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Accumulating evidence indicates that immunotherapy helped to improve the survival and
quality-of-life of patients with lung adenocarcinoma (LUAD) or lung squamous cell
carcinoma (LUSC) besides chemotherapy and gene targeting treatment. This study
aimed to develop immune-related gene signatures in LUAD and LUSC subtypes,
respectively. LUAD and LUSC samples were divided into high- and low-abundance
groups of immune cell infiltration (Immunity_H and Immunity_L) based on the abundance
of immune cell infiltrations. The distribution of immune cells was significantly different
between the high- and low-immunity subtypes in LUAD and LUSC samples. The
differentially expressed genes (DEGs) between those two groups in LUAD and LUSC
contain some key immune-related genes, such as PDL1, PD1, CTLA-4, and HLA families.
The DEGs were enriched in multiple immune-related pathways. Furthermore, the seven-
immune-related-gene-signature (CD1B, CHRNA6, CLEC12B, CLEC17A, CLNK, INHA,
and SLC14A2) prognostic model-based high- and low-risk groups were significantly
associated with LUAD overall survival and clinical characteristics. The eight-immune-
related-gene-signature (C4BPB, FCAMR, GRAPL, MAP1LC3C, MGC2889, TRIM55,
UGT1A1, and VIPR2) prognostic model-based high- and low-risk groups were
significantly associated with LUSC overall survival and clinical characteristics. The
prognostic models were tested as good ones by receiver operating characteristic,
principal component analysis, univariate and multivariate analysis, and nomogram. The
verifications of these two immune-related-gene-signature prognostic models showed
consistency in the train and test cohorts of LUAD and LUSC. In addition, patients with
LUAD in the low-risk group responded better to immunotherapy than those in the high-
risk group. This study revealed two reliable immune-related-gene-signature models that
were significantly associated with prognosis and tumor microenvironment cell infiltration in
LUAD and LUSC, respectively. Evaluation of the integrated characterization of multiple
immune-related genes and pathways could help to predict the response to
immunotherapy and monitor immunotherapy strategies.
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INTRODUCTION

Lung cancer is the most commonmalignant tumor worldwide, and
its incidence and mortality have been increasing year by year
among men and women, which has caused a serious burden on
patients and society. The highest incidence and mortality rates of
lung cancer were distributed in North America, Europe, and East
Asia (1). Lung cancer is divided into small cell lung cancer (15%)
and non-small cell lung cancer (NSCLC, 75%) according to cancer
cell type. Three main subtypes of NSCLC are lung adenocarcinoma
(LUAD, 40%), lung squamous cell carcinoma (LUSC, 30%), and
large cell carcinoma (15%) (2). Depending on the different types,
the treatment and prognosis were also different between LUAD
and LUSC. With the development of gene detection technology,
the main driver genes of different kinds of lung cancers have been
identified—for example, EGFR mutations, ALK fusion, ROS-1
fusion, PTEN mutations, FGFR1 amplification, c-Met
amplification, and KRAS mutations (3). LUAD has a sensitive
mutation-targeted treatment plan compared to LUSC, but a
patient’s prognosis with advanced NSCLC is still very poor and
the 5-year survival rate might be <15% (4). Whether it is LUAD or
LUSC, in addition to chemotherapy and targeted drugs,
immunotherapy was proved to be safe and effective (5). There
are currently three checkpoint inhibitors that targeted PD-1/PD-L1
and are approved for lung cancer: nivolumab (Opdivo),
pembrolizumab (Keytruda), and atezolizumab (Tecentriq) (6).
Those checkpoint drugs brought hope and relief to patients with
chemotherapy resistance, advanced tumors, or driver gene
negative. The development of multiple immune biomarkers or
immune-related gene signature would contribute to predict
immunotherapeutic outcomes.

Increasing evidence showed that immune-related cells,
molecules, cytokines, and pathways were closely associated with
the biological property of carcinoma. The classification of tumor
antigen, antitumor and application of immunotherapy, and
mechanism of tumor cells escaping the immune system became
a research hotspot in immunotherapy strategy (7). In terms of
immune-related cells, the percentages of circulating PD-1+

CD137+ CD8+ T cell and CD137+ CD8+ T cell subsets among
CD8+ T cells were positively correlated with thoracic tumor
burden and the percentage of effector regulatory T cell (Treg)
subset. These findings showed the interactions between immune
and host in lung cancer patients in the level of peripheral blood
and further suggested that the differential control of activation of
tumor-specific effector T cells and Treg should be used as
immunotherapeutic intervention strategies (8). Myeloid-derived
suppressor cell (MDSC)-mediated tumor immunosuppressive
environments regulated the immunosuppressive environments
in a tumor microenvironment (TME), and findings revealed
that MDSC development and differentiation could be induced
by chemotherapy through IL-13/IL-33-mediated pathway in lung
cancer (9). When immune-based strategies are adopted, the
immune mechanisms impacted by chemotherapy should be
considered to restore immunity-related activity and inhibit the
immunosuppressive phenotype of lung cancer (9). In terms of
immune molecules, it was reported that those against the PD-1/
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PD-L1 checkpoint could improve the survival rates with KRAS-
mutant NSCLC patients because KRAS mutations were correlated
with tumor immunogenicity and an inflammatory TME (10). The
FDA has approved the combination of pembrolizumab,
pemetrexed, and carboplatin for the first-line treatment of
metastatic non-squamous NSCLC, regardless of PD-L1
expression (11). For patients with advanced or squamous cell
carcinoma with low or no PD-L1 expression, a combination
therapy of pembrolizumab and carboplatin/taxanes could be a
better choice (12). In terms of immune cytokines, NSCLC patients
(n = 18) and control lung tissue samples (n = 5) were used to
determine the relationship between malignant progression and IL-
11 expression, which indicated that IL-11 was an oncogene in
NSCLC. IL-11 promoted cell proliferation, migration, invasion,
epithelial–mesenchymal transition, and tumorigenesis and
activated AKT and STAT3 (13). Tumor-associated antigens
activated anti-tumor immune responses through the recognition
of cancer cells by T cells when presented at a sufficient level (14).
In terms of immune-related pathways, transcriptomics analysis
showed that radiation treatment could upregulate the expressions
of many genes in antigen processing and presentation pathways in
all cell lines, which revealed the immunostimulatory role of cancer
radiotherapy via antigen processing and presentation pathways
(15). Recently, studies also demonstrate that tumor mutation
burden (TMB) induced antigen exposure, which is a promising
biomarker to select NSCLC patients for immunotherapy,
specifically in the gene mutation of MET, RET, HER2, and
KRAS (16). Immunotherapy might be an effective approach to
improve the survival and quality-of-life of lung cancer patients.
However, the comprehensive landscape of immunotherapy and
immune-related gene signatures remains unclear.

Most studies analyzed different genes between tumor and
normal tissues and did LASSO analysis to construct immune gene
signatures (17–19). In this study, consensuClusterPlus R package
was used to perform cluster analysis, which was cycle computed for
1,000 times to guarantee the reliability and stability of classification.
It would be a more direct approach than tissue types (tumor and
normal tissues) to show immunotherapy response. One previously
published article also used consensuClusterPlusRpackage todivide
LUAD samples in The Cancer Genome Atlas (TCGA)-LUAD into
high-,medium-, and low-immune infiltration groups and obtained
different expressed lncRNAs between high- and low-immune
infiltration groups to construct an eight-immune-related-lncRNA
(AL365181.2, AC012213.4, DRAIC, MRGPRG-AS1, AP002478.1,
AC092168.2, FAM30A,andLINC02412)prognostic signature (20).
However, our study systematically plotted the distribution of
immune cells in lung cancer (including LUAD and LUSC) and
their relationship with clinicopathological characteristics.
Additionally, gene mutation information showed that the
distribution of immune cells was significantly related to TMB.
The LUAD and LUSC samples were divided into high- and low-
immunity subtypes based on the abundance of a panel of immune
cell infiltrations, respectively. Furthermore, LASSO regression was
used to construct the seven-gene-signature (CD1B, CHRNA6,
CLEC12B, CLEC17A, CLNK, INHA, and SLC14A2) prognostic
model in LUAD, and the high- and low-risk groups, based on this
November 2021 | Volume 12 | Article 752643
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signature model, were significantly correlated with LUAD overall
survival and clinical characteristics. LASSOregressionwas alsoused
to construct the eight-gene-signature (C4BPB, FCAMR, GRAPL,
MAP1LC3C, MGC2889, TRIM55, UGT1A1, and VIPR2)
prognostic model in LUSC, and the high- and low-risk groups
based on this signature model were significantly correlated with
LUSC overall survival and clinical characteristics. This study
revealed two reliable gene signature models that were significantly
associated with prognosis and TME cell infiltration in LUAD and
LUSC, respectively, which can promote individualized treatment
and offer potential new targets of immunotherapy. A simplified
sequence flow diagram (Figure 1) was shown to identify immune
signatures in LUAD and LUSC subtypes of lung cancers.
MATERIALS AND METHODS

Lung Cancer RNA-seq Data and Clinical Data
Lung cancer RNA-seq data, clinical follow-up data (Supplementary
Tables S1 and S2), and mutation data (Supplementary Tables S3
and S4) in LUAD and LUSC (https://xena.ucsc.edu/) were obtained
from the public database TCGA (https://portal.gdc.cancer.gov/),
respectively. Genomic Data Commons can help obtain high-
quality standardized clinical and molecular data, easily conduct
high-performance search, directly download and analyze clinical
information and genomic characteristic data, and conduct high-
level sequence analysis of tumor genomic data. RNA-seq data were
required to be from patients with complete clinical information and
survival status data. Thus, 515 LUAD and 502 LUSC tissue samples
were selected for this study. Next, the Tumor Immune Dysfunction
and Exclusion (TIDE) (http://tide.dfci.harvard.edu/) was used to
predict the response to immunotherapy based on the simulation
of tumor immune escape mechanism. In this study, the
response of the TCGA-A cohort to immunotherapy based on
Frontiers in Immunology | www.frontiersin.org 3
TIDE algorithm helps divide lung cancer samples into non-
responder and responder groups.

Gene Expression Data-Based TME
Immune Cell Infiltration Abundance
The single-sample Gene Set Enrichment Analysis (ssGSEA) was
used to quantify the abundance of TME immune cell infiltration
with GSEABase R package based on RNA-seq gene expression
data (21). A total of 28 human TME immune cell subtypes were
analyzed, including central memory (Tcm), activated T cells,
gamma delta T (Tgd) cells, effector memory (Tem) CD4+/CD8+

T cells, Th2 cells, T helper 1 (Th1) cells, Th17 cells, follicular
helper T cells (Tfh), regulatory T cells (Treg), the activated,
immature, and memory B cells, and innate immunity-related cell
types such as monocytes, mast cells, macrophages, eosinophils,
neutrophils, the activated plasmacytoid and immature dendritic
cells (DCs), NK cells, natural killer T (NKT) cells, and MDSCs
(Supplementary Tables S5 and S6).

High- and Low-Immunity Clusters of
Lung Cancer Tissues
Lung cancer tissues with TME immune cell infiltration
abundance were clustered with hierarchical agglomerative
consensus clustering according to Ward’s linkage and
Euclidean distance. The proportion of ambiguous clustering-
based unsupervised clustering methods was a simple and
powerful method to infer optimal K (K-means) that classified
patients for further analysis. The ConsensuClusterPlus R package
was used to perform cluster analysis, which was cycle-computed
for 1,000 times to guarantee the reliability and stability of
classification. A consensus clustering analysis was performed
on cancer tissue samples according to the scores of ssGSEA to
obtain the most stable group. Based on TME immune cell
infiltration abundance, the LUAD and LUSC tissue samples
FIGURE 1 | Flow chart for the identification of immune signatures in lung adenocarcinoma or lung squamous cell carcinoma subtypes of lung cancers.
November 2021 | Volume 12 | Article 752643
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were divided into high (H)- and low (L)-abundance groups of a
panel of immune cell infiltrations (Immunity_H and
Immunity_L), respectively (Supplementary Tables S7 and S8).

Estimation of Tumor Purity and Infiltrating
Cells in LUAD and LUSC
Tumor purity and infiltrating stromal and immune cells in
tumor tissues were predicted with ESTIMATE R package,
which can estimate stromal and immune cells in malignant
tumor tissues with gene expression data (Supplementary
Tables S9 and S10). The ESTIMATE algorithm was based on
ssGSEA analysis, which generated an immune score that
represented the status of infiltrating immune cells in tumor
tissue, stromal score that captured the status of stromal cells in
tumor tissue, and ESTIMATE score that inferred tumor purity.
Those three scores were positively correlated with the ratio of
immune, stromal, and sum of both, respectively; and the higher
score reflects the larger ratio of the corresponding component in
TME (22).

The Proportions of Immune Cells in
LUAD and LUSC Determined With
CIBERSORT Method
The proportion of immune cells in the LUAD and LUSC tissue
samples was determined with the CIBERSORT algorithm that
was based on the LM22 gene signature, respectively. The LM22
gene signature-based CIBERSORT algorithm can highly
discriminate sensitively and specifically 22 human immune cell
phenotypes (23). Gene expression profile data prepared with
standard annotation files were input into the CIBERSORT web
portal (http://cibersort.stanford.edu/) to run the algorithm based
on LM22 gene s ignature and 1 ,000 permutat ions
(Supplementary Tables S11 and S12). Corrplot R package was
used for the correlation analysis between immune cells
(Supplementary Figure S1). LUAD and LUSC tissue samples
were divided into high- and low-abundance subgroups (high and
low subgroups) per the median value of the proportions of each
single-one immune cell, respectively. The Kaplan–Meier method
was used for overall survival analysis and compared to the log-
rank test, and p <0.05 was considered statistically significant.
Furthermore, the association between clinical characteristics
(pathologic M, N, T, and stage and cancer status) and the
proportions of immune cells were analyzed in LUAD and
LUSC patients (Supplementary Figures S2 and S3). The
distribution of immune cells was analyzed in LUAD and LUSC.

Calculation of Tumor Mutation Burden
The distribution of TMB was calculated with Maftools R
package, which generated the waterfall and interaction of
mutation genes, summary of TMB, and TMB score
(Supplementary Tables S13 and S14). The LUAD and LUSC
tissue samples were divided into high- and low-TMB score
subgroups as per the median value of TMB scores, respectively.
According to the high- and low-TMB score subgroups, the
distribution of immune cells was analyzed in LUAD and LUSC
patients (Supplementary Figure S4).
Frontiers in Immunology | www.frontiersin.org 4
Differentially Expressed Genes Between
High- and Low-Immunity Subtypes in
LUAD and LUSC
The R package limma package was used to determine the DEGs
between the high- and low-abundance groups (Immunity-H and
Immunity-L) of immune cell infiltration in LUAD and LUSC
patients, with the statistical significance of adjusted P-value <0.05
(Supplementary Tables S15 and S16). limma is mainly used to
analyze gene expression data from chip, RNA-seq, and
quantitative PCR data. Its main function is to evaluate the
differential expression of a multi-factor experiment with a
linear model. This algorithm used an empirical Bayesian
approach for the estimation of gene expression alterations with
moderated t-tests. The adjusted P-value was calculated with the
Benjamini–Hochberg multiple testing correction.

Functional Characteristic Analysis of
Immune-Related DEGs
Gene annotation enrichment analysis of DEGs between
immunity_H and immunity_L groups was performed with the
clusterProfiler R package, including Gene Ontology (GO) terms
(Supplementary Tables S17 and S18) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways (Supplementary
Tables S19 and S20), with false discovery rate (FDR) <0.05
and statistical significance P <0.05. The FDR value was calculated
with the Benjamini–Hochberg multiple testing correction
procedure, and the enrichment P-value was calculated based
on 10,000 permutations. The protein–protein interaction (PPI)
network was constructed with the STRING database analysis to
evaluate interactive associations among all DEGs in LUAD and
LUSC patients (Supplementary Tables S21 and S22).

Construction and Verification of Immune-
Related Gene Signature Models With
LASSO Regression in LUAD and LUSC
LUAD and LUSC tissue samples were divided into two groups
per the median value of DEGs. The Kaplan–Meier method was
used for overall survival analysis and compared to the log-rank
test, with statistical significance at p <0.05 (Supplementary
Figures S5 and S6). Furthermore, the overall survival-related
DEGs were used for the construction of a lasso regression model,
which examined the relationship between immune-related gene
signatures and lung cancer risk score. Receiver operating
characteristic (ROC) curve and principal component analysis
(PCA) were used to test the measurement of classification based
on risk sore. The Kaplan–Meier method was used to evaluate the
availability of each prognostic signature model. Furthermore, the
LUAD and LUSC tissue samples were divided into high- and
low-risk score subgroups per the median value of risk scores in
LUAD and LUSC (Supplementary Tables S23 and S24). The
distribution of immune cells was analyzed in LUAD and LUSC
patients between the high- and low-risk score groups. The clinic
correlation between the high- and low-risk score groups was
analyzed with the pheatmap R package. This risk score
assessment nomogram was used to evaluate the prognosis in
LUAD and LUSC patients (1-, 3-, and 5-year survival rates). In
November 2021 | Volume 12 | Article 752643
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addition, univariate and multivariate Cox regression models
were used to analyze the associations between clinical
characteristics (gender, age at initial diagnosis, follow-up,
anatomic subdivision, number of pack-year smoked, cancer
status, pathologic M/N/T, pathologic stage, radiation therapy,
and targeted molecular therapy) and overall survival in LUAD
and LUSC patients.

Verification of Immune-Related Gene
Signature Models With Train and Test
Cohorts in LUAD and LUSC
The “caret” R package (http://topepo.github.io/caret/index.html)
was used to randomly divide the LUAD and LUSC samples into
train and test cohorts. The risk scores for each group were
calculated according to the gene signature models by LASSO
regression (Supplementary Tables S25–S28). The Kaplan–
Meier method was used for overall survival analysis between
the high- and low-risk score groups in the train and test cohorts
of LUAD and LUSC, respectively.

Statistical Analysis
For between-group comparisons, for normally distributed
variables, the p-value was calculated with unpaired Student t-
tests, and for non-normally distributed variables, the p-value was
calculated with Mann–Whitney U-tests (namely, the Wilcoxon
rank–sum test), and statistical significance was set as p <0.05.
FDR and Benjamini–Hochberg were used for multiple testing to
correct the p-value in DEGs, GO, and KEGG analyses. The
Kaplan–Meier method was used to generate survival curves, and
the log–rank (Mantel–Cox) test was used to evaluate the
statistical significance of the differences, with statistical
significance of p <0.05. The hazard ratio was calculated for
univariate or multivariate Cox proportional hazard regression
models. The predicted response to immunotherapy was
statistically analyzed with chi-square test (X2) between the
high- and low-risk score groups, and statistical significance was
set as p <0.05.
RESULTS

High- and Low-Immunity Subtypes
in LUAD and LUSC Identified With
ESTIMATE Algorithm
The lung cancer RNA sequencing data were from 515 LUAD and
502 LUSC patients. The abundance of each TME cell infiltration
was calculated by ssGSEA with gene expression data in LUAD and
LUSC (Supplementary Tables S5 and S6), including the immune
cell information of central memory (Tcm), activated T cells, effector
memory (Tem) CD4+ and CD8+ T cells, T helper 1 (Th1) cells,
gamma delta T (Tgd) cells, Th17 cells, Th2 cells, follicular helper T
cells (Tfh), regulatory T cells (Treg), and activated, immature, and
memory B cells, as well as innate immunity-related cell types
(monocytes, mast cells, macrophages, eosinophils, neutrophils,
NK cells, NKT cells, the activated, plasmacytoid, and immature
DCs, and MDSCs). According to the data containing immune cell
Frontiers in Immunology | www.frontiersin.org 5
information, the LUAD and LUSC tissue samples were divided into
Immunity-H and Immunity-L groups, respectively (Immunity-H: n
= 233 and Immunity-L: n = 282 in LUAD; Immunity-H: n = 198
and Immunity-L: n = 304 in LUSC) (Supplementary Tables S7
and S8). The ssGSEA-based ESTIMATE algorithm generated
stromal score, immune score, and ESTIMATE score for LUAD
and LUSC (Supplementary Tables S9 and S10). The high- and
low-immunity clusters were significantly positively correlated with
stromal score, immune score, and ESTIMATE score and were
negatively correlated with tumor purity in LUAD (Figure 2) and
LUSC (Figure 3) (p < 0.001).

The Distribution of Immune Cells Between
High- and Low-Immunity Subtypes and
Their Correlation With Clinical Features
and Survival
Clinical data were obtained from TCGA database, including
gender (male and female), age (from 33 to 90 years), primary
disease (LUAD and LUSC), anatomic subdivision (L-lower, L-
middle, L-upper, R-lower, R-middle, and R-upper), follow-up
outcome (partial remission/response, complete remission/
response, progressive disease, and stable disease), number of
pack-year smoked (packs from 0.15 to 240), pathologic stage
(stages I, II, III, and IV), pathologic N (tumor lymph node
metastasis, including N0, N1, N2, and NX), pathologic M (tumor
metastasis, including M0, M1, and MX), pathologic T (tumor
size, including T1, T2, T3, T4, and TX), person neoplasm cancer
status (tumor or tumor-free), radiation therapy (no or yes),
targeted molecular therapy (no or yes), and status (alive or
dead) (Supplementary Tables S1 and S2). The tumor immune
cell infiltration of the 515 LUAD (Supplementary Figure 1A and
Supplementary Table S11) and 502 LUSC (Supplementary
Figure S1B and Supplementary Table S12) samples was
summarized. The between-immune-cell correlation analysis
was carried out with Corrplot R to show (i) the interaction
between tumor immune cells in LUAD—for example, T cells
CD4 memory resting and CD8 T cell, macrophages M1 and
dendritic cells activated, T cell follicular helper and T cell CD4
memory resting, macrophages M0 and dendritic cells resting, B
cells naïve and B cells memory, macrophages M2 and plasma
cell, and NK resting cell and NK activated cell (Supplementary
Figure S1C) and (ii) the interaction between tumor immune cells
in LUSC—for example, mast cells resting and mast cell activated,
NK cell activated and NK cell resting, T cells CD4 memory
resting and T cell CD8, B cells naïve and B cells memory, T cells
follicular helper andT cells CD4memory resting,macrophagesM0
and dendritic cells resting, andmacrophagesM1 and dendritic cells
activated (Supplementary Figure S1D). B cells naïve, mast cell
activated, andmast cells resting were significantly related to LUAD
survival (Figures 4A–C). Plasma cell, T cell CD8, and mast cells
resting were significantly related to LUSC survival (Figures 4D–F).
In terms of clinical characteristics in LUAD, dendritic cells
activated, T cell follicular helper, neutrophils, and mast cells
resting were significantly distributed differentially in different
pathologic T; neutrophils, macrophages M0, T cells CD4 memory
resting, and activated dendritic cells were significantly distributed
November 2021 | Volume 12 | Article 752643
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differentially in different pathologic N; macrophages M0, B cells
memory, NK cells activated, T cells CD4 memory resting, and
eosinophils were significantly distributed differentially in different
pathologic M; neutrophils, macrophages M0, NK cells activated,
and mast cells resting were significantly distributed differentially in
differentpathologic stage, anddendritic cells activatedanddendritic
cells resting were significantly distributed differentially in different
cancer status (Supplementary Figure S2). In terms of clinical
characteristics in LUSC, T cells CD4 memory resting, mast cells
activated, neutrophils, macrophages M0, and T cells follicular
helper were significantly distributed differentially in different
pathologic T; T cells CD4 memory resting and macrophages M1
were significantlydistributeddifferentially indifferentpathologicN;
monocytes, T cells regulatory (Tregs), T cells CD4memory resting,
and neutrophils were significantly distributed differentially in
different pathologic M; and monocytes and T cells regulatory
(Tregs) were significantly distributed differentially in different
pathologic stage (Supplementary Figure S3). The distribution of
immune cells was significantly changed between Immunity-H and
Frontiers in Immunology | www.frontiersin.org 6
Immunity-L groups in LUAD, including B cells memory, plasma
cells, B cells naïve, andT cells CD8 (Figure 4G). The distribution of
immune cells was significantly changed between Immunity-H and
Immunity-L groups in LUSC, including B cells memory,
macrophages M1, macrophages M0, dendritic cells activated, NK
cells resting, mast cells activated, plasma cells, T cells CD4 naïve,
T cells CD4 memory activated, and T cells CD8 (Figure 4H).

Tumor Mutation Information and the
Distribution of Immune Cells in Different
TMB Subtypes of Lung Cancer
To investigate the relationship of immune status and mutation
status in lung cancer, the distribution of tumor mutation was
plotted in LUAD and LUSC (Supplementary Tables S3 and S4).
Themutations of the top 30 genes were plotted in LUAD, including
TP53, MUC16, TNN, RYR2, CSMD3, LRP1B, ZFHX4, USH2A,
KRAS, XIRP2, SPTA1, FLG, COL11A1, NAV3, ZNF536, FAT3,
ANK2, CSMD1, KEAP1, MUC17, PCDH15, APOB,
ADAMTTS12, ADGRG4, PCLO, TNR, DNAH9, RP1L1, NPAP1,
A

C D EB

FIGURE 2 | High- and low-immunity abundance groups based on a panel of immune cell infiltrations in lung adenocarcinoma (LUAD), identified with the ESTIMATE
algorithm. (A) The heat map shows that the LUAD samples were divided into high- and low-immunity abundance groups based on a panel of immune cell infiltrations.
(B) The difference of tumor purity between the high- and low-immunity abundance groups in LUAD. (C) The difference of ESTIMATE score between the high- and low-
immunity abundance groups in LUAD. (D) The difference of immune score between the high- and low-immunity abundance groups in LUAD. (E) The difference of stroma
score between the high- and low-immunity abundance groups in LUAD. ***p < 0.001.
November 2021 | Volume 12 | Article 752643
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and PAPPA2 (Supplementary Figure S4A). The significant co-
occurrenceofgenemutationswasplotted inLUAD, includingTP53
and TNN, TP53 and RYR2, MUC16 and TNN, RYR2 and TNN,
CSMD3 and TNN, LRP1B and MUC16, APOB and XIRP2, FLG
and USH2A, FLG and XIRP2, KRAS and TP53, and KRAS and
MUC16 (Supplementary Figure S4B).Moreover, themutations of
the top 30 genes were plotted in LUSC, including TP53, TTN,
CSMD3, MUC16, RYR2, LRP1B, USH2A, SYNE1, ZFHX4,
KMT2D, FAM135B, XIRP2, CDH10, SPTA1, NAV3, PCDH15,
PAPPA2, RYR3, DNAH5, PKHD1, DNAH8, PKHD1L1, HCN1,
COL11A1, DNAH9, ERICH3, DAMTS12, FLG, MUC17, and SI
(Supplementary Figure S4C). The significant co-occurrence of
gene mutations was plotted in LUSC, including SI and MUC16, SI
and ZFHX4, PAPPA2 and TNN, PAPPA2 and RYR2, RYR3 and
MUC16, NAV3 and CSMD3, and LRP1B and NAV3
(Supplementary Figure S4D). TP53 mutation was ranked top
one in both LUAD and LUSC, and TP53 mutation would
increase the resistance of some drugs, including nutlin-3a (-),
Frontiers in Immunology | www.frontiersin.org 7
oxaliplatin, ERK_2440, ERK_6604, dactinomycin, epirubicin, and
SCH772984 (Supplementary Figure S4E). The distribution of
TP53 mutation in protein domains was plotted in LUAD
(Supplementary Figure S4F) and LUSC (Supplementary Figure
S4G), respectively; its main mutations were located in P53 domain
(Supplementary Figures S4F, G). Furthermore, the distribution of
immune cells was significantly changed between the high- and low-
TMB-score groups in LUAD (Supplementary Table S13),
including B cells naïve, dendritic cells activated, dendritic cells
resting, macrophages M1, macrophages M0, mast cells resting,
plasma cells, NKcells activated, T cells CD4memory resting, T cells
CD4 memory activated, T cells follicular helper, and T cells CD8
(Supplementary Figure S4H). The distribution of immune cells
was significantly changed between the high- and low-TMB-score
groups in LUSC (Supplementary Table S14), including
macrophages M1, dendritic cells resting, NK cells activated, T
cells CD8, T cells CD4 memory resting, and T cells follicular
helper (Supplementary Figure S4I).
A
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FIGURE 3 | High- and low-immunity abundance groups based on a panel of immune cell infiltrations in lung squamous cell carcinoma (LUSC), identified with the
ESTIMATE algorithm. (A) The heat map shows that the LUSC samples were divided into high- and low-immunity abundance groups based on a panel of immune
cell infiltrations. (B) The difference of tumor purity between the high- and low-immunity abundance groups in LUSC. (C) The difference of ESTIMATE score between
the high- and low-immunity abundance groups in LUSC. (D) The difference of immune score between the high- and low-immunity abundance groups in LUSC.
(E) The difference of stroma score between the high- and low-immunity abundance groups in LUSC. ***p < 0.001.
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DEGs Between High- and Low-Immunity
Subtypes, Immune-Related Genes, and
Immune-Related Pathways in Lung Cancer
To identify the underlying biological characteristics in high- and
low-immunity subtypesof lungcancers, 20,530geneswere analyzed
with limma package, and 112 DEGs were identified between the
high- and low-immunity subtypes in LUAD (Figure 5A and
Supplementary Table S15), while 231 DEGs were identified
Frontiers in Immunology | www.frontiersin.org 8
between the high- and low-immunity subtypes in LUSC
(Figure 6A and Supplementary Table S16). Those DEGs
contained many hot immune-related genes—for example, HLA
family in LUAD (Figure 5B) and LUSC (Figure 6B) and immune
checkpoints CTLA4 in LUAD (Figure 5C) and LUSC (Figure 6C)
and PDL1 in LUAD (Figure 5D) and LUSC (Figure 6D).

GO enrichment analyses were used to identify the functional
characteristics of immune-related DEGs in LUAD and LUSC.
A C

D E

G H

F

B

FIGURE 4 | The distribution of immune cells between high- and low-immunity subtypes and their correlation with clinical features and survival. (A–C) Kaplan–Meier
survival analysis for naïve B cells, activated mast cells, and mast cells resting in lung adenocarcinoma (LUAD). “High” means high-abundance subgroup of single-one
immune cell, which is determined by the median values of the abundance of single-one immune cell infiltration. “Low” means low-abundance subgroup of single-one
immune cell, which is determined by the median values of the abundance of single-one immune cell infiltration. (D–F) Kaplan–Meier survival analysis for plasma cells, T cell
CD8, and mast cells resting in lung squamous cell carcinoma (LUSC). “High” means high abundance subgroup of single-one immune cell, which is determined by the
median values of the abundance of single-one immune cell infiltration. “Low” means low abundance subgroup of single-one immune cell, which is determined by the
median values of the abundance of single-one immune cell infiltration. (G) Box plot showing the ratio differences of four immune cells between high- and low-immunity
subtypes in LUAD, and Wilcoxon rank sum was used for the significance test. (H) Box plot showing the ratio differences of 10 immune cells between high- and low-
immunity subtypes in LUSC, and Wilcoxon rank sum was used for the significance test. P-value was verified by log-rank test. *p < 0.05, **p < 0.01, and ***p < 0.001.
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A total of 70 statistically significant GO terms were obtained in
LUAD (Supplementary Table S17), including 34 GO biological
processes (Figure 7A), 30 cellular components (Figure 7B), and
six molecular functions (Figure 7C). A total of 62 statistically
significant GO terms were obtained in LUSC (Supplementary
Table S18), including 29 biological processes (Figure 7D), 24
cellular components (Figure 7E), and nine molecular functions
(Figure 7F). These GO enrichment results demonstrated that the
immune-related DEGs were closely associated with immune
Frontiers in Immunology | www.frontiersin.org 9
processes—for example, regulation of leukocyte-mediated
cytotoxicity, immune response-regulating cell surface receptor
signaling pathway, regulation of T cell activation, cytokine-
mediated signaling pathway, lymphocyte differentiation,
antigen receptor-mediated signaling pathway, natural killer
cell-mediated immunity, T cell proliferation, regulation of
adaptive immune response based on somatic, positive
regu la t ion of leukocyte ce l l–ce l l adhes ion , major
histocompatibility complex (MHC) protein complex, MHC
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FIGURE 5 | Differentially expressed genes (DEGs) between immunity-H and immunity-L subtypes in lung adenocarcinoma (LUAD). (A) The heat map shows DEGs
between high- and low-immunity subtypes in LUAD. (B) Box plot showing the different DEGs of the HLA family between high- and low-immunity subtypes in LUAD.
(C) Box plot showing the differential expression of CTLA-4 (CD152) between high- and low-immunity subtypes in LUAD. (D) Box plot showing the differential
expression of PD-L1 (CD274) between high- and low-immunity subtypes in LUAD. ***p <0.001.
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class II protein complex, cytokine activity, immune receptor
activity, peptide antigen binding, and MHC class II
receptor activity.

KEGG enrichment analyses were used to identify immune-
related pathways based on DEGs between the high- and low-
immunity subtypes in LUAD and LUSC. A total of 34 significant
KEGG pathways was obtained in LUAD (Figure 7G and
Supplementary Table S19) and 35 significant KEGG pathways
in LUSC (Figure 7H and Supplementary Table S20). The KEGG
pathway enrichment results also demonstrated that immune-
related DEGs were closely associated with immune processes—
for example, Th1 and Th2 cell differentiation, antigen processing
Frontiers in Immunology | www.frontiersin.org 10
and presentation, Th17 cell differentiation, natural killer cell-
mediated cytotoxicity, cytokine–cytokine receptor interaction,
primary immunodeficiency, T cell receptor signaling pathway,
viral protein interaction with cytokine and cytokine receptor, and
intestinal immune network for IgA production.

Those immune-related DEGs were used to construct a PPI
network for LUAD (Figure 8A and Supplementary Table S21)
and LUSC (Figure 8B and Supplementary Table S22),
respectively. The entire PPI network was clustered into
different hub modules. Four hub modules were identified for
LUAD, including HLA family (HLA-J, HLA-L, HLA-H, HLA-F,
HLA-G, HLA-DRB6, HLA-E, HLA-DRB1, HLA-DRB5, HLA-
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FIGURE 6 | Differentially expressed genes (DEGs) between immunity-H and immunity-L subtypes in lung squamous cell carcinoma (LUSC). (A) The heat map shows
DEGs between high- and low-immunity subtypes in LUSC. (B) Box plot showing the different DEGs of HLA family between high- and low-immunity subtypes in
LUSC. (C) Box plot showing the differential expression of CTLA-4 (CD152) between high- and low-immunity subtypes in LUSC. (D) Box plot showing the differential
expression of PD-L1 (CD274) between high- and low-immunity subtypes in LUSC. ***p <0.001.
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DQB2, HLA-DRA, HLA-DQB1, HLA-DQA1, HLA-DQA2,
HLA-DPB1, HLA-DPB2, HLA-DOB, HLA-DPA1, HLA-DOA,
HLA-DMA, HLA-DMB, HLA-B, HLA-C, and HLA-A) and
G-protein interaction proteins (CCR9, CCL25, P2RY12, CNR2,
and GPR18). Five hub modules were identified for LUSC,
including HLA family (HLA-L, HLA-H, HLA-J, HLA-F, HLA-
G, HLA-E, HLA-DRB5, HLA-DRB6, HLA-DRA, HLA-DRB1,
HLA-DQB1, HLA-DQB2, HLA-DQA2, HLA-DPB2, HLA-
DQA1, HLA-DPB1, HLA-DPA1, HLA-DOB, HLA-DMB,
HLA-DOA, HLA-C, HLA-DMA, HLA-B, and HLA) and
G-protein coupled receptors (CCR8, CCL25, CXCL11, CXCR5,
XCR1, IFNG, CCR4, GPR18, P2RY12, PNOC, SUCNR1,
and CNR2).
Frontiers in Immunology | www.frontiersin.org 11
Optimization of the Immune-Based
Prognostic Models for LUAD and LUSC
TheKMplot analysis found that 51outof 112 immune-relatedDEGs
were significantly related to LUAD overall survival (p < 0.05)
(Supplementary Figure S5). Furthermore, the seven-immune-
related-gene-signature model (CD1B, CHRNA6, CLEC12B,
CLEC17A, CLNK, INHA, and SLC14A2) was identified with lasso
regression to improve the predicted accuracy for overall survival in
LUAD when log (lambda) was between -3 and -4 (Supplementary
Figures S7A, B). Based on this seven-immune-related-gene-
signature model, the LUAD tissue samples were divided into high-
and low-risk-score groups according to themean value of risk scores
(Supplementary Table S23). Additionally, overall survival had a
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FIGURE 7 | Functional characteristics and pathway enrichment analysis of immune-related differentially expressed genes (DEGs) in lung adenocarcinoma (LUAD)
and lung squamous cell carcinoma (LUSC). (A) The biological process analysis of DEGs between high- and low-immunity subtypes in LUAD. (B) The cellular
component analysis of DEGs between high- and low-immunity subtypes in LUAD. (C) The molecular function analysis of DEGs between high- and low-immunity
subtypes in LUAD. (D) The biological process analysis of DEGs between high- and low-immunity subtypes in LUSC. (E) The cellular component analysis of DEGs
between high- and low-immunity subtypes in LUSC. (F) The molecular function analysis of DEGs between high- and low-immunity in LUSC. (G) Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs between high- and low-immunity subtypes in LUAD. (H) KEGG pathway enrichment analysis
of DEGs between high- and low-immunity subtypes in LUSC. Only gene sets with nominal p <0.05 and false discovery rate (FDR) q <0.05 were considered as
statistically significant. Benjamini–Hochberg multiple testing procedure was used to adjust the p-value for FDR control. The greater node size showed the less
P-value and more significant enrichment. The same color indicated the same function group. Among the groups, we chose a representative of the most
significant term and the lag highlighted. The color depth represented enriched adjusted p-value.
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statistical significance between the high- and low-risk-score groups
(Figures9A,B). TheROCcurve showedareaunder the curve (AUC)
= 0.662 (Figure 9C), and all LUAD samples can be well divided into
high-risk and low-risk groups according to risk score based on
verification of PCA (Figure 9D). The distribution of immune cells
was significantly changedbetweenhigh-and low-risk-scoregroups in
LUAD, including B cells memory, dendritic cells resting, mast cells
activated, mast cells resting, macrophages M0, neutrophils, NK cells
activated, T cells CD8, T cell gamma delta, and Tregs (Figure 9E).
Theheatmapshowed that the risk grouphada significant association
with clinical features, including age at initial diagnosis, the number of
pack-year smoked, pathologic N, pathologicM, pathologic T, cancer
status, pathologic stage, and radiation therapy (Figure 9F).
Furthermore, the nomogram was made to provide a more simple
and convenient method for estimating the patient survival rate
according to basic clinical characteristics and risk score
(Figure 9G). The seven-immune-related-gene-signature was
consistent with single-factor Cox regression analysis of gene. The
univariate Cox regression analysis found that follow-up, pathologic
N, pathologic T, pathologic stage, cancer status, radiation therapy,
and risk score were significantly correlated with overall survival
(Figure 9H). The multivariate Cox regression analysis found that
cancer status, radiation therapy, and risk score possibly acted as an
independent risk factor in LUAD (Figure 9I).

The KM plot analysis found that 12 out of 231 immune-related
DEGs were significantly related to LUSC overall survival (p < 0.05),
including C4BPB, CD300E, FCAMR, GRAPL, LCNL1,
MAP1LC3C, MGC2889, NLRP12, STAP1, TRIM55, UGT1A1,
and VIPR2 (Supplementary Figure S6). Furthermore, the eight-
immune-related-gene-signaturemodel (C4BPB, FCAMR, GRAPL,
MAP1LC3C, MGC2889, TRIM55, UGT1A1, and VIPR2) was
identified with lasso regression to improve the predictive accuracy
for overall survival in LUSCwhen log (lambda) was between -3 and
Frontiers in Immunology | www.frontiersin.org 12
-4 (Supplementary Figures 7C, D). Based on the eight-immune-
related-gene-signature model, the LUSC tissue samples were
divided into high- and low-risk-score groups according to the
mean value of risk scores (Supplementary Table S24).
Additionally, overall survival had a statistical significance between
the high- and low-risk-score groups (Figures 10A, B). The ROC
curve showed AUC = 0.631 (Figure 10C), and all LUSC tissue
samples can be well divided into high-risk and low-risk groups
according to risk scores based on verification of PCA (Figure 10D).
Thedistributionof immune cellswas significantly changed between
the high- and low-risk-score groups in LUSC, including B cells
memory, B cell naïve, mast cells activated, T cell CD4 memory
activated, neutrophils, T cell follicular helper, T cell CD4 memory
resting, and Tregs (Figure 10E). The heat map showed that the risk
group had a significant association with clinical features, including
gender, targeted therapy, radiation therapy, and pathologic stage
(Figure 10F). Furthermore, the nomogram was made to provide a
more simple and convenient method for estimating the patient
survival rate according to basic clinical characteristics and risk score
(Figure 10G). The eight-immune-related-gene-signature was
consistent with single-factor Cox regression analysis of gene. The
univariate Cox regression analysis found that follow-up, age at
initial diagnosis, pathologic T, pathologic M, pathologic stage,
cancer status, and risk score were significantly correlated with
overall survival (Figure 10H). The multivariate Cox regression
analysis found that cancer status, pathologic M, and risk score
possibly acted as an independent risk factor in LUSC (Figure 10I).

The Verification of Immune-Related Gene
Signature Models With Train and Test
Cohorts Provided Consistency
The “caret” R package was used to randomly divide the LUAD
samples into train (n = 252) and test cohorts (n = 250). The risk
A B

FIGURE 8 | Protein–protein interaction (PPI) networks based on immune-related differentially expressed genes (DEGs) in lung adenocarcinoma (LUAD) and lung
squamous cell carcinoma (LUSC). (A) PPI network based on immune-related DEGs in LUAD. (B) PPI network based on immune-related DEGs in LUSC.
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FIGURE 9 | LASSO regression identified the prognostic model in lung adenocarcinoma (LUAD). (A) Risk plot between the high- and low-risk-score groups.
(B) Overall survival analysis between the high- and low-risk-score groups. (C) Receiver operating characteristic curve based on risk score in LUAD. (D) Principal
component analysis for the risk scores revealed two completely disjoint populations, suggesting that there existed extensive differences in the landscape of risk
scores between the high- and low-risk-score samples. Blue means low-risk-score samples; red means high-risk-score samples. (E) Box plot showing the ratio
differences of 10 immune cells between the high- and low-risk-score groups in LUAD, and Wilcoxon rank–sum was used for the significance test. (F) Heat map
of the clinical correlation between the high- and low-risk-score groups in LUAD. (G) The risk score assessment nomogram to evaluate prognosis in LUAD (1-, 3-,
and 5-year survival rates). (H) The univariate Cox regression analysis of risk factors in LUAD. (I) The multivariate Cox regression analysis of risk factors in LUAD.
*p < 0.05, **p < 0.01, and ***p < 0.001.
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scores for each group were calculated according to the seven-
immune-related-gene-signature model (CD1B, CHRNA6,
CLEC12B, CLEC17A, CLNK, INHA, and SLC14A2)
(Supplementary Tables S25 and S26). The Kaplan–Meier
method was used for overall survival analysis between the
high- and low-risk-score groups both in the train and test
cohorts in LUAD, respectively. The KM curves showed that
the risk scores in the train and test cohorts were significantly
associated with LUAD overall survival (Figures 11A, B). The
risk scores for each group were calculated according to the eight-
immune-related-gene-signature (C4BPB, FCAMR, GRAPL,
MAP1LC3C, MGC2889, TRIM55, UGT1A1, and VIPR2)
model (Supplementary Tables S27 and S28). The Kaplan–
Meier method was used for overall survival analysis between
the high- and low-risk-score groups both in the train and test
cohorts in LUSC, respectively. The KM curves showed that the
risk score in the train and test cohorts were significantly
associated with LUSC overall survival (Figures 11C, D).

Immunotherapy Response in LUAD and
LUSC Patients Based on a TIDE Algorithm
The likelihood of an immunotherapy response in LUAD
(Supplementary Table S29) and LUSC (Supplementary Table
S30) patients based on a TIDE algorithm was predicted.
Figure 11E shows that the low-risk group had a lower TIDE
prediction score in LUAD (P = 0.0092). The response rate to
immunotherapy in LUSC has no statistical significance between
the high- and low-risk-score groups (Figure 11F). These results
provided further evidence that patients in the low-risk group
have better prognosis and may have more potential
for immunotherapy.
DISCUSSION

Lung cancer is a common malignant epithelial tumor, which
ranks at the top worldwide in terms of mortality for men and
women (24). LUAD is the most common subtype of lung cancer
among women and non-smokers; by contrast, smoking increased
the risk of LUSC in men (25). Generally speaking, LUAD grows
slowly than LUSC at the same pathologic stage, but metastasis is
always screened at the early stage in LUAD (26). Pan-cancer
studies suggested that the gene mutation and molecular
mechanisms could be highly heterogeneous between different
subtypes of lung cancer, even in LUAD itself (27). Consequently,
the therapies between LUAD and LUSC are often different (25).
The first-line chemotherapy for LUAD was pemetrexed, in
combination with two platinum drugs. The mutation-targeted
treatment plan for LUAD was relatively complete and sensitive
in patients. EGFR and ALK are the most important inhibitors in
LUAD—for example, afatinib (Gilotrif), erlotinib (Tarceva),
osimertinib (Tagrisso), dacomitinib (Vizimpro), and gefitinib
(Iressa) for EGFR and ceritinib (Zykadia), crizotinib (Xalkori),
lorlatinib (Lorbrena), brigatinib (Alunbrig), and alectinib
(Alecensa) for ALK (28). However, the therapies for LUAD are
often ineffective for LUSC. Previous studies found that the
Frontiers in Immunology | www.frontiersin.org 14
immune system was involved in controlling tumorigenesis and
the progression of lung cancer (29). Immunotherapy was shown
to be effective in both LUAD and LUSC, and three PD-1/PD-L1
inhibitors (Opdivo, Keytruda, and Tecentriq) approved for lung
cancer have obtained exciting results (30). Two phase III clinical
trials (CheckMate057 and CheckMate017) in NSCLC patients
showed that nivolumab continued to obtain a long-term overall
survival (13.4 vs. 2.6%) rate and progression-free survival (8 vs.
0%) benefit compared to chemotherapy with docetaxel (31). The
results of the clinical trial KEYNOTE-010 confirmed that
pembrolizumab monotherapy was a safe and effective agent for
NSCLC patients, with a median overall survival of 12.7 months
for pembrolizumab versus 8.5 months for docetaxel (32).
Although various methods have been studied to predict the
clinical responses and outcomes of lung cancers with
immunotherapy based on immune-related gene profiling (33),
the reliable and effective immune cells, immune-related genes,
pathways, and immune-related gene signature during the
progression process of LUAD and LUSC were still lacking.
Here we systematically studied the different genes between
high- and low-immunity clusters in LUAD and LUSC,
respectively, and constructed immune-related gene signatures
for LUAD and LUSC.

In terms of immune cells, the present study found that the
distribution of immune cells was significantly changed between
the high- and low-immunity subtypes in LUAD, including B cells
memory, B cells naïve, T cells CD8, and plasma cells, and in LUSC,
including dendritic cells activated, B cells memory, macrophages
M1, macrophages M0, NK cells resting, mast cells activated, T cells
CD4memory activated, plasma cells, T cells CD8, and T cells CD4
naïve. The different distribution of immune cells was closely
associated with immunotherapy strategies for patients with lung
cancers—for example, one study showed that stage I LUAD
lesions already contained significantly altered T cell and NK cell
compartments; in addition, the altered tumor-infiltrating myeloid
cell subsets likely compromised the anti-tumor T cell immunity
(34). Tumor-infiltrating B lymphocytes existed in all stages of
cancer and played an important role to shape tumor development.
Recent studies have demonstrated that, in more than 35% of lung
cancers, proliferating B cells can be observed, and their proportion
differs between stage and histological subtypes. B cells participate
in humoral and cellular immunity and might exert protumor
functions or antitumor activity (35). The multifaceted effects of
cancer-associated T cells also have been broadly studied in lung
cancer. CD4+ Th1 cells, activated CD8+ T cells, and gd-T cells were
proved to be related to favorable prognosis of lung cancer, whereas
Th2, Th17, and Foxp3+ Treg cells were proved to be related to an
unfavorable prognosis of lung cancer (36). The correlations
between the different immune cell types in the tumor
microenvironment showed that immune cells may influence
each other and have some cross-talking—for example, there is
growing evidence for alternative CD8(+) T cell fates influencing
CD4(+) T-cell-mediated responses (37). Macrophages were
classified as inflammatory (M1) and alternatively activated (M2)
macrophage types. One study showed that conditioned media
from acute lymphoblastic leukemia cells promote the generation
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of dendritic cells with immunosuppressive features and skew M1-
like macrophage polarization towards a less pro-inflammatory
phenotype (38). In some degree, the correlations of immune cells
in our study provided the cross-talking of TME. The present study
Frontiers in Immunology | www.frontiersin.org 15
further found that the distribution of immune cells was
significantly changed between the high- and low-risk-score
groups in LUAD, including dendritic cells resting, B cells
memory, mast cells activated, macrophages M0, neutrophils,
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FIGURE 10 | LASSO regression identified the prognostic model in lung squamous cell carcinoma (LUSC). (A) Risk plot between the high- and low-risk-score groups.
(B) Overall survival analysis between the high- and low-risk-score groups. (C) Receiver operating characteristic curve based on risk score in LUSC. (D) Principal component
analysis for the risk scores revealed two populations. Blue means low-risk-score samples; red means high-risk-score samples. (E) Box plot showing the ratio differences of
eight immune cells between the high- and low-risk-score groups in LUSC, and Wilcoxon rank–sum was used for the significance test. (F) The heat map of clinical correlation
between the high- and low-risk-score groups. (G) The risk score assessment nomogram to evaluate prognosis in LUSC (1-, 3-, and 5-year survival rates). (H) The univariate
Cox regression analysis of risk factors in LUSC. (I) The multivariate Cox regression analysis of risk factors in LUSC. *p < 0.05, **p < 0.01, and ***p < 0.001.
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mast cells resting, T cells CD8, NK cells activated, T cell gamma
delta, and Tregs. The distribution of immune cells was
significantly changed between the high- and low-risk score
groups in LUSC, including B cell naïve, B cells memory,
neutrophils, mast cells activated, T cell CD4 memory resting,
T cell CD4 memory activated, T cell follicular helper, and Tregs.
The high- and low-risk-score groups were based on DEGs
between high- and low-immunity subtypes, which might lead
tumor immunotherapy to personalized and precision medicine.

In terms of the tumor mutation burden, the response to
immunotherapy of a variety of cancers can be predicted by
defining the threshold of tumor mutation burden. TMB, as a
new biomarker, has attracted extensive attention recently and is an
index to measure the number of tumor mutations (39). The
present study also found that the distribution of immune cells
was significantly changed between the high- and low-TMB-score
groups in LUAD, including dendritic cells activated, B cells naïve,
macrophages M0, dendritic cells resting, mast cells resting,
macrophages M1, T cells CD4 memory activated, NK cells
activated, plasma cells, T cells CD8, T cells CD4 memory
resting, and T cells follicular helper, and in LUSC, including
macrophages M1, dendritic cells resting, T cells CD4 memory
resting, NK cells activated, T cells follicular helper, and T cells
CD8. TMB, as a potential biomarker in oncology, could be applied
Frontiers in Immunology | www.frontiersin.org 16
in the clinic. Cancer-specific TMB thresholds for the effective
prediction of treatment response in multiple cancers should be
well established, which potentially could help lead immuno-
oncology to precision medicine (36). It was hypothesized that
tumors with higher TMB have more neoantigens that can be well
recognized by the immune system in response to checkpoint
inhibition (40). In a separate study, the result of whole-exome
sequencing showed that NSCLC patients who received
pembrolizumab had improved durable clinical benefit and
overall response rates with high somatic nonsynonymous
mutation burden (41). TMB was examined in the Checkmate
026 clinical study of metastatic NSCLC patients who received
nivolumab or platinum doublet chemotherapy as first-line
therapy. Patients with a high TMB obtained a higher response
rate when compared with nivolumab chemotherapy (47 vs. 28%)
and improved progression-free survival (9.7 vs. 5.8 months). In
addition, patients with high TMB and high PD-L1 obtained the
best outcomes, and those who had low TMB and low PD-L1 did
the worst (42). The further study showed that TMB and specific
immune cells were associated with responses, and T follicular
helper cells and B cells mediated the responses to checkpoint
inhibitors in high mutation burden in mouse tumor models (43).
The systematic study on immune cells in LUAD and LUSC in
terms of immunity group, risk score group, and TMB group well
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FIGURE 11 | The Kaplan–Meier (KM) curve of train and test cohorts in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). (A) The KM curve
of train cohort in LUAD between the high- and low-risk-score groups. (B) The KM curve of test cohort in LUAD between the high- and low-risk-score groups.
(C) The KM curve of train cohort in LUSC between the high- and low-risk-score groups. (D) The KM curve of test cohort in LUSC between the high- and low-
risk-score groups. (E) Immune response difference between the high- and low-risk-score groups based on Tumor Immune Dysfunction and Exclusion scores
in LUAD. (F) Immune response difference between the high- and low-risk-score groups based on TIDE scores in LUSC.
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reflected the tumor immune microenvironment of LUAD
and LUSD.

In terms of immune-related pathways, the present study
found that immune-related DEGs were enriched in multiple
immune-related pathways, including Th1 and Th2 cell
differentiation, antigen processing and presentation, cytokine–
cytokine receptor interaction, Th17 cell differentiation, viral
protein interaction with cytokine and cytokine receptor,
natural killer cell mediated cytotoxicity, T cell receptor
signaling pathway, primary immunodeficiency, and intestinal
immune network for IgA production. Some of the identified
pathways have been reported to be closely related with lung
cancer in a previous study (44)—for example, the defective HLA
class I antigen processing and presentation machinery
components played a role in the acquired resistance to PD-1
or PD-L1 antagonistic antibodies in immune checkpoint
inhibitor-resistant lung cancer samples (45). Th1 and Th2 cell
differentiation pathways also play a significant role in
inflammation and cancer. Some researchers were enthusiastic
about the regulator of Th1 and Th2, which might be a
therapeutic target for enhancing anti-tumor immunity. Th1
cells could increase the expression of anti-tumor immunity
genes to produce more IFNg and TNFa in the lung (46). The
cell balance between immune cell subsets in lung cancer
controlled immune homeostasis and tumor growth, so
immune cell differentiation pathways were followed with
interest. Th17 cells, directly or via other cytokines, modulate
antitumor immune responses (47). NSCLC samples were
processed to detect Th17 cells and Treg cells by flow
cytometry, and the concentrations of IL-1b, IL-6, IL-10, IL-17,
IL-23, and TGF-b1 were measured by enzyme-linked
immunosorbent assay analysis. The Th17/Treg ratio and the
related cytokines (IL-6, IL-1b, and IL-23) were significantly
higher in NSCLC patients compared with healthy controls.
The Th17 cell differentiation pathway was involved in the
immunopathology of NSCLC. A distinct cytokine environment
in the differentiation of the Th17 may be beneficial in the
treatment of NSCLC (48). Cytokines are reliable serum
markers especially desirable for malignancies like NSCLC. The
interactions of cytokine/cytokine receptor levels and interactions
of cytokines, such as IL-6 and IL-8, TNF alpha, soluble TNF
(sTNF) RI, IL-2 receptor-alpha, IL-10, granulocyte colony-
stimulating factor, soluble vascular endothelial growth factor,
and fibroblast growth factor, became significant predictors in
patients with NSCLC (49). The systematic study on immune-
related pathways between the high- and low-immunity subtypes
in LUAD and LUSC provided some potential gene functions and
regulatory mechanisms in immune system.

In terms of immune-related gene signature for LUAD and
LUSC, the present study found that the seven-immune-related-
gene-signature (CD1B, CHRNA6, CLEC12B, CLEC17A, CLNK,
INHA, and SLC14A2) prognostic model-based high- and low-risk
groups were significantly associated with LUAD overall survival
and clinical characteristics. The eight-immune-related-gene-
signature (C4BPB, FCAMR, GRAPL, MAP1LC3C, MGC2889,
TRIM55, UGT1A1, and VIPR2) prognostic model-based high-
Frontiers in Immunology | www.frontiersin.org 17
and low-risk groups were significantly related to LUSC overall
survival and clinical characteristics. Those identified key immune-
related genes have been reported in lung cancer or immune system
—for example, hUGT1A1 may attenuate immune response. The
number of hepatic CD4(+) and CD8(+) cells would be increased
with a hepatic venous injection of pcDNA3hUGT1A1 that
expressed human bilirubin glucuronosyl transferase 1A1 in rat
(50), and UGT1A1 can encode UDP-glucuronosyltransferase that
is an enzyme in glucuronidation pathway. A comprehensive
analysis of UGT1A polymorphisms could predict tumor
response and treatment outcome in NSSLC treated with
irinotecan and cisplatin, specifically UGT1A1*6 (51). CLNK, a
member of the SLP76 family of adaptors, plays a role to regulate
immunoreceptor signaling, including FC-epsilon R1-mediated
mast cell degranulation and PLC-gamma-mediated B cell
antigen receptor signaling. CLNK was dispensable for the
normal differentiation and functions of mast cells, NK cells, and
T cells (52). FCAMR is a receptor of Fc fragment of IgA and IgM,
with a unique expression profile of FCAMR. FCAMR expressed
specially on follicular dendritic cells and marginal zone B cells,
which suggests that FCAMR is involved in humoral immune
responses. Additionally, it demonstrated that FCAMR
downregulated the retention of the IgM immune complex with
T-independent antigen on marginal zone B cells and follicular
dendritic cells because of endocytosis of the IgM immune complex
to suppress germinal center formation, affinity maturation, and
memory B cell generation for response to T-independent antigen
challenge (53). CD1B was structurally associated with MHC
proteins and formed heterodimers with beta-2-microglobulin.
The CD1 family can mediate the presentation of primarily lipid
and glycolipid antigens of self or microbial origin to T cells (54).
Recent advances have thrust CD1 family into the limelight about
lipid presentation, T cell populations, and the role of CD1
molecules in the engagement of human gd T cells (55). VIPR2,
a neuroendocrine mediator in immune tissues, affects many T cell
functions. The generation of IFN-g is significantly enhanced by
antigen-stimulated T cells in physiological concentrations of VIP,
and it was reported that the enhancement of IFN-g secretion was
increased up to a maximum of 14-fold for the VIPR2-selective
agonist (56). INHA encoded a member of TGF-beta superfamily
of proteins to regulate multiple cellular processes, including cell
proliferation, apoptosis, hormone secretion, and immune
response (57). The construction of immune-related-gene-
signature prognostic models in LUAD and LUSC would
promote individualized treatment and provide potential novel
targets for immunotherapy.
CONCLUSION

Lung cancer is a highly heterogeneous cancer with multiple
subtypes such as LUAD and LUSC, which have been used to
understand the pathogenesis difference, select tissues for
molecular diagnosis, and decide therapeutic strategies. It is
absolutely necessary to develop personalized therapy and precise
histological characteristics for lung cancer immunotherapy. This
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study generates the seven-immune-related-gene-signature (CD1B,
CHRNA6, CLEC12B, CLEC17A, CLNK, INHA, and SLC14A2)
model in LUAD and the eight-immune-related-gene-signature
(C4BPB, FCAMR, GRAPL, MAP1LC3C, MGC2889, TRIM55,
UGT1A1, and VIPR2) model in LUSC, which can not only
predict survival outcome but also reflect the immune status of
lung cancers. This gene signature might be clinically used for the
improvement of individualized therapy based on the risk score
and possible response to immunotherapy.
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