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The CRISPR RNA-guided Cas9 nuclease gene-targeting system has been successfully used for genome
editing in a variety of organisms. Here, we report the use of dual sgRNA-guided Cas9 nuclease to generate
knockout mutants of protein coding genes, noncoding genes, and repetitive sequences in C. elegans.
Co-injection of C. elegans with dual sgRNAs results in the removal of the interval between two sgRNAs and
the loss-of-function phenotype of targeted genes. We sought to determine how large an interval can be
eliminated and found that at least a 24 kb chromosome segment can be deleted using this dual sgRNA/Cas9
strategy. The deletion of large chromosome segments facilitates mutant screening by PCR and agarose
electrophoresis. Thus, the use of the CRISPR/Cas9 system in combination with dual sgRNAs provides a
powerful platform with which to easily generate gene knockout mutants in C. elegans. Our data also suggest
that encoding multiple sgRNA sequences into a single CRISPR array to simultaneously edit several sites
within the genome may cause the off-target deletion of chromosome sequences.

R
ecent research in targeted genome editing technology has made exciting progress in genome engineering,
including those for zinc-finger nucleases (ZFNs)1–3, transcription activator-like effector nucleases
(TALENs)4–6, and clustered regularly interspaced short palindromic repeats (CRISPR) RNA-guided

Cas9 nucleases7–20. Both ZFNs and TALENs use sequence-specific DNA-binding modules linked to a non-
specific DNA nuclease to create DNA lesions. The CRISPR/Cas9 system is a versatile RNA-guided genome
editing technology that uses small guide RNA (sgRNA) to target and cleave DNA sequences16,21–24. sgRNA
contains a hairpin that mimics the tracrRNA-crRNA complex and a short sequence complementary to the
targeted DNA. When co-expressed with an artificial sgRNA targeting a cellular gene, the Cas9 endonuclease
generates double-stranded breaks of DNA at the targeted locus. In addition, CRISPR/Cas9 can also precisely alter
a target gene through homologous recombination (HR). Many selection schemes have been developed to allow
for the HR-mediated insertion of large sequence tags to facilitate downstream mutant screening. CRISPR/Cas9
technology has recently been used for genome engineering in numerous organisms, providing a powerful tool for
diverse biological applications11,25.

CRISPR/Cas9 technology has also been successfully applied to C. elegans5,26–36. This method typically produces
small insertions and deletions (indels) that shift the open reading frame (ORF) of the targeted gene and result in
premature termination of translation and loss-of-function phenotypes. Most, if not all, of the indels are sized less
than 100 bp if only one sgRNA was injected. Recent work showed that large deletions can be induced by
incorporating single-strand oligodeoxynucleotides together with dual sgRNAs in C. elegans37,38.

Despite this substantial progress, many remaining questions hinder the application of CRISPR/Cas9 techno-
logy. For example, different sgRNAs have substantially variable DNA cleavage efficiencies7,18,26. The discovery of
small indels is time-consuming and laborious. Off-target effects result in unintended DNA cleavage, which
requires multiple independent cell lines or the outcrossing of modified animals for gene analysis14,19,39. DNA
cleavage by Cas9 at two genomic loci may induce inter- and intrachromosomal rearrangements in mammalian
cells40.

Here, we report the use of dual sgRNA-guided Cas9 nuclease to generate gene knockout mutants in C. elegans.
Co-injection of C. elegans with two sgRNAs results in the elimination of an interval up to 24 kb between two guide
RNAs. Thus, the application of dual sgRNAs in the CRISPR/Cas9 system provides a powerful platform with
which to generate gene knockout mutants. Our results suggest caution when incorporating multiple guide
sequences into a single CRISPR experiment to simultaneously edit several sites within the genome.
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Methods
Strains. Bristol strain N2 was used as the standard wild-type strain. The Hawaiian
strain CB4856 was used for snp-SNP mapping. All strains were incubated on
nematode growth medium (NGM) plates seeded with OP50 at 20uC41. GR1373:eri-
1(mg366) and WM27: rde-1(ne219).

Construction of sgRNA expression plasmids. We manually searched for target
sequences consisting of G(N)19NGG near the desired mutation sites22,30. The target
sequences are listed in Supporting Information Table s2. We replaced the unc-119
target sequence in the pU6::unc-119 sgRNA vector30 with the desired target sequence
using overlap extension PCR. The pU6::unc-119 sgRNA vector was diluted to 2 ng/ml
and PCR amplified using the primers sgRNA F and sgRNA R to generate linear
products. The PCR products were gel-purified and transformed into Trans10
Chemically Competent Cell (Transgene Biotech, Beijing) directly. We used PhantaTM

super-fidelity DNA polymerase (Vazyme Biotech, Nanjing, Cat. No. P501-d1/d2/d3)
in all PCR reactions. The primer sequences used for the construction of sgRNA
expression plasmids are listed in Table s3.

Microinjection. DNA mixtures were microinjected into the gonads of young adult C.
elegans. Plasmids for injection were prepared using a miniprep plasmid purification

kit (Sangon, Shanghai, Cat. No. sk8192). For dual sgRNA experiments, we injected
50 ng/ml Cas9 expressing vector, 50 ng/ml sgRNA #1, 50 ng/ml sgRNA #2 (as
indicated in the figures), and 5 ng/ml pCFJ90 vector. For single rde-12 sgRNA #2
experiments, we injected 50 ng/ml Cas9 expressing vector, 100 ng/ml rde-12 sgRNA
#2, and 5 ng/ml pCFJ90 vector. After recovering from injection, each worm was
placed onto an individual OP50 plate.

Screening for deletion mutants by PCR. Three days after injection, F1 animals
expressing mCherry were transferred to individual NGM plates and allowed to
produce F2 progeny for 2 to 3 days. F1 with corresponding F2 progeny were harvested
and washed in M9 buffer, transferred to 50 ml lysis buffer (500 ug/ml Proteinase K,
100 mM NaCl, 50 mM Tris, 20 mM EDTA, and 1% SDS), and screened by PCR
amplification with primers outside of the sgRNA-targeted regions. Mutants with large
deletions were singled to NGM plates and further confirmed by PCR amplification
and DNA sequencing. The primers used for PCR screening are listed in Table s4.

Imaging. Images were collected using Leica DM2500 and M165 FC microscopes.

RNAi. RNAi experiments were performed as described previously42. Bacteria
expressing flr-1, nhr-23, mex-3, pos-1, lir-1, and unc-15 dsRNA were obtained from
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Figure 1 | Dual sgRNA-guided deletion of the rde-12 gene. (A) Schematic of the screen for CRISPR/Cas9 genome editing events. The dominant

transformation marker mCherry was co-injected with Cas9 and sgRNA #1 and #2 expression plasmids. F1 animals with mCherry expression were grown

on unc-15 RNAi, and phenotypes of F2 were scored. The RNAi suppressors were PCR amplified and sequenced. (B) Schematic of the rde-12 gene.

Positions of sgRNA-guided cleavage sites are indicated. (C) Summary of microinjection experiments. (D) Sequence alignments of the rde-12 gene in wild-

type and mutant animals. The PAM sequence is labeled in red and overlined. Dash indicates deletion. Lowercase indicates insertion. The numbers in

parentheses within the sequence represent the number of bases not shown. The number of deleted (2) or inserted (1) bases is shown on the right of each

indel. Numbers on the top of sequences indicate positions relative to the transcription start site.
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the Ahringer RNAi library and were sequenced to verify their identity43. The dpy-13
RNAi clone has been described previously42.

Genetic screening. To identify the factors specifically required for off-target RNAi
silencing, we previously screened for the cellular factors required for the dpy-13
dsRNA-induced silencing of off-target RNAs but dispensable for canonical RNAi
silencing42. Nine mutants were isolated from this genetic screening, three of which
were identified by snp-SNP mapping and sequenced as missense alleles of rde-
12(F58G11.2) (Fig. s1).

Quantitative RT-PCR. RNAs were isolated from embryos using a dounce
homogenizer (pestle B) in TRIzol solution followed by DNase I digestion (Qiagen)42.
cDNAs were generated from RNAs using the iScript cDNA Synthesis Kit (Bio-Rad)
according to the vendor’s protocol. qRT-PCR was performed using a MyIQ2 machine
(Bio-Rad) with iQ SYBR Green Supermix (Bio-Rad). The primers for qRT-PCR
analysis are listed in Table s5. eft-3 mRNA was used as an internal control for sample
normalization. Data analysis was performed using a DDCT approach.

Results
Using dual sgRNAs to knock out rde-12. We previously screened
for factors required for RNAi silencing by chemical-induced
mutagenesis42 and isolated three missense alleles of rde-12 (Fig. s1,
Table s1). RDE-12 is an RNA helicase that engages targeted mRNA
and Argonaute proteins to promote the synthesis of secondary
siRNAs in C. elegans44,45. To further characterize rde-12, we sought

to generate null alleles using CRISPR/Cas9 technology with dual
sgRNAs.

We co-injected sgRNAs targeting exons 2 and 3 of rde-12 and Cas9
and mCherry expression plasmids into eri-1(mg366) animals (Fig. 1).
The mutation of eri-1 results in an enhanced RNAi (Eri) phenotype46.
mCherry was used as a co-injection marker. From 40 injected ani-
mals, we obtained 46 fertile F1 animals expressing mCherry. F1
animals were first transferred to NGM plates and grow up to gravid
adults, and then were singled to unc-15 RNAi plates. Whereas eri-
1(mg366) control animals exhibited a paralyzed phenotype on unc-
15 dsRNA, the mutation of rde-12 resulted in resistance to unc-15
RNAi, a phenotype termed RNAi defective (Rde) (Fig. 1D). Fourteen
F1 animals produced unc-15 RNAi suppression progeny at the
expected Mendelian frequency of approximately 25%, indicating that
F1 animals were heterozygous for rde-12 loss-of-function mutations.
Very few animals with an rde-12 mutation continued to express
mCherry in subsequent generations, suggesting that the mCherry
transgene expression was transient and present only in the F1 gen-
eration. The F2 suppressors were selected and further characterized
by PCR and sequencing. We identified lesions in the rde-12 gene
consistent with Cas9-directed cleavage (Fig. 1E). Four of the rde-12
mutants (#5, #6, #11, and #12) contained small indels that are likely
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Figure 2 | Dual sgRNA-guided deletion of the linc-22 promoter. (A) Schematic of linc-22 gene. (B) Summary of microinjection experiments. F2

progenies were directly screened by PCR amplification. (C) PCR amplification of the targeted region in the deletion mutants. (D) Sequence alignments of

wild-type and mutant animals. Dash indicates deletion. The numbers in parentheses within the sequence represent the number of bases not shown. The

number of deleted (2) or inserted (1) bases is indicated on the right of each indel. (E) Quantitative real-time PCR detection of linc-22 expression. Total

RNAs were isolated from embryos. eft-3 mRNA was used as an internal control for normalization. N53.
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directed by sgRNA #2 alone. Interestingly, we also obtained two
mutants containing large deletions. One mutant (#10) eliminated
817 bases of genomic sequence, also likely guided by sgRNA #2 alone.
Another mutant (#14) deleted 1,200 bases of genomic sequence,
eliminating the entire interval between sgRNAs #1 and #2. This
deletion was further confirmed by both PCR amplification and
DNA sequencing (Figs. 1E, s2). The large deletion may reflect a
simultaneous cutting directed by the two sgRNAs, whose targets
are separated by 1,076 bases in this experiment. These data indicate
that the deletion of large chromosomal segments can be induced by
CRISPR/Cas9 technology with dual sgRNAs.

We also noticed that 8 Rde mutants did not produce the expected
PCR products. We speculated that dual sgRNAs may induce inver-
sion or translocation at the targeted loci40. Alternatively, the deleted
region may be larger than the PCR amplifiable region. These mutants
were not followed in the present study.

We examined the occurrence of small indels and large deletions by
injecting only rde-12 sgRNA #2. We injected 160 P0, selected 388 F1
expressing mCherry, and recovered 95 F2 mutants that suppressed
unc-15 RNAi (Fig. 1c). PCR screening of these 95 mutants identified
2 deletions larger than 500 bp. DNA sequencing confirmed the dele-
tion of 826 bp and 517 bp, respectively (data not shown). We should
point out that the occurrence of Cas9-induced small indels has been
underestimated by the unc-15 RNAi, since many small indels may
not change open reading frame or not result to strong loss-of-
function alleles to suppress unc-15 RNAi. In contrast, the injection
of dual sgRNAs favors the generation of strong loss-of-function
alleles by creating large deletions.

Dual sgRNA-directed deletion of the linc-22 promoter. To further
test this dual sgRNA strategy, we co-injected two sgRNAs targeting
the promoter region of linc-22 into wild-type C. elegans (Fig. 2). linc-
22 is a long intergenic non-coding RNA (lincRNA) that expresses

abundant endogenous siRNAs42. We sought to knock down linc-22
expression by eliminating its promoter sequence to test whether the
expression of linc-22 RNA is required for endo-siRNA production.
We injected 100 animals and isolated 168 F1 animals expressing
mCherry (Fig. 2B). F1 animals were singled to OP50 plates, laid F2
progenies, and were directly screened by PCR with primers flanking
the sgRNA-targeted region. Five F2 animals contained large
deletions in the linc-22 promoter region (Fig. 2C). The PCR
products were subcloned and sequenced. Two mutants deleted
approximately 2.4 kb of the promoter sequence, as expected
(Fig. 2D). The expression level of linc-22 RNA was further
examined by quantitative real-time PCR and confirmed the
removal of the linc-22 promoter (Fig. 2E).

Using dual sgRNAs to delete repetitive sequences. Repetitive
sequences are widely present in the genome of C. elegans and may
exhibit overlap or redundancy in gene function. Using a single guide
RNA to direct the DNA cleavage of one gene can induce the off-
targeted cleavage of another gene with highly sequence similarity. To
study the function of one but not the other, we sought to use the dual
sgRNA strategy to specifically knock out one of the repetitive gene
pairs. e01g4.5 is a gene that generates the most abundant endogenous
siRNAs42. The downstream sequence of E01G4.5 is highly similar to a
region between c17g1.7 and zc506.1 on chromosome X, with 95.8%
sequence identity for 1.75 kb (Fig. 3A). We chose sgRNA targeting
sequences outside of the repetitive region on chromosome X. From
20 injected animals, we isolated 30 F1 animals expressing mCherry
(Fig. 3B). These animals were directly screened by PCR with primers
flanking sgRNA-targeted loci. We isolated one animal with an
approximately 2 kb deletion at the region on chromosome X but
an intact e01g4.5 region (Fig. 3C). The PCR product was subcloned
and sequenced, confirming the deletion at the targeted region
(Fig. 3D).
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Dual sgRNA-induced deletion of large chromosomal segments.
To further determine how large an interval can readily be eli-
minated using this method, we co-injected dual sgRNAs targeting
distinct chromosome sites into wild-type C. elegans. To facilitate
mutant selection, we targeted regions with visible genetic markers.

We chose an 8.5 kb and a 16.5 kb region on chromosome X
(Fig. 4A). dpy-7 is a collagen gene inside these two regions and served
as the selection marker. The mutation of dpy-7 leads to a dumpy
phenotype with an animal size approximately half that of wild-type
animals (Fig. 4B). We isolated 19 dumpy animals from 216 F1 ani-
mals expressing mCherry following the co-injection of sgRNAs #1
and #2. Six of these dumpy animals contained deletions of approxi-
mately 8.5 kb (Fig. 4C, s3). Following the co-injection of sgRNAs #2
and #3, we isolated one dumpy animal containing a 16,559 base
deletion. Deletions in these mutants were confirmed by PCR amp-
lification and sequencing (Fig. s3).

We targeted another 23.7 kb region on chromosome X using the
dual sgRNA strategy (Fig. 4D). Five genes are located in this region,
including the lin-15b/15a operon. The disruption of lin-15b and lin-

15a together results in a multi-vulva (Muv) phenotype (Fig. 4E). We
isolated 6 Muv mutants from 136 F1 animals expressing mCherry
(Fig. 4F). Two Muv mutants contained deletions of approximately
23.7 kb, which was confirmed by PCR amplification and sequencing
(Fig. s4).

Some dumpy or Muv mutants did not produce the expected PCR
products. These mutants may exhibit an inversion or translocation at
the targeted loci40. Alternatively, the dual sgRNAs may have induced
deletions larger than the PCR-amplifiable region. These mutants
were not followed in the present study.

Discussion
The genetic manipulation of C. elegans is a crucial approach for the
study of development and gene regulation. RNA interference and the
creation of deletion mutants have both long been used to perturb
gene function in C. elegans. The low efficacy and off-target effects of
RNAi require null mutants that eliminate gene functions under
many circumstances42,43,47. To generate knockout mutants in C. ele-
gans, the random mutagen trimethylpsoralen (TMP) followed by UV
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irradiation was used to mutagenize a very large number of worms
followed by PCR screening48–50. At a very low frequency, this strategy
will generate a small deletion. The TMP/UV method is labor intens-
ive and usually requires multiple rounds of sequential PCR screening
to isolate the desired mutants. Alternatively, hopping out a Mos1
transposon from a chromosomal locus via the expression of a
Mos1 transposase in the germline will create a double-strand break
that results in DNA deletion. However, this method requires a strain
bearing a Mos1 transposon inserted near the targeted site, which can
also be problematic51–53. The CRISPR/Cas9 nuclease system has
emerged as a new genome editing technology in C. elegans that
provides an advantage compared to TMP/UV and Mos1 methods.
In principle, this approach is limited only by the requirement of a
PAM sequence. Here, we report a simple and efficient method to
generate gene knockout mutants in C. elegans using the CRISPR/
Cas9 system (summarized in Table 1). Specifically, we showed that
the co-injection of two sgRNAs into C. elegans can induce a deletion
of the chromosome sequence between the two sgRNA-targeted loci,
which is a very useful technique for creating null alleles. In addition,
single guide sgRNA-induced short indels are typically identified by
PCR amplification followed by T7 or CEL nuclease digestion. We
showed that large deletions can be easily identified by PCR and
agarose electrophoresis, which is especially important for those
mutants with no visible phenotypes. Alternatively, Paix et al.
described a method to direct a 6 kb genome deletion by including
single-strand oligodeoxynucleotides with dual sgRNAs during Cas9
injection, which may also facilitate the selection of mutants37.
However, it is unknown whether this method is able to induce larger
genome deletions up to tens of kilo base pairs.

Homology-directed repair of double-stranded DNA breaks has
been widely used for genome editing. If the donor molecule carries
edits flanked by sequences homologous to the targeted locus, the
edits will be integrated during the repair process. Both plasmid
donors with long homology arms and single-strand oligodeoxynu-
cleotides with short homology arms have been used to insert
selection markers to targeted sequences in CRISPR/Cas9 techno-
logy29,31,35–38. In our dual sgRNA system, both methods can also be
applied to insert selection markers to targeted sequences, which is
beneficial to balance and maintain lethal mutants.

C. elegans expresses many long noncoding RNAs with unknown
functions54. Many lincRNAs may serve as templates for endo-siRNA
production or regulate the expression of other protein-coding genes.
However, a lack of mutants hinders the mechanistic understanding
of their function and regulation. Our work demonstrates an easy
method with which to knock out lincRNAs using a dual sgRNA/
Cas9 system that will facilitate the genetic study of these noncoding
genes.

Encoding multiple guide sequences into a single CRISPR experi-
ment to simultaneously edit several sites within the genome has been
used to study gene function in mammalian cells8,15,55,56. In addition,
the simultaneous use of multiple sgRNAs to target an individual gene
has been reported to improve genome-editing efficiency8,20,57,58. Our
data suggest that multiplexed guide RNAs may cause the off-target
deletion of chromosome sequences in addition to gene editing at the
targeted loci. Therefore, independent cell clones and rescue experi-

ments are required to characterize gene function in mammalian cells
in this set of experiments.

In summary, our work provides a novel platform with which to use
CRISPR/Cas9 technology for gene knockout in C. elegans that has
potential applications in other organisms.
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