved entirely through empirical surveys conducted by citizen 
scientists (McKinley et al., 2017). For example, the British Deer 
Society (BDS) distribution survey which, using information collected 
from members and other sources, has provided 100 km2 resolution 
distribution maps every five years since 2002 for each of the six 
deer species known to inhabit Great Britain (GB) (two native deer, 
red Cervus elaphus and roe Capreolus capreolus, one naturalized, 
Fallow Dama dama and three non‐native species, Chinese water 
deer Hydropotes inermis, Reeves’ Muntjac Muntiacus reevesi and 
Japanese sika Cervus nippon). The most recent update was published 
in 2018 (https​://www.bds.org.uk/index.php/resea​rch/deer-distr​
ibuti​on-survey) based on data collected between 2012 and 2016.

While informative for monitoring broad‐scale changes in species 
range (Ward, 2005), such coarse descriptions lack the finer detail 
we argue necessary to assess the potential intra‐ and interspecific 
interactions important for the accurate estimation of, for example, 
pathogen transmission risk between neighboring populations at an 
ecologically relevant scale (i.e., home range; Hartley, Voller, Murray, 
& Roberts, 2013). However, producing comprehensive fine‐scale de‐
scriptions (e.g., 1 km2 resolution; Croft, Chauvenet, & Smith, 2017) 
through exhaustive empirical survey alone, particularly across a na‐
tional extent, rapidly becomes infeasible. In such cases, qualitative 
and quantitative analysis is required to produce the most robust in‐
ference possible from partial data which can then be used to inform 
predictions to fill data gaps.

Species distribution models (SDMs; Guisan & Zimmermann, 
2000; Elith & Leathwick, 2009) such as MaxEnt (Phillips, Anderson, 
& Schapire, 2006) have become a popular solution, providing a for‐
mal quantitative process to relate the presence, and absence, of spe‐
cies against a set of environmental drivers, for example, climate, land 
cover, human interference, and topography, the understanding of 
which can be used to inform prediction of occurrence in unsurveyed 
locations. The widespread use of SDMs has been further accelerated 
by the proliferation of large publically available data repositories 
such as the National Biodiversity Network (NBN) Atlas, providing 
access to occurrence datasets, typically opportunistic sighting re‐
cords, from a wide range of providers including local records centers, 
national enthusiast groups, wildlife charities, government and envi‐
ronmental consultants. Despite the popularity of SDMs, however, it 
is important to recognize that this is a “young,” rapidly developing 
science with many proposed methods, each based on subtly differ‐
ent sets of assumptions, but no consensus for a single unified frame‐
work (Croft et al., 2017; Croft, Smith, Acevedo, & Vicente, 2018). 
As such great care must be taken to avoid inappropriate application 
and incorrect inference (Guillera‐Arroita et al., 2015); a particular 

consideration for the work here which seeks to provide output more 
suitable for use in policy development and decision‐making in the 
context of current and future risks posed by wildlife disease to 
human interests. For instance, opportunistic occurrence data of the 
type collected through citizen science are known to be subject to re‐
porting bias (Callcutt, Croft, & Smith, 2018; Dickinson, Zuckerberg, & 
Bonter, 2010) but is often ignored (Wheeler, Ward, Smith, Petrovan, 
& Croft, 2019). Similarly, a fundamental assumption of most SDMs is 
that species are at equilibrium with their environment, that is, where 
species occurrence can be explicitly described by environmental 
conditions, which cannot be assumed for many, particularly non‐na‐
tive and heavily managed species, where absences (and potentially 
presence) may be dispersal‐limited or anthropogenically mediated 
(e.g., translocated to new locations, or hunted/ managed until absent 
at suitable locations). Again, this issue is often ignored (see Wheeler 
et al., 2019) but if not accounted for can seriously confound model 
predictions (Hattab et al., 2017).

In this paper, we outline a general methodology based on a hi‐
erarchical Bayesian modelling framework (Latimer, Wu, Gelfand, & 
Silander, 2006) to estimate both the realized (current) and potential 
(future) distribution of terrestrial mammal species using opportunis‐
tic occurrence data accounting for both reporting bias (detectability) 
(van Strien, Swaay, & Termaat, 2013) and critically dispersal limited/
anthropogenic influences (Hattab et al., 2017). We assess the validity 
of this method considering an example case study focusing on British 
deer; for which good data are available both to fit models and to 
perform independent validation. Reports published over the past de‐
cade or so suggest that most of these populations have been steadily 
growing (Battersby, 2005; Mathews et al., 2018; Ward, 2005). In 
large numbers, deer can inflict substantial damage to woodland and 
crops (Putman & Moore, 1998) as well as providing a reservoir for 
the transmission of diseases, some of which can affect livestock 
and human health, for example, bovine tuberculosis (Ward & Smith, 
2012) and foot‐and‐mouth disease (Böhm, White, Chambers, Smith, 
& Hutchings, 2007). In contrast, their populations may be threat‐
ened by the introduction of novel diseases, such as chronic wasting 
disease (Ricci et al., 2017) which has severely impacted some cervid 
species in the USA (Monello et al., 2014) and has recently been re‐
ported in Europe (Benestad, Mitchell, Simmons, Ytrehus, & Vikøren, 
2016). This particular disease can be transmitted by both direct 
(nose‐to‐nose) and indirect contact through contamination of the 
environment (Mathiason et al., 2009; Plummer, Johnson, Chesney, 
Pedersen, & Samuel, 2018). With this in mind, we demonstrate the 
value of the national deer distribution estimates that we generate as 
a contribution to a future quantitative risk assessment for diseases 
that can be shared between multiple species, such chronic wasting 
disease. In this context, our maps can be used to inform policy de‐
velopment and decision‐making by exploring the current scale and 
location of range overlap (potential contact) between species, as well 
as the potential extent of their future overlap (once all species have 
reached equilibrium), which could be interpreted as a future pattern 
of relative risk of interspecific disease spread across the country.

https://www.bds.org.uk/index.php/research/deer-distribution-survey
https://www.bds.org.uk/index.php/research/deer-distribution-survey
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2  | METHODS

2.1 | Study area

In this study, we chose to limit the model extent to mainland Great 
Britain (219,536 km2). For terrestrial mammals, substantial channels 
of water can act as a natural barrier prohibiting, or substantially re‐
ducing, regular movement, or dispersal. While some deer are known 
to cross open water in some contexts, their effective dispersal and 
establishment on islands is better represented on broader geologi‐
cal timescales and is not relevant here. To reflect this, we only con‐
sidered a cell to be connected to the mainland if it occurred in the 
Moore neighborhood (eight directly adjacent cells) of the mainland 
on a 1 km2 raster of the British National Grid (BNG).

2.2 | Occurrence data

Occurrence data were downloaded from the NBN Atlas on 
13/09/2018. We restricted our download to mammal observations 
(direct or indirect evidence of presence described with coordinates 
and corresponding precision, date and taxonomic description) re‐
corded between 2012 and 2016 (the same period as the recent na‐
tional deer survey undertaken by the British Deer Society) from two 
national datasets only: The Mammal Atlas Project provided by The 
Mammal Society (https​://doi.org/10.15468/​i2eosa) and BTO nona‐
vian taxa provided by the British Trust for Ornithology (https​://doi.
org/10.15468/​2m9nxa). Several factors contributed to our decision 
to restrict the download to national datasets but primarily we argue 
it maintains greater consistency in recording effort across regions 
and reduces the possibility of duplicate records across datasets. Any 
records without an exact sighting date, taxonomic description to the 
species level and coordinate accuracy equivalent to or better than 
the 1 km2 BNG, or whose location lay outside mainland Britain were 
excluded.

One of the limitations of opportunistic observations of the 
type generated from citizen science, comprising a large propor‐
tion of the records downloaded, is the lack of information regard‐
ing survey effort. This is important in understanding whether 
the absence of data, in this case presence records, is evidence of 
true absence of a species or merely insufficient effort to detect 
it. Previous studies (Croft et al., 2018; Phillips et al., 2009; van 
Strien et al., 2013) have suggested that records of other species 
may provide a suitable proxy to estimate survey effort. Here, we 
considered records of other deer species together with common 
mammals easily identifiable by a similar method of visual obser‐
vation alone (both direct and indirect, e.g., including evidence of 
species presence such as burrows, mounds and scat). Specifically, 
we considered records of fox (Vulpes vulpes), gray squirrel (Sciurus 
carolinensis), rabbit (Oryctolagus cuniculus), hare (Lepus europaeus), 
mole (Talpa europaea), rat (Rattus norvegicus), and cat (Felis catus); 
see Croft and Smith (2019) for details. Using these records, we 
computed binomial datasets for each of the deer species describ‐
ing the number of successes as individual visits (unique 1 km2 BNG 

cell and date) where the target species was reported and the num‐
ber of trials as visits where any of the species considered, includ‐
ing the target species, was reported. The aim of representing the 
data in this way was to provide information not only in terms of 
presence but also observability and by association likelihood that 
nondetection of a species was an indication of true absence or not, 
in that we are able to determine whether sufficient visits occurred 
to be confident that if a species were present it would have been 
reported.

2.3 | Explanatory variables

Following Acevedo, Ward, Real, and Smith (2010), we considered 
a range of environmental factors that might influence British deer 
distributions, including descriptions of climate (temperature and 
precipitation: Fick & Hijmans, 2017), topography (altitude and slope: 
OST50 www.ordna​ncesu​rvey.co.uk/busin​ess-and-gover​nment/​
produ​cts/terra​in-50.html), human disturbance (distance to roads 
and urbanization: OS Strategi www.ordna​ncesu​rvey.co.uk/busin​ess-
and-gover​nment/​produ​cts/strat​egi.html and Rowland et al., 2017), 
and habitat structure (area of mixed broadleaf and coniferous wood‐
land, arable land, pasture, upland, inland rock, freshwater, and supra‐
littoral rock; Rowland et al., 2017).

Co‐correlation between environmental factors, for example, 
climate variables with very similar spatial patterns, was minimized 
by transforming our set of environmental factors, based on val‐
ues extracted from the assumed range of each species (defined 
in the next paragraphs), using the “prcomp” function in R applying 
variable scaling to perform a principal component analysis (PCA) 
and to inform a new set of independent, linearly uncorrelated vari‐
ables ordered according to their contribution toward explanatory 
variance. We elected to retain all of these new variables (the same 
number as the original set of factors; 24 in total) rather than seek‐
ing a reduction based on explained variance (Croft et al., 2018) 
which is sometimes applied to simplify models, avoid overfitting or 
to provide insight into the main drivers of a species' distribution. 
This was not deemed necessary here as all variables were shown 
to contribute a nonzero proportion of the explained variance, 
there were no computational constraints to force a reduction, and 
biological insight was not an objective of this study. However, re‐
duction may be necessary in the future if additional variables were 
to be considered.

In addition to the environmental variables common to most 
species distribution models, we also considered a spatial factor, to 
help account for presence observations at locations where a species 
might otherwise not be expected able to survive unassisted (i.e., ob‐
servations of animals produced by anthropogenic translocation or 
maintenance), or absences from areas unexplained by the environ‐
ment, and also likely to be caused by man (e.g., local or regional scale 
hunting or persecution, and the gaps between establishing popu‐
lations of non‐native species). This factor allowed us to leverage 
the information entailed in the broad‐scale description of a species 

https://doi.org/10.15468/i2eosa
https://doi.org/10.15468/2m9nxa
https://doi.org/10.15468/2m9nxa
http://www.ordnancesurvey.co.uk/business-and-government/products/terrain-50.html
http://www.ordnancesurvey.co.uk/business-and-government/products/terrain-50.html
http://www.ordnancesurvey.co.uk/business-and-government/products/strategi.html
http://www.ordnancesurvey.co.uk/business-and-government/products/strategi.html
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within its range and account for observations which express a tem‐
poral, geographical, and anthropogenic deviation from the natural 
dispersal and persistence of species (Hattab et al., 2017). Inclusion 
of such a variable is an important but often overlooked concept in 
modeling both current and potential distributions. Firstly, it pro‐
duces a data‐driven description of the extent from which to select 
absence locations. It also provides a mechanism to mitigate failure in 
the assumption of equilibrium across the extent and explain current 
absence in environmentally suitable but spatially independent loca‐
tions. Maps of the variation in this factor will also indicate areas for 
which new observations are less valuable (well within the range of 
a well described species) or are more valuable (in specific areas of 
a range edge, or in combinations of poorly represented (sampled) 
environmental factors.

Several methods have been proposed to estimate species range 
(extent of occurrence) from sightings data using global or, more re‐
cently, local bounding geometry (Maes et al., 2015). The latter local 
methods, such as localized convex hulls (LoCoHs), are generally rec‐
ognized as providing more realistic estimates than their global equiv‐
alents, minimizing influence from the most extreme points which can 
lead to the inclusion of large areas of unsuitable or untested environ‐
ments (Burgmann & Fox, 2003). LoCoHs define a species’ range as 
the union of a set of “localized” minimum convex hulls (MCHs) fitted 
to subsets of the data. These local subsets or neighborhoods, one 
for each “root” point within the global dataset, can be determined 
according to various criteria using, for example, a fixed number of, 
or maximum distance to, neighboring points. It is suggested by Maes 
et al. (2015) that criteria based on distance are most robust to the 
sporadic but spatially clustered recording commonly featured in op‐
portunistic citizen science data.

While conceptually LoCoH provides a good option to estimate 
species range, in this study we applied a similar but arguably simpler, 
more inclusive approach extending the idea to nominally reflect the 
potential dispersal range of each species from their known occur‐
rences in an attempt to compensate for imperfect detection. For 
each positive sighting location (cell with at least one recorded ob‐
servation of the species), we defined a circular local neighborhood 
similar to the distance applied in LoCoH (Mathews et al., 2018). 
Rather than using all other positive sightings locations (points) 
within this “sphere of influence” to create a MCH, we simply over‐
lay all of the neighborhoods and count the number of intersections. 
In order to account for the likelihood that some sightings may lie 
on the edge of the species’ range, we threshold the resulting map, 
only retaining cells intersecting three or more neighborhoods. Cells 
considered to be within the species’ range were assigned a value 
1 with cell values outside of this range assigned values decreasing 
to zero exponentially, at the distance equivalent to that defining 
a neighborhood from the estimated species’ range. This helped to 
smooth the transition at the range edge and reflects the possibility 
that longer distance dispersal may have occurred but has not yet 
been recorded.

It should be noted that the precise distance chosen to define 
a neighborhood is a complex parameter and is the combination of 

multiple factors including daily or seasonal mobility, dispersal, as 
well as the aims of the study, that is, whether to be inclusive and 
include more unsuitable environments (commission errors) or more 
exclusive and risk omitting suitable environments (omission errors) 
and the spatial coverage of the data (Maes et al., 2015). To estab‐
lish the most suitable distance for each species, we compared model 
performance (predictive accuracy as described later) testing increas‐
ingly inclusive species ranges with neighborhood distances between 
10 km and 100 km. This range was chosen to encompass the magni‐
tude of distances used in other studies (Maes et al., 2015; Mathews 
et al., 2018) and the known limits of species dispersal (e.g., Hartley 
et al., 2013).

2.4 | Model

We modeled the current probability of occurrence (and subse‐
quently potential probability of occurrence analogous to environ‐
mental suitability) for each species using the “hSDM.ZIB.iCAR” 
function of the “hSDM” package (Vieilledent et al., 2014) in R sta‐
tistical software (R Development Core Team, 2018) applying default 
settings except to reduce the number of iterations to 1,500 (500 
for burn‐in and 1,000 for sampling) and the thinning interval to 1. 
This function used our binomial dataset (presences/successes and 
visits/trials) within a hierarchical Bayesian framework integrating 
two processes: (a) an ecological process, represented by a Bernoulli 
distribution, describing species presence or absence due to environ‐
mental suitability; (b) an observation process, represented by a bi‐
nomial distribution, which takes into account the fact that detection 
of the species is imperfect (i.e., likely to be <1) (Latimer et al., 2006; 
MacKenzie et al., 2002). The ecological process included an intrinsic 
conditional autoregressive (iCAR) model for spatial autocorrelation 
between observations, assuming that the probability of presence 
of the species at one site depends on the probability of presence 
of the species on neighboring sites (Lee, 2013). For the purposes 
of this study, we applied a Moore neighborhood representing the 
maximum daily home range for any of the deer species. In this study, 
due to limitations on the volumes of available data, we did not ac‐
count for any temporal variability in species distribution within the 
window of interest, 2012–2016, which we suggest was sufficiently 
narrow to justify this simplification (i.e., that distributions remain 
effectively stable within the period).

Modeling the ecological process, we considered the full set of ex‐
planatory variables including our estimation of current species range 
(dispersal). Whereas for the observation process we only considered 
a constant to reflect that the number of trials was derived from other 
presence records whose detectability within any given cell was likely 
to be similarly affected by the environmental condition; therefore, 
detectability was represented in relative terms compared to that 
of other species (i.e., difference in average size or general behav‐
ior of species rather than environment). For all model parameters 
(coefficients) in both ecological and observation processes, we used 
default uninformative Normal priors with a mean of zero and large 
variance of 1e+06 providing a relatively flat distribution. Similarly, we 
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used the default uninformative prior for the variance of the spatial 
effects; described by an inverse‐gamma distribution with shape and 
rate parameters of 0.05 and 0.0005, respectively.

Once fitted, we first used the model to extrapolate the proba‐
bility of species occurrence across the entire model extent based 
on all variables including those describing species ranges to pro‐
duce current distributions, and then, setting species range to 
a constant value of 1 we produced a second set of distributions 
reflecting the potential of each species based on environmental 
conditions alone assuming no constraints on dispersal. A sche‐
matic summarizing the complete modeling process is provided in 
Figure 1.

2.5 | Validation

In order to validate our predictions of current deer distributions, we 
undertook evaluation using independent data obtained from the re‐
cent BDS deer survey. This national survey provides the presence, 
and reported absence, of deer across GB on the 10  km2 BNG. To 
match the resolution of this dataset, we aggregated our 1 km2 suit‐
ability maps assigning the maximum probability of presence to each 
100 km2 cell. Based on these datasets, we computed two standard 
indices to measure goodness of fit: the area under the receiver‐op‐
erating characteristic curve (AUC; Phillips et al., 2006) yielding a 
value between 0.5 and 1 where 0.5 suggests models no better than 

F I G U R E  1   Schematic diagram of the modelling process
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random and 1 indicating perfect prediction; the True Skill Statistic 
(TSS; Allouche, Tsoar, & Kadmon, 2006) calculated as the sum of 
the sensitivity (true positive rate) and specificity (true negative rate) 
minus one, yielding values between 0 and 1 where similar to AUC 
a value of 1 indicates perfect prediction. The latter requires a bi‐
nary classification (presence/absence) for both the observed and 
predicted datasets. To transform our predictions into presences and 
absences, we selected the threshold probability above which pres‐
ence (and equal to or below absence) is assumed which maximizes 
the TSS (Liu, White, & Newell, 2013).

While this threshold is applicable to classify presence and ab‐
sence for the current distributions, it is not necessarily appropriate 
to classify our potential distributions, which are derived under differ‐
ent conditions. In order to provide an equivalent threshold for these 
distributions, without comparable data (which are of course unavail‐
able), we adopted the minimum probability of presence extracted 
from cells classified as present in the current distribution (which we 
assume will continue to be occupied in the future) and that are also 
within the current species range (i.e., where the dispersal variable 
equals 1 in models for both the current and potential distribution).

Finally, to evaluate the limits of our predictions based on the 
available presence data, accounting for any impacts from prefer‐
ential sampling common in data from citizen science (Callcutt et 
al., 2018) as well as the possibility that not all species have experi‐
enced the entire range of environmental conditions and hence their 
response is unknown, we computed a multivariate environmental 
similarity surface (MESS) provided in the “dismo” R package. This 
function compares the differences between environmental ranges 
sampled in the model training data (within the assumed current 
range of each species) with that used to project distributions across 
the entire model extent (Elith, Kearney, & Phillips, 2010). In the re‐
sulting map, outputs cells with negative values (<0) indicate environ‐
mental conditions that are not well represented in the model training 
data, that is, the model has little to no experience of dealing with the 
related values and consequently any predictions may not be valid.

2.6 | Local range overlap

Frequency of contact (direct or indirect), or exposure, between suit‐
able hosts is an important factor in the spread of disease. While the 
resolution of modelled output here is not sufficient to establish the 
precise “connectedness” of British deer populations as it does not ac‐
count for physical barriers that may preclude interaction, we suggest 
that the maps provide sufficient information to examine a “worst 
case” scenario, assuming such barriers are not absolute, using local 
range overlap as a proxy for relative disease risk. Local range overlap 
was computed by combing predictions for current and potential dis‐
tributions as follows: for each cell, we estimated contact as the area 
spanned by the contiguous region surrounding the target cell formed 
by the overlapping distributions of those deer species present in that 
cell. In the context of disease risk, this combined measure of intra‐ 
and interspecies contact can be considered analogous to the area 
of immediate exposure following an introduction in the target cell.

3  | RESULTS AND ANALYSIS

3.1 | Occurrence data

Following cleaning and transformation to a binomial description, the 
dataset of observational records comprised of 660,107 distinct trials 
(unique day, location and dataset) distributed relatively evenly across 
24,844 cells throughout the model extent (approximately 10% of 
mainland Britain). These trials were derived from the records of com‐
mon mammal species including all deer species and represent the 
frame from which observed presences and absences could reliably 
be inferred. Roe deer were reported most frequently with 11,605 
unique sightings spread across 4,690 cells. Interestingly, muntjac 
were the next most commonly reported with 7,591 sightings across 
927 cells (the highest density of unique sightings per cell) followed 
by fallow (2,422 sightings over 1,820 cells), red (1,340 sightings over 
760 cells), sika (267 sightings over 157 cells), and then Chinese water 
deer limited to 185 unique sightings across 114 cells.

3.2 | Species range estimation and validation

A visual comparison between estimated species ranges generated 
using both our method and LoCoH (illustrated in Figure 2) showed 
similar results but as expected confirmed our method to be more 
inclusive. Additional inspection against the latest distributions from 
the BDS survey showed that this greater inclusivity provided better 
agreement.

With regard to the choice of neighborhood distance, and there‐
fore the inclusivity of the species range, our findings shown in 
Figure 2 demonstrate that the predictive accuracy of models can 
varied markedly dependent on the distance assumed. In these plots, 
peaks where the combined average of AUC (rescaled from between 
0.5 and 1 to between 0 and 1) and TSS is highest, indicate optimal 
neighborhood distance. All species demonstrated a clear optimum 
between 10 and 40 km (30, 20, 30, 20, 10 and 40 km for Chinese 
water deer, fallow, muntjac, red, roe, and sika, respectively) with 
predictive accuracy of models using distances beyond this upper 
limit rapidly decreasing. At their optimal distance, used to predict 
final distributions, model AUC for all species was well above the 0.7 
threshold considered to be indicative of a good predictive accuracy 
(Hijmans, 2012) with values of 0.95, 0.82, 0.95, 0.87, 0.9, and 0.84 for 
Chinese water deer, fallow, muntjac, red, roe, and sika, respectively. 
Across these species, of the distances considered 10, 20, and 30 km 
maintained AUC scores above the 0.7 threshold for all with a mini‐
mum value of 0.77, 0.82, and 0.71, respectively.

3.3 | Predicted distribution

Our descriptions of the current and potential distribution of each 
deer species (Figure 3) allowed us to highlight locations requiring 
further survey effort where either the environmental conditions 
were not well represented by the current survey (potentially as the 
species may have yet to experience them and so it would not be 
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appropriate to assume the response) as determined from the MESS 
analysis, or the prediction was not validated by the latest BDS deer 
survey. Occupancy statistics summarizing the distributions shown in 
these maps are provided in Table 1.

National projections for Chinese water deer are difficult due to 
their limited experience of the British landscape, only providing a 
narrow sample of the environment (corresponding to approximately 
30% coverage of the model extent) with which to infer environmen‐
tal preferences. Nevertheless, even at a local level, comparison of 
their current distribution with their potential distribution suggests 
the species may be reaching local equilibrium but with potentially 
suitable environments within reach, just outside of range edges. 
Thus, expansion could continue allowing exploration into new, 
as yet untested environments toward the northwest and south‐
east of England; potentially increasing occupancy from the cur‐
rent 6,000 km2 to 30,000 km2 (growth of nearly 400%). Muntjac, 
to a lesser extent, present a similar challenge with current distri‐
butions only representing a limited sample of environmental con‐
ditions; spanning 62,500  km2 but only providing a representative 

environmental sample for 65% of the model extent. Nevertheless, 
excluding the northwest of Scotland, our predictions suggest that 
the muntjac is beginning to reach the full extent of its potential range 
within Britain, with only limited scope for further expansion up the 
northeastern coast of England and some small isolated patches in 
Wales, a maximum increase in occupancy of 22%.

Comparing distributions for red, roe, and sika suggests the 
greatest potential for further expansion is into Wales where current 
occupancy is low given its extensive area of apparently favorable 
environment; recent reports of increasing populations support this 
prediction (Mathews et al., 2018). Both red and sika share similar 
potential distributions spanning 121,000 and 116,000 km2, respec‐
tively, with suitable environments across most of Scotland, Wales 
and the southwest of England. Predictions for roe, which already oc‐
cupy much of England and Scotland (predictions from their current 
distribution suggest 50% by area), highlight only a few areas where 
the species would not be expected to eventually establish due to 
environmental unsuitability; approximately 18% of the total model 
extent. Fallow distributions appear relatively patchy in comparison 

F I G U R E  2   Estimating species range. (Left) Example map showing estimate range for red deer from opportunistic occurrence data using 
Local Convex Hulls (blue) and our method of overlapping neighborhoods (red). (Right) Plots showing measured predictive accuracy of models 
afvgainst maximum distance used to define neighborhoods in derivations of species range for (top to bottom) Chinese water deer, fallow, 
muntjac, red, roe, and sika
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with other species. Current populations are focused in central and 
southern England with a few isolated populations in Scotland and 
the south west, which show the greatest potential for future ex‐
pansion. Overall for fallow, we predict a potential increase in occu‐
pancy of 143% from the current distribution spanning 25,000 km2 
to 60,000 km2.

Across all of the species, our results highlight several areas where 
the attention of citizen scientist might most profitably be focused 
to confirm, or deny, presence, including the north of Scotland. It is 

interesting to note that un‐validated predictions tended to appear at 
the edge of patches, which is likely a reflection of the accuracy of our 
estimates for species’ range.

3.4 | Local range overlap

Combining the estimates of the ranges of the current distribu‐
tions predicted by the suitability models across all species in‐
dicates potential for high level of contact (Figure 4) across deer 

F I G U R E  3   Current and potential deer distributions. Maps show predictions for both the current distribution, accounting for 
anthropogenic and geographic factors that might prevent presence (red), and potential expansion based on environmental factors alone 
ignoring any limitations on dispersal (orange) for each of the six deer species in GB. Within each map, we highlight locations where 
predictions are uncertain either because conditions are beyond that experienced by the species (and so it unknowable how they will 
respond) or predictions are not validated by the corresponding BDS survey map (inset) and therefore require further investigation
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populations in southern central and eastern regions of England, 
followed by areas of Scotland and the Lake District (this rep‐
resents the degree and area of overlap between multiple spe‐
cies and contiguity of deer in the landscape). The similar exercise 
using potential distributions shows that if all deer species spread 

to their full potential and achieve equilibrium in the landscape, 
contact will likely increase substantially across the country be‐
coming notably more uniform, that is, potential for very high lev‐
els of contact between deer across the entire extent of Britain 
(Figure 4).

Statistic CWD Fallow Muntjac Red Roe Sika

Current range (km2) 16,269 76,166 85,068 75,998 118,186 52,786

Current occupancy (km2) 6,106 24,502 62,482 59,155 101,852 34,596

Occupancy (%) 37.5 32.2 73.4 77.8 86.2 65.5

Potential occupancy 
(km2)

29,215 59,514 76,129 121,081 174,763 116,402

Growth (%) 378.5 142.9 21.8 104.7 71.6 236.5

Unsampled (%) 70.0 13.6 34.3 2.3 2.4 8.2

Note: Statistics include the area spanned by the estimated current range and distribution with 
corresponding percentage occupancy; the area spanned by the predicted potential distribution and 
the percentage increase (growth) relative to the current distribution; and the percentage of the 
total model extent (spanning 219,536 km2) not represented by the environments sampled within 
the species' current range.

TA B L E  1   Summary of current and 
potential occupancy statistics for each of 
the six deer species

F I G U R E  4   Estimated levels of contact between British deer populations. Maps showing current (left) and potential (right) show the 
immediate extent of contact between deer in cells (quantified as the area in km2 formed by the contiguous local deer population, excluding 
effects from long‐distance dispersal, of those species predicted to occur in the cell) to visualize the risk posed by disease introduction. 
Darker, more intense, colors reflect greater contact and therefore are assumed to present greater risk
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4  | DISCUSSION

Here, we have proposed a generic framework using an SDM ap‐
proach to estimate both the current and potential distributions of 
mammals; a valuable resource to inform decisions on the manage‐
ment of current and future disease risk. In addition to allowing us to 
begin to accommodate problems caused by dispersal‐limited/anthro‐
pogenic‐driven absences, this method also incorporates mechanisms 
to account for the types of survey bias known to occur in citizen sci‐
ence data (Callcutt et al., 2018; Dickinson et al., 2010). We tested the 
method using British deer species as a case study for which recently 
published survey data from the BDS were available to provide inde‐
pendent validation. This validation indicated that the method per‐
formed well for all species, achieving an AUC value greater than 0.7, 
the accepted threshold indicating good predictive accuracy, based on 
at least one of the underlying species' ranges that were tested (de‐
rived using different distances to define a local neighborhood con‐
necting nearby observations). A comparison of validation metrics with 
those from previous studies (Acevedo et al., 2010; Croft et al., 2017) 
which do not explicitly account for either survey bias or nonequilib‐
rium of species suggests that our proposed method produces more 
accurate results. Acevedo et al. (2010) reported AUC values of 0.85, 
0.79, 0.86, 0.82, 0.93, and 0.93 for roe, red, fallow, sika, muntjac, and 
Chinese water deer, respectively. Compared with values here of 0.9, 
0.87, 0.82, 0.84, 0.95, and 0.95, respectively, all were higher with the 
exception of the model for fallow deer which was marginally lower. 
Compared with Croft et al. (2017) where AUC scores for models at a 
1 km2 resolution were reported as 0.64, 0.63, 0.65, 0.64, 0.66, and 
0.68, respectively, there is a marked improvement in predictive ac‐
curacy. It should be noted, however, unlike Croft et al. (2017) where 
both modelling and validation are conducted at a 1 km2 resolution, 
the model here was validated using data recorded at 100 km2 follow‐
ing an upscaling of the model output. As a consequence, validation 
metrics may be more indicative of the fit to species range rather than 
finer scale distribution. Further research is required to establish how 
such models, in the absence of true absence, can be reliably evalu‐
ated using available methods. Nevertheless, comparing instead re‐
sults reported by Croft et al., 2017 for their models conducted at 
an equivalent 100 km2 resolution AUC values were similarly lower, 
between 0.7 and 0.76.

Unlike many other mammal species for which suitable data are 
unavailable, independent validation of our predictions for deer has 
allowed us to assess optimal neighborhood distances used to esti‐
mate species range. Our results show that a fixed distance of 20 km 
maintains the highest AUC scores across all deer species, above the 
0.7 benchmark, and therefore, we argue might reasonably be applied 
more generally to estimate species ranges of diverse mammals with‐
out significant losses in model performance. Interestingly, this is the 
same distance adopted by The Mammal Society used to derive spe‐
cies ranges in their recent review of British mammals (Mathews et al., 
2018). The only caveat to this is to note that optimal distances are 
based on several factors including mobility and patterns of record‐
ing (Maes et al., 2015); the latter likely explains the greater optimal 

distances for Chinese water deer and muntjac which, based on ecol‐
ogy alone, would otherwise be expected to be among those with the 
smallest dispersal neighborhoods. We would consider few British 
mammals to be more mobile than deer and so as an upper limit, the 
choice of 20 km as a distance for defining neighboring sightings is 
only likely to be too small for rare or poorly recorded species where 
the granularity of observations is low. This effect is seen in our re‐
sults with the rarer invasive non‐native deer species showing highest 
predictive accuracy at greater distances despite evidence to suggest 
at least some range over smaller areas than the better recorded na‐
tive species (Chapman, Claydon, Claydon, Forde, & Harris, 1993); in 
general for common species, this issue should not be a problem. A 
neighboring distance of 20 km may not be appropriate for small mam‐
mals such as rodents, but is likely to be suitable for larger mammals.

Visual comparison between predictions of current distributions 
based on available opportunistic survey data and observations from 
the more structured BDS survey shows good agreement. An import‐
ant feature of the model framework and the maps we present for use 
by policy‐makers is the highlighting of areas where additional data 
are required to achieve sufficient predictive confidence. In this case, 
for well reported species such as deer in GB, few regions are high‐
lighted as requiring further investigation either to establish absence 
where predictions suggest species should be present or vice versa. 
For some species (Chinese water deer and muntjac), predictions are 
restricted, we assume, by a lack of exposure to certain environments 
as a result of their relatively recent introduction and their current 
limited distributions rather than deficient sampling. Where this is the 
case for species naturally occupying the same bioclimatic zone, it 
may be possible to consider supplementing data, and corresponding 
inference of environmental dependence, from other locations where 
the species is present (Hattab et al., 2017). However, since Chinese 
water deer and muntjac both have warm temperate/subtropical or‐
igins, it is unlikely that environmental data from their native ranges 
will translate to the British landscape and it is perhaps most prudent 
to wait until such time as there are sufficient data for their invaded 
range.

Predictions for the potential distribution show some inter‐
esting results. In particular, highlighting that current distributions 
only reflects a fraction of the total extent available to most of the 
deer species. Even roe deer which already occupy much of England 
and Wales shows substantial potential for expansion into Wales. 
Combining these distributions to establish the potential extent and 
location of potential interspecific contact among deer suggests that 
unregulated range expansion could result in extensive and wide‐
spread areas of contact across the country. Under these circum‐
stances, the rate of spread of diseases that affect multiple deer 
species (Hartley et al., 2013) and their geographical spread could 
be much greater than at present. If populations are more carefully 
managed, then fragmented distributions of some species might be 
maintained, limiting or even preventing transmission beyond the 
local area of introduction.

The application of our model outputs in this way to analyze dis‐
ease spread illustrates just one of its many potential uses of policy 
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interest across a host of concerns including wildlife conservation, 
management, and risk assessment. Our findings demonstrate that 
the modelling framework we have outlined and applied to British 
deer provides a generic tool capable of exploiting growing volumes 
of available citizen science data to generate useful information 
about species distributions in managed landscapes; importantly, 
highlighting areas where additional survey efforts are required to 
improve confidence in prediction. Distinct from many approaches 
in the literature, the framework accounts for both survey bias and 
dispersal/anthropogenic absences providing insights which together 
with clear presentation of where confidence in model predictions 
may be lacking, we argue are sufficiently robust to support policy 
decision‐making.
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