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Abstract

In mammalian cells, endocytosis of the fluid phase and glycosylphosphatidylinositol-anchored proteins (GPI-APs) forms
GEECs (GPI-AP enriched early endosomal compartments) via an Arf1- and Cdc42-mediated, dynamin independent
mechanism. Here we use four different fluorescently labeled probes and several markers in combination with quantitative
kinetic assays, RNA interference and high resolution imaging to delineate major endocytic routes in Drosophila cultured
cells. We find that the hallmarks of the pinocytic GEEC pathway are conserved in Drosophila and identify garz, the fly
ortholog of the GTP exchange factor GBF1, as a novel component of this pathway. Live confocal and TIRF imaging reveals
that a fraction of GBF1 GFP dynamically associates with ABD RFP (a sensor for activated Arf1 present on nascent pinosomes).
Correspondingly, a GTP exchange mutant of GBF1 has altered ABD RFP localization in the evanescent field and is impaired
in fluid phase uptake. Furthermore, GBF1 activation is required for the GEEC pathway even in the presence of Brefeldin A,
implying that, like Arf1, it has a role in endocytosis that is separable from its role in secretion.
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Introduction

Internalization of cargo at the cell surface takes place via

multiple mechanisms. For instance, the well-studied transferrin

receptor (TfR) is endocytosed via the dynamin-mediated pinching

of clathrin coated vesicles from the plasma membrane [1,2]. Other

pathways that do not require clathrin or dynamin for internali-

zation are less well characterized, but are also prevalent - the

GEEC pathway is one such example [3]. This pathway was

originally identified on the basis of the selective internalization of

various GPI-APs such as the folate receptor [4], but has also been

shown to facilitate the entry of: cholera toxin bound to its

ganglioside receptor GM1[5]; the vacuolating toxins aerolysin and

VacA[6]; and bulk fluid phase (pinocytosis) in diverse mammalian

cells [4].

At the cell surface, a fraction of GPI-APs are organized in

nanoclusters which are sensitive to the extraction of cholesterol

[7]. The cholesterol-dependent organization of GPI-APs, as well as

their endocytosis via the GEEC pathway, requires cortical actin

polymerization [8,9]. Recent evidence links local actin polymer-

ization to GEEC endosome formation via a regulatory circuit of

two small GTPases - Cdc42 and Arf1[8,10]. Here, Cdc42 cycles

on or off the plasma membrane according to its active (GTP-

bound) or inactive (GDP-bound) state respectively, where it

promotes actin polymerization [8]. Cdc42 cycling is modulated by

ARHGAP10, a Rho GTPase- activating-protein (GAP) that also

harbours an Arf-binding domain which is specific for Arf-GTP

(ABD; [10,11]). Thus Cdc42–GAP activity, and actin-driven

GEEC endocytosis is coupled to Arf1 activation [10]. However, it

is not known how Arf1 activation occurs during GEEC

endocytosis.

Arf1 activation is facilitated by guanine-nucleotide exchange

factors (GEFs; [12]), which contain a conserved Sec7 domain

responsible for GDP-GTP exchange [13,14]. Two well charac-

terized Arf-GEF subfamilies, GBF1 and BIGs, appear to regulate

Arf activation for coat recruitment and vesicular traffic at the

Golgi complex [15,16]. It follows that these Arf-GEFs are

predicted in vivo targets for the fungal metabolite Brefeldin A

(BFA), an established inhibitor of the secretory pathway which

binds at the interface between the Sec7 domain and Arf-GDP in

vitro [17,18]. Since the GEEC pathway is upregulated in the

presence of BFA, it has been proposed that the effector GEF(s)

required to activate Arf1 for GEEC endocytosis may be BFA-

insensitive [10].

The significance of the GEEC pathway is broadening as it is

identified in more mammalian cell types and additional cargo is

found [3]. Furthermore, evidence from Drosophila cells indicates

that the GEEC pathway may be conserved across phyla. In

hemocytes derived from shibire (Drosophila dynamin) temperature-

sensitive mutants, GPI-APs and the fluid phase continue to be

internalized at the restrictive temperature [19]. However, the roles

of key molecules such as Arf1, Cdc42, cholesterol and actin with
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respect to endocytosis are unexplored in Drosophila, so the presence

of a canonical GEEC pathway in this organism is still an open

question.

In this report, we develop quantitative endocytic assays in

Drosophila S2R+ cultured cells using a variety of fluorescent probes,

reporters and high resolution microscopy. We then exploit the

facility of long double-stranded RNA (dsRNA) mediated RNA

interference in this cell line (RNAi; [20]) to establish the presence

of an Arf1-mediated pinocytic pathway that bears a striking

resemblance to the GEEC pathway. With the added benefit of

lower gene redundancy in the Drosophila genome [21], we utilize

functional RNAi genomics to identify the Arf GEF, garz, as a

candidate Arf1 effector during pinocytosis in S2R+ cells. We

validate this strategy by examining the role of the mammalian

ortholog of garz, GBF1, and find that it is a novel regulator of the

GEEC pathway.

Materials and Methods

Materials
Apart from the fluorochromes Cy3, Cy5 (AP Biotech, UK),

Alexa488/568/647, FITC and Latrunculin A (Molecular Probes,

OR), all chemicals were obtained from Sigma-Aldrich, MO.

Hybridoma cultures containing anti-GFP monoclonal (1B3A8)

and anti-hTFr monoclonal (OKT9) were obtained from S.

Sundaresan (Bangalore Genei, India) and American Type Culture

Collection (ATCC,VA) respectively, and purified with IgG Fast

Flow columns (Amersham,UK). Probes were labeled with Alexa or

Cy3/Cy5 fluorophores according to manufacturers’ instructions.

Anti-Drosophila dynamin antibodies were from BD Biosciences, CA.

Secondary antibodies were from Jackson Laboratories, ME. PI-

PLC was purified from PI-PLC-expressing bacterial strains [22].

Plasmids and Constructs
pUAST hTFr encoding the human transferrin (Tf) receptor

(TfR), and pCasper YFP-Rab7 [23] were kind gifts from S.Cohen

(EMBL, Heidelberg) and S.Eaton (MPI Cell Biology, Dresden)

respectively. pBSPURO was obtained from M. Wilm (EMBL,

Heidelberg). pUAST-GFPRab5 and pUAST-GFPRab11 were

cloned by ligation of PCR generated fragments of GFP and

Drosophila Rab5 or Rab11 cDNAs into the pUAST vector [24],

and subsequently sequenced. pUAST-GFPGPI [25] was obtained

from the Drosophila Genome Resource Center (DGRC, IN).

Mammalian GFPGBF1 and GFPGBF1E794K constructs were a

kind gift from E. Sztul (U. Alabama, Birmingham).

Cell culture, Fly stocks, RNAi and stable lines
Drosophila S2R+ cells were obtained from S. Yanagawa [26],

split every 6–8 days and grown at room temperature (21–24uC).

They were maintained in Schneider’s Drosophila Insect Medium

(SDM; Invitrogen) supplemented with 7.5% heat-inactivated fetal

bovine serum (FBS; Gibco-BRL) and 150 mg/ml penicillin,

250 mg/ml streptomycin, and 750 mg/ml glutamine. RNAi was

performed according to the procedure of Clemens [20].

Transfections were performed with Cellfectin (Invitrogen, CA)

or Effectene (Qiagen, Germany), according to the manufacturer’s

instructions. For the generation of stable lines, the PBSPURO

plasmid bearing puromycin N-acetyltransferase was co-transfected

at a 1:30 ratio with the desired constructs. Stable lines were

selected over 2–3 weeks by incubation in medium containing

1 ug/ml puromycin. Chinese Hamster Ovary (CHO) cells stably

expressing FR-GPI and human TfR (IA2.2 cells) were used for

endocytic assays. CHO cells were grown in HF-12 (HiMEDIA,

Mumbai, India) containing NaHCO3 and penicillin, streptomycin

(100 mg/ml) and supplemented with 10% FBS (GibcoBRL,

Rockville, MD). CHOs were transfected with different DNA

constructs using FuGENE6 (Roche Diagnostics, Germany)

according to standard protocol, and assayed 18–20 hrs after

transfection [10].

Probes for endocytosis and immunodetection
Since both the S2 line and primary cultures of Drosophila

hemocytes have been previously shown to exhibit scavenger

receptor-endocytosis [19,27], we tested for the presence of this

pathway in S2R+ cells using a polyanionic ligand (malelyated

BSA; mBSA; [19,28]). The 10 kDa fluid phase tracer FITC-

dextran was made as described previously (Fdex; [4]) and 10 kDa

tetramethyl rhodamine-dextran (Rdex) was purchased from

Molecular Probes, OR. Human apo-transferrin was iron-loaded

and conjugated to Alexa 568 or Alexa 647 dyes [29,30]. Anti-GFP

hybridoma was purified (see Materials) and conjugated to Alexa

647 to yield A647aGFP. Immunofluorescence was carried out as

described [31]. For Tf and GPI-AP probes, stable S2R+ lines

constitutively expressing the well characterized human transferrin

(Tf) receptor (TfR) and/or GFP-GPI were generated. Cy3

conjugated mBSA (Cy3mBSA; [19]) or Alexa568/647 conjugated

Tf (A568Tf/A647Tf) was used to probe receptor-mediated

pathways whereas FITC or TMR conjugated to Dextran (FDex

and RDex respectively) were used as fluid-phase tracers. The

receptor probes Cy3mBSA, Cy5mBSA and biotinylated Cy3m-

BSA (Cy3bmBSA; [19]) were used at 10–30 mg/ml in S2R+ cells.

At these concentrations, the binding and internalization of labeled

mBSA was completely competed by 100 fold excess unlabeled

mBSA. Fdex and Rdex, which are markers for bulk fluid uptake,

were used at 1–2 mg/ml, unless otherwise specified. Tf and aGFP

probes were used at 10 ug/ml and 5 ug/ml respectively. In the

corresponding cells, Cy3mBSA, A568/A647 Tf and aGFP ligands

show saturable receptor labeling, which is competed by 100 fold

excess unconjugated ligand (not shown).

Uptake assays
For S2R+ uptake experiments, cells were incubated with

endocytic probes in M1 buffer (150 mM NaCl, 5 mM KCl,

1 mM CaCl2, 1 mM MgCl2, 20 mM HEPES, pH 6.9; modified

from [29]) supplemented with BSA (1.5 mg/ml) and D-glucose

(2 mg/ml) at room temperature (21–24uC), unless otherwise

indicated, and extensively washed in the same medium. To visualize

the specific endocytic uptake of GFP-GPI or TfR, cells were

incubated with fluorescent conjugates of aGFP or Tf (along with

fluid phase markers if needed) at room temperature for different

pulse times and then washed in M1 and placed on ice. Where

necessary, PI-PLC (0.3 mg/ml; 45 min on ice) or ascorbate buffer

with 50 ug/ml desferroxamine mesylate (pH 4.5; 10 min on ice)

treatment was carried out to remove cell-surface GFP-GPI or Tf

respectively. Surface pools of receptors were labeled by further

incubation on ice with antibodies to GFP (aGFP with a different

fluorochrome) or anti-hTfR (Okt9) for 30 min. Subsequently, cells

were washed, fixed (2.5% paraformaldehyde in M1) and imaged.

When required, endosomal pH was neutralized by the addition of

ammonium chloride (30 mM in M1) post-fixation so as to dequench

pH-sensitive fluorochromes. Assays for surface accessibility of

mBSA were carried out as described previously [19]. Mammalian

uptake experiments were carried out exactly as described previously

[10]. For Brefeldin A (BFA) experiments, IA2.2 cells were treated

with 20 mg/ml BFA for 60 min and pulsed with TMR-Dex during

the last 10 min before fixation and imaging.

For determining externalization rates in S2R+ lines (see [32]),

cells were incubated in the presence of a saturating concentration
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of A568 Tf for varying times until they achieved a maximum,

steady-state value of cell-associated label. Since Tf binding to

surface TfR is rapid, and since saturating levels of Tf were used in

this assay, the rate of accumulation of Tf is mainly dependent

upon the rate at which unoccupied intracellular TfR are

externalized to the plasma membrane to acquire Tf. The exocytic

rate constant, ke can be quantitated once the parameters Tfs and

Tfss are estimated from a best fit to the function:

Tft ~ Tfsz Tfss 1 { exp {ke tð Þ
h i

where Tft is the total amount of Tf bound to TfR at time t; Tfs is

the amount of Tf bound to surface TfR (constant in this assay);

and Tfss is the Tf bound to internal TfR at steady state. The values

for ke are determined from the best least-squares fit to this function

[29]. As a control, to evaluate the contribution of the biosynthetic

pool of TfR during the course of the assay, cells were pretreated

with 75 mM cyclohexaminde for 2 hrs and the assay was carried

out in the presence of cyclohexamide (Figure S2B).

Cholesterol measurements and serum delipidation
FBS was delipidated by organic extraction with diethyl ether

according to Cham and Knowles [33], and dialysed extensively in

PBS. This extraction reduced total cholesterol content by over

99% as measured by the Red Amplex Cholesterol Assay Kit

(,10 ug/ml sterol; Molecular Probes, OR), while leaving overall

protein levels in serum unchanged. S2R+ cells were adapted to

growth in delipidated medium containing 10% lipid-extracted

FBS in SDM. This was achieved by serial passage in 150 ml flasks

with linearly increasing levels of lipid-extracted FBS over 5–8

weeks. Filipin staining and methl-b-cyclodextin (MbCD) treat-

ments were as described previously [8] except that the incubation

temperature was reduced to 22uC to match optimum growth

conditions for Drosophila cells.

Fluorescence imaging, quantification and processing
Wide field imaging was carried out on a Nikon TE300 inverted

fluorescence microscope and images captured with a CASCADE

II camera (Photometrics, AZ). Fluorescence quantification was

carried out with a low magnification objective (20x, 0.75NA) to

obtain 30–100 cells per field, while higher resolution images for

visualization purposes were obtained with a 60X, 1.4NA objective.

Confocal microscopy was carried out on an Andor Spinning Disc

confocal imaging system (60x 1.42 NA or 100x 1.4 NA, with Ixon

EMCCD; Andor Technologies, Ireland) using appropriate factory-

set filters and dichroics for different fluorophores. Care was taken

to avoid fluorophore saturation during acquisition. Total internal

reflection fluorescence (TIRF) microscopy imaging was done on a

custom-built setup around a Nikon Eclipse TE 2000U inverted

microscope (described in detail in [8]). Images were collected using

appropriate filters onto cooled EMCCD-based Cascade 512B

cameras (Roper Scientific, AZ) with ‘on-chip multiplication gain’

feature for providing single-molecule detection sensitivity in

solutions and cells. For two-colour TIRF microscopy, cells were

illuminated sequentially by 488 or 543 nm lasers and fluorescence

emission was collected using corresponding emission filters

mounted on a shutter wheel (Sutter Instruments, CA) operating

coordinately with the illuminating lasers. Background subtraction

and fluorescence quantitation was carried out as described

previously [29] using MetaMorph or custom routines written in

MATLAB (described in Figure S1). Statistical methods were as

described previously [10]. Images were pseudo-coloured using

Adobe Photoshop and composites were assembled using the same

software. Quantification of colocalization was performed as

described [4,34]. All processing including determination of

colocalization was performed using similar parameters regardless

of the type of endocytic tracer used. Colocalization fraction was

calculated as the number of endosomes per cell whose surface area

overlapped at least 30% in each cell. The maximum extent of

colocalization obtained by this method is 80% for cointernalized

A647-TfR and A568-TfR in the same cell [4].

RT-PCR and Western blotting
For each condition or dsRNA treatment, about 10 ug total

RNA was extracted from ,106 S2R+ cells with Trizol reagent

(Sigma). First strand cDNA synthesis was performed with

Superscript III Reverse Transcriptase (Invitrogen, CA) and a

polyT22 primer according to the manufacturer’s instructions. The

reaction product was then treated with DNAse-free RNAse

(Ambion, CA) to remove RNA template. Gene-specific primers

spanning introns were designed to confirm the absence of genomic

DNA contamination during PCR for each transcript. PCR was

performed for 20 cycles and 30 cycles for semi-quantitative

comparison of amplification. Western blotting was performed

according to standard protocols.

Results

Pathways of endocytosis in Drosophila S2R+cells
The S2R+ cell line, which expresses a wingless pathway receptor

[26] is believed to be a derivative of the embryonic S2 line [35].

The morphology of these cells is heterogeneous, but the majority

of cells spread out, exhibiting broad and thin lamellapodia [36].

These characteristics allow for high resolution wide field imaging

of early endosomes. To visualize early steps of internalization, we

co-pulsed S2R+ cells with fluid phase (Fdex/Rdex) and receptor

(Cy3mBSA and/or A647Tf) probes for very short times (30–60 s)

and fixed them before imaging (see Materials and Methods for

details of probes). Post-pulse most of the Fdex and Cy3mBSA

probes were found in separate, peripheral structures (Figure 1A).

By contrast, Cy3mBSA was largely found together with internal-

ized Cy5Tf in the same period (Figure 1A). Quantification of

colocalization of these structures indicated that Tf puncta were ,5

fold enriched in mBSA when compared to Fdex (graph in

Figure 1A). Conversely, only a small fraction of Fdex punctae also

contained Tf and mBSA when all three probes were co-pulsed

(Figure 1A).

To follow the endocytic route of GPI- anchored proteins (GPI-

APs), S2R+ cells stably expressing GFP-GPI were pulsed with

Alexa 647-coupled antibodies to GFP (A647aGFP) and Rdex

(Figure 1A). Internalized Rdex labeled structures contained

significantly more GFP-GPI as marked by A647aGFP, compared

to mBSA or Tf (graph in Figure 1A). To examine nascent

endosomes present close to the plasma membrane at higher

resolution, we pulsed cells expressing clathrin light chain GFP with

Rdex and A647Tf for 40 s and imaged them with TIRF

microscopy. In the evanescent field, the fraction of clathrin GFP

punctae that colocalized with Tf at early times was over 10 fold

greater than those that contained Rdex (Figure 1B).

Sequence of endosome mixing and separation, and the
fate of endocytic cargo

To study endosomal dynamics, we generated a stable S2R+ line

expressing moderate levels of Rab5 GFP, an early endosomal

marker which participates in homo- and hetero-typic endosome

fusion and sorting steps [37], and performed pulse-chase assays

with Rdex and A647Tf. When levels of colocalization with the

GEEC Endocytosis in Drosophila
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Figure 1. Fluid phase and GFP GPI probes mark a distinct endocytic route at early time points in S2R+ cells. (A) FITC- or TMR- dextran
(Fdex, Rdex respectively) was pulsed along with: malelyated BSA or A568/A647 TfR (mBSA, TfR respectively); or aGFP (to mark internalized GFP GPI)
for 30–60 s. Cells were fixed and imaged with wide field microscope at high resolution. Colocalization of different probes in combination with each
other was then quantified. Bar graph represents mean6s.e.m. from at least 3 independent experiments with 20–50 cells for each probe combination
in each experiment. (B) Rdex was co-pulsed with A647Tf for 30 s in cells expressing Clathrin light chain GFP (Clc GFP) which were fixed and imaged
with TIRF microscopy. Bar graph represents the mean6s.e.m. percentage of Clc GFP spots that colocalized with TfR and Rdex endosomes (measured
from .600 endsomes of each type from 13 cells). Asterix on all bar graphs mark the comparison population mean value and refer to those means
that are significantly different from controls (P,0.05 by Student’s t-test). The outline in white was traced using the phase contrast image of the cells
obtained in bright field. Bars in A = 5 mm, B = 2 mm, insets magnified 2x.
doi:10.1371/journal.pone.0006768.g001

GEEC Endocytosis in Drosophila

PLoS ONE | www.plosone.org 4 August 2009 | Volume 4 | Issue 8 | e6768



steady state pool of Rab5 GFP were examined over different chase

times, most Rdex and A647Tf containing endosomes were found

to lack Rab5 during the short pulse (30 s–60 s), and then acquire

Rab5 steadily over a chase time of upto 30 min (Figure 2A).

Interestingly, mixed endosomes overlapped with Rab5 punctae in

a biphasic pattern, rising rapidly to encompass over 60% of Rab5

punctae at 2 min post probe entry and falling to pre-pulse levels

with longer chase times (Figure 2A). This time course is not

influenced by overexpression of Rab5-GFP protein, as mixing

kinetics of Fdex and Tf in lines with or without Rab5 GFP was

similar (Figure S2A). Furthermore, heterotypic mixing between

Fdex and TfR probes in wild type cells also rises rapidly to a peak

in a 2 min pulse (Figure 2B), a process that in mammalian cells has

been shown to require Rab5 function [38]. A similar time course

of mixing was found when examining homotypic fusion between

fluid-containing endosomes, which always occurred in Rab5

marked structures (Figure 2C).

We next examined the kinetics of Tf binding and recycling in

Drosophila cells in detail because it is unclear whether the canonical

Tf pathway operates in insect lines [39]. The binding and uptake

of TfR was kinetically analyzed over 2 hrs with saturating levels of

A568Tf (Figure 3A) in an approach to steady-state assay (Materials

and Methods; [32]). At each time point, total binding of Tf at

room temperature was normalized to levels of Tf bound out to

steady state (upto 2 hrs). Total binding at 4uC was assumed to be

the initial surface receptor occupancy. Uptake at room temper-

ature exceeded binding at 4uC by 2.5-fold and saturated after 15–

20 min, and similar values were obtained when the assay was

carried out with cyclohexamide (to block synthesis of new TfR;

Figure S2B). The kinetics of approach to steady state reflect the

rate of export of the TfR to the cell surface with a rate constant of

0.216/min (t1/2,3 min) if we assume a single first order process.

This value agrees with the time course of quantitative TfR uptake

in S2R+ cells after surface receptor normalization with Okt9 (not

Figure 2. Fluid phase and TfR pathways intersect in Rab5-positive compartments and subsequently follow expected fates. (A) TMR-
dextran (Rdex) was co-pulsed with A647Tf (TfR) in cells expressing Rab5 GFP (Rab5 GFP) for 30 s (left pane) or the pulse was chased for 4 min in
complete medium (right pane). Graph shows quantified colocalization indices over different pulse (30 s or 60 s) and pulse and chase times (1 min
pulse and 1, 2, 3 or 4 min chase; and a 3 min pulse and 30 min chase) of: Tf-labeled endosomes co-localized with Rab5 GFP (blue symbols and line);
Rdex endosomes with Rab5 GFP (red symbols and line); and Rab5 GFP-labelled endosomes that contained both Rdex and Tf (green symbols and line).
Data points represent mean6s.e.m pooled from 2 independent experiments with at least 20 cells for each point. (B) Time course of mixing of Fdex,
mBSA and TfR probes in S2R+ cells. Colocalization values for different probes and pulse times (0.5 min, 1 min, 2 min, 5 min and 10 min; or a 15 min
chase following a 1 min pulse) were obtained as described earlier (Figure 1A). The fraction of TfR or mBSA endosomes that also contain Fdex is
relatively low at all time points [TfR-Fdex (brown symbols and line) and mBSA-Fdex (red symbols and line), respectively]). Conversely, the fraction of
Fdex endosomes that contain TfR (Fdex-TfR; blue symbols and line) or mBSA (Fdex-mBSA; green symbols and line) is initially low, and increases with
longer pulse times. (C) S2R+ cells expressing Rab5 GFP were pulsed with Rdex, washed and then pulsed with A647dex to examine homotypic fusion
of newly formed fluid endosomes (see schema at the top of image). Rab5 GFP was not found on endosomes labeled with either the first or the
second short pulse of dextran (left panel). When the two staggered pulses were chased for 4 min (right panel), endosomes containing the first pulse
acquired Rab5 GFP (empty arrowheads) and a fraction of these also contained the second pulse (filled arrowheads). There was little or no mixing
between the two pulses outside Rab5 GFP labeled structures. Bars in A, C = 5 mm, insets magnified 2x.
doi:10.1371/journal.pone.0006768.g002
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shown). Also, this externalization rate is 3 fold higher than in

CHO cells (0.069/min, t1/2,10 min; Johnson et al., 1993), and

,10 fold higher than that of GFP-GPI in S2R+ cells (0.02883/

min, t1/2,25 min; Figure 3A). Consistent with a recycling step, a

significant pool of internalized TfR after a 20 min pulse was found

in large endosomes that also labeled with antibodies to the

recycling marker Rab11 (Figure 3A) and were devoid of the

lysosomally directed fluid phase (Figure 3B), and unlikely to enter a

degradative pathway. Consistent with this, Tf levels inside cells

were not sensitive to the addition of protease inhibitors (PI;

Figure 3C).

After a 20 min pulse, the majority of internalized endosomes

that accumulated Fdex were marked by YFP-Rab7 (Figure 3B),

and co-localized with Cy3-mBSA (not shown; [19]). Internalized

Cy3mBSA, a marker that traverses the lysosomal route (Sriram et

al., 2003), is protected from degradation in the presence of PI

(Figure 3C). We also monitored the change in pH accessed by

fluid-phase markers, upon increasing chase time in the endocytic

pathway. Consistent with Rab5 acquisition in sorting endosomes,

the pH of fluid-containing endosomes 2 min after internalization,

as measured by a ratiometric assay[38], is ,6.0 (Figure 3D; [40]).

This value drops to pH 4.5 once the probes reach deeper in the

endocytic pathway (Figure 3D). Thus, S2R+ cells also have an

endocytic system that resembles that of a typical mammalian cell

(early endosomal [41]; late endosomal transport [42]). Here,

endocytic trafficking involves a hetero and homo-typic mixing of

Figure 3. Characteristics of endosomal progression in S2R+ cells. (A) A568Tf (TfR) was pulsed for 15 min and cells were processed for
immunocytochemistry with anti-Rab11 (aRab11), and subsequently imaged at high resolution. Plot shows kinetics of Tf and aGFP uptake in S2R+ cells
transfected with the either the human TfR or GFP-GPI in an approach to steady state assay (see Materials and Methods). Each data point represents
the mean6s.e.m. of a replicate experiment from at least 200 cells/replicate. Points have been fit to y = 0.381+0.666(1 – e-0.216t), R2 = 0.922 for TfR and
y = 0.339+0.698(1 - e-0.029t), R2 = 0.966 for GFP GPI. (B) TMR-dextran was co-pulsed with A647Tf for 15 min in cells expressing Rab7 YFP, and cells were
imaged with a spinning disk confocal. A single (median) plane from a stack is shown. (C) Cells expressing corresponding receptors were pulsed with
TfR, mBSA or aGFP for 2 hrs and then the probes were chased in complete medium for an additional 2 hrs in the presence (+PI) or absence (-PI) of
protease inhibitors. The integrated intensity of each probe in cells was then quantified and normalized to controls. Values are represented as
mean6s.e.m. from at least 100 cells per treatment in 2 independent experiments. Asterix denote P,0.05 by Student’s t-test. (D) Endosomal pH
measurements. S2R+ cells were pulsed for 30 min with Fdex and Rdex, washed and mildly fixed, and subsequently equilibriated with a range of
different buffer pHs to obtain a linear calibration of the ratio of Fdex/Rdex fluorescence against pH (dotted line through empty circles; R2.0.95). To
label different populations of endosomes, S2R+ cells were either pulsed for 30 s with Fdex and Rdex or pulsed and then chased for 2 min, 4 min,
10 min and 45 min (shown on the graph as squares filled in descending grayscale). The ratio of Fdex/Rdex intensities was measured and compared to
equilibriated values to obtain pH values. 30 s fluid endosomes were mildly acidic with a pH of 6.560.3 (mean6s.e.m. of 2 independent experiments,
.30 cells for each time point) whereas the pH of more mature fluid endosomes was progressively more acidic, with 45 min endosomes having a pH
of 4.460.1, close to values reported for lysosomes. Bars in A = 2.5 mm, B = 5 mm, insets magnified 2x.
doi:10.1371/journal.pone.0006768.g003
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cargo at the early endosomal compartment, followed by a

segregation of certain membrane cargo (TfR and GPI-APs)

towards a recycling fate, and lysosomal direction of the fluid-

phase and ligands of the scavenger receptor.

A dynamin- independent pinocytic pathway in S2R+ cells
We next assessed if endocytic trafficking of any of the

endocytosed cargo had a requirement for dynamin, one of a set

of key molecular criteria used for the characterization of endocytic

pathways [3]. S2R+ cells were treated with control dsRNA against

the gene for zeocin resistance (which is absent in the Drosophila

genome) or dsRNA corresponding to ,800 bp of coding sequence

for the shibire gene, which codes for Drosophila dynamin. The

dsRNA for shibire was effective in reducing protein levels for the

target gene as seen in Western blots (Figure 4A). In control cells,

TIRF imaging showed that antibodies to shibire label discrete

puncta at the plasma membrane, which are presumably clathrin

coated pits [19,43]. This localization was lost in shibire depleted

cells (Figure 4A). Cells depleted for dynamin were pulsed with

either Fdex or A647aGFP (to label GFP-GPI) and A568Tf for

3 min. The ratio of internalized aGFP or Tf to the surface levels of

the respective receptors in each cell was determined quantitatively

via MATLAB routines (see Figure S1 for methodology of

quantitative endocytic assays). In cells without dynamin, the

internalized to surface ratio of TfR was reduced ,50% compared

to control cells (Figure 4B). The difference was largely due to an

accumulation of TfR on the surface, probably reflecting a

decreased rate of internalization of Tf. We verified this response

to dynamin depletion using the fluorescent probe for the

endogenous scavenger receptor, mBSA, in an accessibility assay

(Figure 4C). The assay was used previously to assess the

accessibility of clathrin coated pits to receptor ligands in Drosophila

hemocytes harbouring a temperature sensitive shibire allele [19].

Here both control and shibire depleted cells showed similar

quantitative levels of biotinylated mBSA (bmBSA) labeling, but

the bmBSA in the shibire-depleted cells was ,2 fold more

accessible to streptavidin (Figure 4C, indicative of surface-arrested

receptor pits [19]. The effect of dynamin depletion on Tf

endocytosis was similar to that of rapid dynamin inhibition with

the small molecule inhibitor dynasore ([44]; Figure 4D). Notably,

the levels of normalized GFP-GPI uptake were not different from

controls in shibire-depleted (Figure 4B) or dynasore treated cells

(Figure 4D). Similarly, these cells also exhibited normal or higher

levels of Fdex uptake after loss of dynamin function (Figures 4B,D),

and Fdex endosomes continued to accumulate in cells which

contained surface-arrested bmBSA structures (Figure 4C). Thus,

dynamin depletion in S2R+ cells inhibits internalization of two

classes of receptors, and increases their surface accessibility, while

GFP-GPI and fluid uptake is not inhibited. These data

conclusively show that although TfR and scavenger receptors

(for mBSA) are internalized using dynamin-dependent mecha-

nisms, GPI-AP and fluid-phase uptake relies on mechanisms that

do not utilize dynamin.

Actin and cholesterol dependence of endocytic
pathways

Since agents that manipulate cholesterol levels in cells may have

pleiotropic effects and can be toxic to the cells, the precise role of

cholesterol in steady state cellular processes like constitutive

endocytosis has been difficult to interpret. Here we exploit the

finding that Drosophila cells can produce lipids from metabolic

pathways, but lack key genes required for cholesterol biosynthesis

[45]. By substituting normal serum with delipidated serum (which

contains ,10 ug/ml cholesterol; see Materials and Methods) in fly

growth medium, we could severely restrict the supply of cholesterol

into S2R+ cells. We find that delipidated serum-adapted cells are

able to grow well despite ,1% of normal sterol levels in their

membranes (as measured by filipin binding; Figure 5A, and

Carvalho et al., submitted). Notably, these adapted cells take in

significantly lower levels of Fdex in a quantitative assay (Figure 5B).

Furthermore, surface levels of TfRs are reduced in these cells (not

shown), but their internalization is unaffected. The specific effect of

cholesterol depletion on Fdex uptake can be reversed by incubating

the depleted cells in cholesterol containing medium for 12 hrs

(Figure 5B). Repleted cells exhibit normal levels of Fdex uptake, and

have high levels of Tf internalization when normalized to surface

pools of the receptor (Figure 5B). The surface levels of TfR remain

low in these repleted cells (not shown), perhaps owing to slower

recovery kinetics over the 12 hr incubation period.

In S2R+ cells, both Fdex and Tf uptake were highly sensitive to

the actin disrupting agent Latrunculin A (Lat) or Jasplakinolide

(Jas). Cells were incubated with 1 mM Lat, or 4 mM Jas for a total

of 30 min, in which time they were pulsed with Fdex or TfR in the

presence of drug for different periods. Both Fdex and normalized

Tf internalization was reduced .50% at short pulse times in Lat

(1 min; Figure 5C). By contrast, treatment with Jas had little effect

on Fdex uptake at short pulse times, while strongly inhibiting TfR

uptake. At longer pulse times, Fdex accumulated in Lat treated

cells, while Jas treated cells showed lower levels of Fdex uptake,

and TfR uptake appeared to recover to steady state levels seen in

untreated cells (Figure 5C).

To test whether the accumulation of Fdex in Lat treated cells is

due to a strong inhibition of a recycling pathway that facilitates

regurgitation of fluid [8], we examined cells that were pre-pulsed

with Fdex and then chased over different times in the presence of

Lat. Notably, a large fraction of accumulated Fdex leaves the cell

over short times (,5 min) in untreated cells, while the presence of

Lat inhibits this efflux (Figure 5D). In summary, our results

indicate that the main features of a cholesterol and actin sensitive

GPI-AP endocytic pathway that does not utilize Dynamin appear

conserved in S2R+ cells.

An Arf1- and Cdc42-dependent pathway in S2R+ cells
that does not require Arf6, Rho or Rac1

As a basis for a molecular understanding of dynamin indepen-

dent endocytosis in S2R+ cells, we first tested the involvement of

Drosophila orthologues of several candidate genes known from other

systems (Cdc42, Rho, Rac1, Arf6 and Arf1; [3]). Depletion of the

corresponding transcript after dsRNA treatment was verified using

rtPCR (Figure 6A), and cells were pulsed with Fdex and A568Tf

and their normalized per cell uptake was quantitated as before. As

expected from their roles in the secretory pathway, Arf1 and Cdc42

were required for the surface delivery of TfR (as determined by by

the reduced surface Okt9 binding compared to control cells;

Figure 6A). Strikingly, uptake of Tf when normalized to the lower

surface levels of Tf receptor, was not affected in cells depleted of

Arf1 or Cdc42. Instead, both genes were required for optimal levels

of fluid phase uptake. Rac1, Rho or Arf6 depletion did not have

major effects on uptake of either probe (Figure 6A). We examined

Arf1-depleted cells at higher resolution because this gene has been

shown to be directly involved in the early steps of endocytosis via

GEECs in mammalian cells [10]. Consistent with an early role in

the process, Arf1-depleted S2R+ cells contained fewer fluid

endosomes after a short pulse, and the remaining endosomes were

significantly reduced in intensity (Figure 6B). To test if the pathways

of uptake of TfR and Fdex were indeed distinct as dynamin- and

Arf1- dependent respectively, we co-depleted cells with dsRNA

against both Arf1 and shibire. Fdex uptake was only reduced in the
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Figure 4. A dynamin insensitive endocytic machinery operates in S2R+ cells. (A) Specific depletion of Drosophila dynamin by dsRNA against
the shibire (shi) gene as shown by Western detection of cell homogenates after 4 days depletion (left panel). Cells were also processed for
immunocytochemistry followed by TIRF imaging of dynamin puncta close to the plasma membrane (right panel). (B) Cell populations were depleted
of dynamin or control (zeocin) dsRNA for 4 days, and uptake of Fdex, Tf as well as surface TfR levels (Okt) were quantitated. Representative cells
(outlined) from each dsRNA population are shown in all three channels and the bar graph (right panel) shows population means6s.e.m. of 2
independent experiments with .200 cells in each condition. A quantitation of internalized GFP-GPI under the same conditions is shown alongside.
(C) A quantitative surface accessibility assay [19] was employed to examine scavenger receptor availability in shibire (shi) depleted S2R+ cells. The
assay measures the extent to which receptors labeled with biotinylated Cy3mBSA (Cy3bmBSA) are accessible to exogenous Cy5-Streptavidin (Cy5SA;
see cartoon) after they are allowed to internalize the labeled ligand (x axis legends: Cy3 - binding capacity; Cy5SA - surface accessibility to Cy5-SA; and
Cy5SA/Cy3 - relative surface accessibility). The bar graph shows that after 3 min of pulse followed by 10 min of chase, shi depleted cells show
,twofold higher levels of Cy5SA binding when compared to controls (mean6s.e.m.; 2 experiments, .30 cells in all cases), although they bind the
same amount of Cy3bmBSA. Furthermore, while Fdex continued to be internalized and trafficked towards the center of shi-depleted cells (filled
arrowheads in right panel), the large majority of Cy3bmBSA labeled structures were found at the cell periphery, largely accessible to Cy5SA (empty
arrowheads). By this time, in control cells, Cy3bmBSA and Fdex had mixed extensively in central structures which were inaccessible to Cy5SA (marked
with filled arrowheads). (D) The bar graph shows normalized uptake of Fdex, TfR and GFP-GPI in S2R+ cells treated with 20 mM dynasore (dyn) for
20 min or carrier DMSO alone (mock). Values are mean6s.e.m. (.50 cells in all cases) from two independent experiments. Representative images in
the right panel are scaled equally to show the marked difference in Okt9 levels in cells after dynasore treatment, while Fdex intensities are unchanged
or higher compared to the mock treatment. Bars in A = 2.5 mm, B = 20 mm, C = 5 mm, D = 20 mm.
doi:10.1371/journal.pone.0006768.g004
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presence of Arf1 dsRNA, and this inhibition was not affected by the

presence or absence of shibire dsRNA (Figure 6C).

Conserved role of garz and its mammalian counterpart
GBF1 in Arf1-mediated endocytic uptake

After ascertaining the presence of an Arf1-mediated pinocytic

pathway in Drosophila cells and establishing the necessary tools to

assay endocytosis, we sought to identify conserved components of

this pathway using functional genomic RNAi analysis. To find

candidate regulators of Arf1, we screened several orthologous

members of the family of Arf GEFs and GAPs in Drosophila for

defects in quantitative fluid phase and Tf uptake (Figure 7A).

While there were several interesting molecules whose depletion

affected both Tf and Fdex uptake, we chose to focus on the

Drosophila Arf GEF gartenzwerg (garz) because it was a candidate

GTPase regulator which appeared to be exclusively required for

Fdex uptake (Figure 7A). Sequence alignment and domain analysis

indicates that Drosophila garz is the likely ortholog of human GBF1,

with over 60% amino acid conservation over the entire length of

the protein products (Figure 7B). We used the well-characterized

GTPase exchange mutant E794K to perturb GBF1 function

[46,47]. The glutamic acid to lysine substitution within the

catalytic Sec7 domain abolishes the nucleotide exchange activity,

such that this mutant GEF binds Arf–GDP, but does not catalyze

GDP displacement [46]. The overexpression of GBF1E794K in

CHO cells caused a specific inhibition of Rdex uptake, whereas

internalization of Tf was unaffected (Figure 7C).

Dynamics of GBF1 reveals a functional association with
Arf1

GFPGBF1, which reflects the native GBF1 distribution in cells

[46], is primarily cytosolic and cycles rapidly on and off

Figure 5. Role of actin and cholesterol in S2R+ endocytic pathways. (A) Panels shows fluorescent micrographs of filipin staining in: untreated
S2R+ cells (control); cells adapted to growth in delipidated, cholesterol-free medium (delip; see Materials and Methods); and control cells treated with
10 mM MbCD for 30 min. Bar graph shows quantification of the total filipin intensity across the different treatments (mean6s.e.m., .90 cells for each
treatment from 2 experiments; asterix denote P,0.05 by Student’s t-test). (B) Normalized Fdex and TfR uptake in: control S2R+ cell line, cholesterol-
free adapted line (delip), cholesterol-depleted lines repleted with 100 mg/ml cholesterol for 12 hrs (delip+100c) and control line grown in 100 mg/ml
cholesterol for 12 hrs (control+100c). Mean6s.e.m. values are derived from 2 independent experiments with n.200 cells in each condition. Asterixs
denote P,0.05 by Student’s t-test. (C) Normalized uptake of Fdex and TfR in S2R+ cells over different pulse times (in minutes) in medium containing
either carrier dimethyl sulphoxide (dmso); 1 mM Latrunculin A (Lat) or 4 mM Jasplakinolide (Jas). Values are represented as mean6s.e.m. at each time
point/treatment, .200 cells per treatment in 2 independent experiments. (D) S2R+ cells were prepulsed for 2 hrs with Fdex and then chased in
medium without probe either with Latrunculin A (Lat) or carrier alone (dmso) for increasing lengths of time in minutes. At the end of each chase time,
cells were fixed and the total remaining cell-associated Fdex intensity was quantitated and normalized to control levels. Each point on the graph is
represents mean6s.e.m. from 2 independent experiments with at least 100 cells each. Bar in A = 5 mm.
doi:10.1371/journal.pone.0006768.g005
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membranes during rounds of Arf1 activation at late ER and early

Golgi compartments [46,47]. It follows that the membrane bound

fraction of GFP-GBF1 shows extensive colocalization with Arf1 in

these organelles [16,48]. Recently, activated Arf1 has also been

detected in punctuate structures close to/at the plasma membrane

by TIRF microscopy by using the Arf-binding domain (ABD) of

ARHGAP10 fused to GFP as a specific sensor [10]. The specificity

of ABD for activated Arf1 stems from the observation that in the

evanescent plane, it colocalizes with Arf1 puncta and with nascent

pinosomes, and this localization is altered upon overexpression of

dominant-negative Arf1 or depletion of Arf1 by shRNA [10]. To

examine the role of GBF1 in Arf1 activation near the plasma

membrane, cells expressing low levels of GFP-GBF1 were imaged

with live TIRF microscopy. A fraction of the total (wide-field) pool

of GFP-GBF1 was detectable as punctuate structures in the

evanescent field (Figure 8A). In live cells co-expressing ABD-RFP

and GFP-GBF1, two colour fast confocal scanning near the

plasma membrane revealed a sub-population of puncta which

associated with both probes (Figure 8B). In time lapse TIRF

microscopy, a fraction of GFP-GBF1 structures that were tracked

over time were found to associate with activated Arf1 as masked by

ABD-RFP (Figure 8C left panel). Notably, the overexpression of

the activation mutant GFP-GBF1E794K caused a striking loss of

ABD puncta, leaving only a flat haze in the evanescent field

(Figure 8C right panel). This altered distribution of the ABD

sensor was similar to that observed previously with overexpression

of the activation-impaired Arf1T31N mutant, and of Arf1 shRNA

[10]. Qualitatively, the residence time of GFP-GBF1 labeled

structures in the evanescent plane was also much longer in the

E794K mutant (Figure 8C), which is consistent with previous

reports that describe the prolonged membrane association of this

cycling-defective protein [46,47].

GBF1, in keeping with its established role in ER-Golgi

transport, could affect endocytosis indirectly by modulating the

Figure 6. Arf1and Cdc42 but not Rho, Rac1 or Arf6 are required for dynamin independent endocytosis in S2R+ cells. (A) Depletion of
mRNA of the GTPases Arf1, Cdc42, Rho, Arf6 and Rac1 as verified by reverse-transcriptase PCR on cells treated with the corresponding dsRNAs (+) or
control zeocin dsRNA (zeo) for 4 days (left panel). Normalized uptake of cells depleted for these GTPases for 4 days was then quantitated as before
(Figure 2B). Values are represented as mean6s.e.m. from at least 100 cells per treatment in 2 independent experiments. (B) Fdex endosomes
visualized at high resolution in control and Arf1 depleted cells. Bar graph shows the average endosomal intensity and number per cell, normalized to
control cells (mean6s.e.m., measured from .400 endosomes from at least 15 cells in each case). (C) Normalized uptake of cells depleted for
combinations of arf1, shi and zeo dsRNAs. Mean6s.e.m. values are from one representative experiment with n.200 cells in each condition. Asterix
denote P,0.05 by Student’s t-test. Bar in B = 5 mm.
doi:10.1371/journal.pone.0006768.g006
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Figure 7. A conserved role for GBF1 in fluid phase uptake in Drosophila and mammalian cells. (A) Normalized uptake of Fdex and TfR was
measured as before in S2R+ cells treated with dsRNAs corresponding to various predicted Arf GAPs and GEFs from the Drosophila genome
(corresponding CG numbers are: arfgap1 CG6838; arfgap2 CG16728; gap20 CG4937; gap40 CG8243; gap69 CG4237; garz CG8487; schizo CG32434;
arfgef1 CG7578). Notably depletion of the Arf GEF garz was singled out because it affected Fdex but not Tf internalization, while other other
depletions either had no major effect or affected both pathways significantly. Values are represented as mean6s.e.m. derived from 2 independent
experiments with n.200 cells in each condition. Asterix denote P,0.05 by Student’s t-test. (B) Cartoon representation of domain structures in human
GBF1 (hGBF1)and Drosophila garz (dgarz) proteins. The glutamic acid to lysine substitution mutation within the catalytic Sec7 domain is marked as
E794K. A dot plot comparison of hGBF1 and dgarz primary sequences shows broad conservation throughout the length of the proteins, when a
stringent moving window of 6 matches every 10 amino acids is applied. (C) Quantitative uptake of Fdex and TfR in S2R+ cells depleted of garz (left
panel) or CHO cells overexpressing non-functional GBF1 (GFPGBF1E794K right panel). In the left panel, representative images of S2R+ cells (outlined)
treated with control or garz dsRNA are shown in 3 channels, depicting uptake/binding with Fdex, TfR and Okt respectively. The bar graph below the
panel shows the quantitation of Fdex and TfR uptake normalized to control values. Values are represented as mean6s.e.m. derived from 2
independent experiments with n.200 cells in each condition. Asterix denote P,0.05 by Student’s t-test. In the right panel, representative images of
CHO cells pulsed with Rdex or TfR and overexpressing GFPGBF1E794K (transfected cells are visible in the GFP channel) are shown. Bars in C = 20 mm.
doi:10.1371/journal.pone.0006768.g007

GEEC Endocytosis in Drosophila

PLoS ONE | www.plosone.org 11 August 2009 | Volume 4 | Issue 8 | e6768



Figure 8. Functional significance of GBF1 dynamics in the vicinity of the plasma membrane. (A) A CHO cell expressing low levels of GFPGBF1
imaged with widefield fluorescence microscopy (WF; left panel) or with TIRF microscopy (right panel) to reveal puncta close to the plasma membrane. (B)
Fast sequential two-colour confocal imaging of a live CHO cell expressing GFPGBF1 and ABDRFP (activated Arf sensor; Kumari and Mayor, 2008). The
colour merged image is a composite of the most peripheral plane of the cell in each channel (encompassing ,200 nm in the z-axis, 30 msec between
each plane). Two boxed regions in the cell are magnified, the smaller as the merge inset, and the individual channels from the larger region are shown
below. (C) Time lapse, sequential TIRF imaging of a CHO cell co-expressing GFPGBF1 and ABDRFP (left panels) or co-expressing GFPGBF1E794K and
ABDRFP (right panels). The main reference images in each panel show dual-channel sets of TIRF images for a single time point, with a ,1 sec gap
between channel acquisition. The insets in the reference images show the same plane imaged with widefield microscopy. The boxed regions are
magnified and shown as a time series for each channel, with the time elapsed since the first reference frame displayed in seconds. Transient punctate or
elongated structures that traverse the evanescent field and acquire both GFPGBF and ABDRFP over the time-lapse are circled in red. In the cell
expressing GFPGBF1E794K, these structures persist for longer times in the evanescent field (magnified time series; right panel), but do not acquire
ABDRFP. Quantitatively, cells expressing GFPGBF1E794K show significantly lower numbers of ABDRFP puncta in the evanescent plane (bar graph in right
panel shows mean6s.e.m. values from 20 random planes from movies of 5 cells in each case, expressed as percentage of control).(D) CHO cells
transfected with GFPGBF1E794K were treated with Brefeldin A (BFA) or carrier DMSO (control) and assayed for fluid phase (Rdex) uptake. Representative
fields with GBF1E794K transfected (outlined in white) and untransfected cells, with or without BFA are shown in the left panel. The bar graph in the right
panel shows the corresponding quantitation of fluid phase uptake as normalized to control, untransfected cells (mean6s.e.m.; n = 63,68,60,59; asterix
denote P,0.05 by Student’s t-test). Bar in A,B = 10 mm, C = 2.5 mm, D = 20 mm. Insets in C are 0.25x, boxed regions are magnified 2x.
doi:10.1371/journal.pone.0006768.g008
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delivery, to the plasma membrane, of molecules critical to the

process. We tested this possibility by first inhibiting Golgi-to-cell

surface traffic with Brefeldin A (BFA), and then examining the

effect of GBF1 activation on endocytosis. In this assay, wild type

cells treated with BFA show increased levels of fluid phase uptake,

presumably because factors required for this uptake are released

from the Golgi compartment [10]. We found that GFP-GBF1

overexpression alone had no effect on increased fluid uptake

following BFA treatment (Figure 8D). By contrast, expression of

GFP-GBF1E794K caused a reversal of this BFA-dependent increase

(Figure 8D). This reversal, also seen in cells expressing the

Arf1T31N mutant [10], implicates BFA-insensitive GBF1 activation

in the fluid uptake pathway. Together this data indicates a direct

role for GBF1 in Arf1 activation in the vicinity of the plasma

membrane.

Discussion

Conservation of the GEEC pathway in Drosophila
This work demonstrates that the Arf1-mediated pathway in

Drosophila bears a striking similarity to the GEEC pathway first

described in mammalian cells [4,8,38]. In both cases, acidic early

pinosomes which contain GPI-APs are segregated from transferrin

cargo and from Rab5 marked endosomes. The formation of these

pinosomes requires optimum levels of cholesterol, actin and a

functional Arf1/Cdc42 machinery, and can proceed without

functional dynamin and clathrin. Several clathrin-independent

pathways other than the Arf1-mediated route have been described

in mammalian cells - these depend on caveolin, RhoA, Arf6 or

Rac1 [3,10]. The absence of caveolin in Drosophila and the lack of

effect on endocytosis upon knockdown of Rho, Arf6 and Rac1 on

the specific cargo tested indicate that these molecules may be

recruited for specialized pathways that have recently emerged

during mammalian evolution. The features of the Arf1-mediated

GEEC pathway however, having been conserved across phyla,

may represent the hallmarks of a primordial route of entry into

metazoan cells.

The present delineation of endocytic pathways in Drosophila

S2R+ cells, coupled with previous evidence from primary cultures

of hemocytes[19] and from S2 cells [39,49], argues for at least two

routes of entry in Drosophila cells: a Tf and mBSA carrying pathway

that requires clathrin and dynamin; and a bulk fluid phase uptake

pathway that carries a large fraction of GFP-GPI. At present, we

cannot rule out the presence of additional endocytic pathways,

since a fraction of GFP-GPI is detected as separate from fluid

cargo, and some Tf continues to enter cells in the absence of

dynamin. The use of additional probes in combination with

specific gene knockdowns will help to dissect these findings further.

Following internalization, both receptor and fluid pathways

converge onto Rab5 containing endosomes, where heterotypic

and homotypic mixing occurs. The kinetics of mixing of

transferrin/mBSA and fluid phase cargo in S2R+ cells are similar

to those described for Drosophila hemocytes, where mixed cargo

reached late endosomes within 5 min [19]. Compared to CHO

cells, TfR recycling occurs at faster rates in S2R+ cells. While we

have assumed, based on a parsimonious fit to the data that TfR

efflux occurs as a first order process, a two component model that

allows for fast and slow recycling steps can also be proposed [50].

A fast recycling step is consistent with the kinetics of Rab5

acquisition, which peaks at 2 min post-internalization and with the

observed regurgitation of ,40% of internalized bulk fluid phase

over 5 min. In this aspect, S2R+ cells, which are related to the

macrophage S2 isolates [26], appear similar to specialized

phagocytic cell types where fast receptor recycling is common

[51,52]. While similarities exist between phagocytosis and

macropinocytosis in mammalian cells [53] and molecules such

as actin and Cdc42 are common to macropinocytosis and Arf1-

mediated pinocytosis, the fluid phase pathway described here in

Drosophila appears to be unstimulated and does not depend on

Rac1 activity. We suggest that this pathway, akin to the GEEC

pathway described in mammalian cells, is a distinct constitutive

pinocytic process [4].

Our observations of differential, time-dependent sensitivity of

fluid uptake to Latrunculin versus Jasplakinolide, as well as

dependence of the process on Cdc42, suggest the requirement for

a highly dynamic population of actin for mediating pinocytic

entry. Recent evidence indicates that cortical actin dynamics

drives the complexation of GPI-anchored proteins (GPI-APs) on

the cell surface in a cholesterol dependent manner [9], and Cdc42

activity as well as the proper organization of GPI-APs is a

requirement for internalization via the GEEC pathway [7,8]. Our

description of a cholesterol-auxotrophic cell line defective in fluid

phase uptake should allow further investigation of the relationship

between cholesterol, GPI-AP organization and Cdc42 activity.

Role of GBF1 in Arf1-mediated endocytosis
There are several lines of evidence for the involvement of the

GTPase exchange factor GBF1 in Arf1-mediated endocytosis. The

depletion of the GBF1 ortholog garz in S2R+ cells results in specific

inhibition of Arf1-dependent fluid uptake. Concurrently, expres-

sion of the exchange defective GBF1E794K mutant results in the

same defect in CHO cells. A fraction of GBF1 colocalizes with

ABD-RFP - a specific sensor for activated Arf1- in the evanescent

plane (,100 nm proximity to the plasma membrane). Notably,

ABD puncta are lost from the evanescent plane upon expression of

GBF1E794K, thus providing a direct link between GBF1 exchange

activity, Arf1 activation at/close to the plasma membrane, and

Arf1-mediated endocytosis.

GBF1 is known to cycle rapidly between membranes and

cytosol (t1/2,17 s; [46]). Membrane recruitment occurs via an

unknown receptor(s) and is independent of Arf-GDP recruitment,

while membrane dissociation occurs shortly after GTP exchange

[46,48]. Sustained activation of Arf1 would require multiple

rounds of GBF1 cycling and GTP exchange, as GBF1 cycles on/

off membranes faster than Arf1 [46]. As such, the fraction of

GBF1 associated with activated Arf1 at any point in space and

time would be relatively small. We were able to detect this small

fraction in the evanescent field with the aid of sensitive cameras

and low expression levels of GBF1 and ABD. Since the majority of

membrane-associated GBF1 and ABD was located in pericen-

triolar Golgi and transitional ER compartments (which rarely

traverse the evanescent plane in TIRF imaging), good contrast was

achievable near the plasma membrane where the concentration of

GBF1 and ABD was relatively low.

Since GBF1 was originally discovered as a GEF required for

ER-Golgi transport in the secretory pathway [54], its role in

endocytosis as ascribed here is novel. Extending an earlier finding

that Arf1 activation continues to be required for endocytosis even

after disruption of the early secretory pathway with BFA [10], we

have shown here that the GEF activity of GBF1 is an additional

requirement for this to occur. However, this raises the paradoxical

issue of how GBF1 can still activate Arf1 in the presence of BFA,

which is a non-competitive inhibitor that stabilizes a Arf-GDP-

BFA-GEF complex, and causes morphological defects in vivo that

mimic the loss of Arf1-GTP ([48] and refs. therein). As multiple

GEFs can activate Arf1, and several are targeted by BFA [13], the

routinely used concentrations of this drug may be sufficient to

inhibit ER-Golgi traffic and disrupt Golgi complex morphology,
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but may not inhibit all GBF1 activity in vivo. Equally, it is possible

that GBF1 sensitivity to BFA is modulated by its membrane

receptors, and the membrane recruitment of GBF1 at the ER-

Golgi route is more sensitive to BFA than membrane recruitment

at the plasma membrane. A third non-mutually exclusive

possibility is that the presence of excess Arf1 that has been

released from the ER-Golgi pool upon BFA addition stimulates

GBF1 activity at the plasma membrane, which compensates for

GBF inhibition. Identification and characterization of the

receptor(s) and the membrane recruitment mechanism for GBF1

would help to distinguish between these possibilities.

A role for GBF1 in endocytosis is not without precedent. In

Arabidopsis, the GBF1-ortholog GNL1 has a conserved role at the

Golgi but is also required for BFA-insensitive endocytosis at the

plasma membrane [55]. Moreover, the Drosophila GBF1 ortholog

garz has been identified as a candidate in genomic screens which

tested the entry and infection of the pathogens Listeria monocytogenes

[56] and Candida albicans [57,58]. While direct involvement of

candidate genes in pathogen entry was not tested in these screens,

our finding that garz affects Arf1-mediated endocytosis in Drosophila

implicate this pathway as a mode of entry for these pathogens.

There is growing evidence that Arf1, GBF1 and part of the COPI

machinery can be recruited not only onto transitional ER and the

Golgi, but also onto other membranes where they can modulate

trafficking or modify membranes (replication complexes during

picornaviral infection - [59,60]; lipid bodies – [61,62]. While both

replication complexes and lipid bodies are probably ER-derived

membranes [63,64], our results suggest that Arf1 and GBF1 may

also act together during endocytic events at the plasma membrane.

In this regard, it would be interesting to test the involvement of

components of the COPI machinery in Arf1-mediated endocytosis.

Conclusion
The availability of heterologous gene expression and functional

genomic RNAi in the S2R+ line, combined with high-resolution

imaging promises to be a powerful approach to study endocytosis

in Drosophila. These methods have allowed us to systematically

identify and define the role of a novel molecule in GEEC

endocytosis. The demonstration of conserved pathways in

Drosophila indicates that these findings can be broadly applicable.

Supporting Information

Figure S1 Automated quantitation of uptake assay measure-

ments. (A) High penetrance of a dsRNA induced phenotype in

S2R+ cells cultured on dishes. Images taken from a single field of

S2R+ cells treated with control dsRNA or dsRNA against

pavarotti, which encodes a kinesin like protein required for

cytokinesis[1]. Note the accumulation of abnormally large

multinucleate cells with pavarotti dsRNA as shown in the

brightfield/Hoechst-stained nuclear channels. (B) Stepwise proce-

dure for performing automated cell identification using the

MATLAB image processing toolbox. The nuclear image (Hoechst)

is thresholded using Otsu’s method [2] and an empirically-

determined correction factor to create a binary mask (nuclear

binary mask). This binary mask is subjected to a Euclidean

distance transform followed by a watershed transform, generating

the first crude stage of cell segmentation (nuclear distance

transform, ndt). A Sobel edge-detection filter is applied to the

Okt9 surface label image (Okt9) to enhance cell boundaries. The

watershed and the nuclear mask are superimposed upon the

enhanced Okt9 image as local minima (local minima of

ndt+Okt9). A final watershed transform is applied to this

combined image to generate cell outlines which are then filled in

(surface mask). (C) Scatterplot comparing the performance of

automated intensity/cell quantitation vs manual quantitation. 24

dishes were pulsed with Fdex for different times to generate a

,10fold range of fluorescence intensity values across cells. Each

point represents the mean6s.e.m. intensity/cell in a dish (with

measurements from .100 cells from each dish) calculated

manually or via MATLAB routines. The two methods show

linear correlation over a wide range of cell intensities. Bar in

A = 20 mm, B = 5 mm. References: 1.Adams, R.R., et al., pavarotti

encodes a kinesin-like protein required to organize the central

spindle and contractile ring for cytokinesis. Genes Dev, 1998.

12(10): p. 1483-94. 2. Otsu, N., A Threshold Selection Method

from Gray-Level Histograms. IEEE Transactions on Systems,

Man, and Cybernetics 1979. 9: p. 62–66.

Found at: doi:10.1371/journal.pone.0006768.s001 (3.45 MB TIF)

Figure S2 Controls for trafficking assays. (A) Direct comparison

of the mixing of Fdex and TfR probes at various pulse and chase

times in S2R+ cells expressing TfR alone or S2R+ cells expressing

TfR and Rab5 GFP. Fdex was co-pulsed with A568Tf (TfR) in

wild-type S2R+ cells or S2R+ cells expressing Rab5 GFP for 30 s

and 60 s, or pulsed for 60 s and chased for 1 min or 4 min in

complete medium. The histogram shows quantified colocalization

indices of: the fraction of Fdex-labeled endosomes that co-localized

with Tf. Bars represent mean6s.e.m pooled from 2 independent

experiments with .20 cells each. (B) Approach to steady state

assay of TfR in cells treated with cyclohexamide. S2R+ cells

expressing TfR were pretreated with 75 uM cyclohexamide (Chx)

for 2 hrs to block protein synthesis. They were then pulsed with

A647Tf for different times according to the ‘approach to steady

state’ assay (see Methods and Figure 2A) in the presence of Chx.

Data for control S2R+ cells expressing TfR, but without Chx

pretreatment was taken from Figure 3A and is plotted for

comparison. Each data point represents the mean6s.e.m. of a

replicate experiment from at least 50 cells/replicate. Points have

been fit to y = 0.381+0.666(1 - e-0.216t), R2 = 0.922 for TfR and

y = 0.332+0.698(1 - e-0.18t), R2 = 0.994 for Tfr with Chx.

Found at: doi:10.1371/journal.pone.0006768.s002 (0.62 MB TIF)
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