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Abstract

Background and purpose

The impact of the paraoxonase-1 (PON1) polymorphism, Q192R, on platelet inhibition in

response to clopidogrel remains controversial. We aimed to investigate the association

between carrier status of PON1 Q192R and high platelet reactivity (HPR) with clopidogrel in

patients undergoing elective neurointervention.

Methods

Post-clopidogrel platelet reactivity was measured using a VerifyNow® P2Y12 assay in

P2Y12 reaction units (PRU) for consecutive patients before the treatment. Genotype testing

was performed for PON1 Q192R and CYP2C19*2 and *3 (no function alleles), and *17.

PRU was corrected on the basis of hematocrit. We investigated associations between fac-

tors including carrying�1 PON1 192R allele and HPR defined as original and corrected

PRU�208.
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Results

Of 475 patients (232 men, median age, 68 years), HPR by original and corrected PRU was

observed in 259 and 199 patients (54.5% and 41.9%), respectively. Carriers of�1 PON1

192R allele more frequently had HPR by original and corrected PRU compared with non-

carriers (91.5% vs 85.2%, P = 0.031 and 92.5% vs 85.9%, P = 0.026, respectively). In multi-

variate analyses, carrying�1 PON1 192R allele was associated with HPR by original (odds

ratio [OR] 1.96, 95% confidence interval [CI] 1.03–3.76) and corrected PRU (OR 2.34, 95%

CI 1.21–4.74) after adjustment for age, sex, treatment with antihypertensive medications,

hematocrit, platelet count, total cholesterol, and carrying�1 CYP2C19 no function allele.

Conclusions

Carrying�1 PON1 192R allele is associated with HPR by original and corrected PRU with

clopidogrel in patients undergoing elective neurointervention, although alternative results

related to other genetic polymorphisms cannot be excluded.

Introduction

Dual antiplatelet therapy (DAPT), most commonly with aspirin and clopidogrel, is regularly

used for antiplatelet premedication to prevent thromboembolic complications following endo-

vascular treatment. However, there is marked inter-patient variability of platelet inhibition in

response to clopidogrel, and high platelet reactivity (HPR) with clopidogrel is associated with

an increased risk of thromboembolic complications following endovascular treatment [1–3].

Clopidogrel is a thienopyridine that blocks the P2Y12 receptor. The antiplatelet activity of

clopidogrel depends on its conversion to an active metabolite mainly by the cytochrome P450

family 2 subfamily C member 19 (CYP2C19). CYP2C19 is a highly polymorphic gene.

CYP2C19�2 and �3 were reported to be the most common single-nucleotide polymorphisms

(SNPs) that decreased enzyme activity in a multi-ethnic population. Carrying�1 CYP2C19 no

function allele was associated with HPR with clopidogrel and thromboembolic complications

following endovascular treatment [4–6]. Conversely, CYP2C19�17 is an increased function

SNP that contributes to enhanced platelet inhibition in response to clopidogrel [7].

Paraoxonase-1 (PON1) is another enzyme that participates in the second step of clopidogrel

metabolism, and the PON1 Q192R SNP is a major determinant of PON1 activity [8]. Com-

pared with carriers of�1 PON1 192R allele, non-carriers have lower PON1 activity and lower

platelet inhibition in response to clopidogrel, which leads to a higher risk of stent thrombosis

following coronary artery stenting [8]. However, unlike CYP2C19 SNPs, the impact of PON1
Q192R on platelet inhibition in response to clopidogrel remains controversial; the association

between PON1 Q192R and HPR with clopidogrel has not been replicated in other studies [9–

12]. Conversely, recent studies have shown that carriers of�1 PON1 192R allele have reduced

platelet inhibition in response to clopidogrel compared with non-carriers [13–16].

A recent study demonstrated that HPR also led to thromboembolic complications in

patients undergoing pipeline embolization device placement for intracranial aneurism (IA)

[17]. However, to date, little is known about the association between PON1 Q192R and HPR

with clopidogrel in patients undergoing neurointervention [18]. Therefore, this study investi-

gated the impact of PON1 Q192R on HPR with clopidogrel in patients undergoing elective

neurointervention.
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Materials and methods

Ethics statement

The ethics committee at Kyushu University Hospital (389–01) and Kokura Memorial Hospital

approved data collection from patients undergoing elective neurointervention at Kokura

Memorial Hospital and genotype testing at Kyushu University. Written informed consent was

obtained from all participants.

Study patients

Five hundred and sixty-seven patients who underwent scheduled endovascular treatment for

cerebrovascular disease from May 2010 to September 2015 were enrolled in this observational

study. All patients were on DAPT before neurointervention. Alongside low-dose acetylsalicylic

acid therapy, 75 mg clopidogrel was administered for�7 days before treatment. For patients

administered clopidogrel <7 days before treatment, clopidogrel was administered at a loading

dose of 300 mg followed by 75 mg daily. The following clinical information was systematically

extracted from medical records: age, sex, body mass index, vascular risk factors (hypertension,

diabetes mellitus, dyslipidemia, and current smoking status), ischemic heart disease, and con-

comitant treatment with antihypertensive medications (calcium channel blockers, beta block-

ers, and/or angiotensin-converting enzyme inhibitors [ACEI]/angiotensin receptor blockers

[ARB]) and proton pump inhibitors. Laboratory data, including hematocrit, platelet count,

and serum cholesterol levels were obtained from routine laboratory testing principally per-

formed a few days before treatment.

Platelet function measurements

Blood samples (1.8 ml) were taken from the median cubital vein in vacuum collection tubes

containing 0.2 ml of 3.2% sodium citrate using a 21-G blood collection needle before the pro-

cedure on the day of neurointervention. Platelet reactivity was evaluated using a VerifyNow1

P2Y12 assay (Accumetrics, San Diego, CA, USA) according to the manufacturer’s instructions.

Platelet reactivity was expressed as P2Y12 reaction units (PRU). Because hematocrit alters Ver-

ifyNow P2Y12 assay results, we calculated the corrected PRU by subtracting 7.5 PRU for every

% of hematocrit below and adding 7.5 PRU for every % of hematocrit above, 42% as previously

proposed [19]. We defined HPR as an original PRU of�208 [20], as well as a corrected PRU

of�208.

DNA extraction and genotyping

Genomic DNA was extracted from 200 μl of whole blood collected in ethylenediaminetetraace-

tate-coated tubes using a NucleoSpin1 Blood QuickPure kit (Macherey-Nagel, Düren, Ger-

many) according to the manufacturer’s instructions. To evaluate the quantity and quality of

extracted DNA, the optical density was measured using a NanoDrop™ 1000 Spectrophotometer

(Thermo Fisher Scientific, Wilmington, DE, USA). The DNA concentration was adjusted to

10 ng/μl before assays were performed.

Genotyping was performed using the TaqMan™ Drug Metabolism Genotyping Assay

(Applied Biosystems, Foster City, CA, USA) for the following SNPs: PON1 Q192R (rs662;

c.575A>G rs662 or p.Gln192Arg), CYP2C19�2 (rs4244285; c.681G>A or p.Pro227Pro),

CYP2C19�3 (rs4986893; c.636G>A or p.Trp212Ter), and CYP2C19�17 (rs12248560; c.-

806C>T). The total reaction volume (25 μl) consisted of 2 × TaqMan Universal Polymerase

Chain Reaction Master Mix II (Applied Biosystems), 20 × primer and probe mix (TaqMan

Drug Metabolism Genotyping Assay Mix), and 20 ng of template DNA according to the
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manufacturer’s instructions. Polymerase chain reaction was performed using the 7500 Real-

Time PCR System (Applied Biosystems). Allele discrimination was manually and automati-

cally performed using the 7500 System Sequence Detection software (Applied Biosystems).

Statistical analysis

All statistical analyses were performed with JMP statistical software, version 9.0 (SAS Institute,

Cary, NC, USA). Data are expressed as medians and interquartile ranges for continuous vari-

ables and counts and percentages for categorical variables. All SNPs were tested for deviation

from Hardy–Weinberg equilibrium. Clinical characteristics and carrier status of at least one

variant allele of Q192R of PON1 and no function (�2 and �3) and increased function (�17)

alleles of CYP2C19 were compared between patients with and without HPR by original and

corrected PRU using the Chi-squared test, Fisher’s exact test, or the Wilcoxon rank-sum test

as appropriate. A multivariate logistic regression analysis was performed to investigate factors

associated with HPR by original and corrected PRU using forced entry and stepwise selection

procedures. Age, sex, and carrier status of�1 CYP2C19 no function allele and�1 PON1 192R

allele were forced in; other variables were chosen by stepwise selection with a significance level

of α = 0.10 for entry and α = 0.10 for removal. A P-value< 0.05 was considered statistically

significant.

Results

Of 567 patients who underwent scheduled endovascular treatment and were registered during

the study period, 92 were excluded because of no clopidogrel use (n = 6), initiation of clopido-

grel<7 days without a loading dose (n = 14), lack of PRU data (n = 37), or lack of genomic

data (n = 35). Finally, 475 patients (232 male; median age, 68 years) were included in the fol-

lowing analysis. Two hundred and seventy-six patients received simple/balloon or stent-assis-

ted coil embolization for ruptured (n = 13) or unruptured (n = 263) IA, 197 received stent

placement for symptomatic (n = 117) or asymptomatic (n = 80) carotid artery stenosis, 1

received embolization for carotid-cavernous fistula, and 1 received parent artery occlusion.

Results from genetic testing are shown in Table 1. Four hundred and twenty-one patients

(88.6%) carried�1 PON1 192R allele. Two hundred and fifty-two patients (53.1%) carried�1

CYP2C19�2 allele and 105 patients (22.1%) carried�1 CYP2C19�3 allele. Thus, 321 patients

Table 1. Genotype distribution among the study population.

Alleles Total (n = 475) MAF (%) Hardy-Weinberg equilibrium (P value) MAF from the 1000 Genomes Project (East Asian, %)

PON1 Q192R A/A 54 (11.4) 64.9 0.421 66.6

(rs662, c.575A>G) A/G 225 (47.4)

G/G 196 (41.3)

CYP2C19�2 G/G 223 (46.9) 30.7 0.333 31.2

(rs4244285, c.681G>A) G/A 212 (44.6)

A/A 40 (8.4)

CYP2C19�3 G/G 370 (77.9) 12.1 0.194 5.6

(rs4986893, c.636G>A) G/A 95 (20.0)

A/A 10 (2.1)

CYP2C19�17 C/C 472 (99.4) 0.3 1.000 1.5

(rs12248560, c.-806C>T) C/T 3 (0.6)

T/T 0 (0)

Data are presented as n (%). MAF, minor allele frequency.

https://doi.org/10.1371/journal.pone.0254067.t001
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(67.6%) carried�1 CYP2C19 no function allele. Three patients (0.6%) had the CYP2C19�17
allele. All tested SNPs were in Hardy–Weinberg equilibrium. In this study, the minor allele fre-

quency of CYP2C19�3 was higher compared with the East Asian population assessed in the

1000 Genomes Project (12.1% vs 5.6%) [21].

HPR by original and corrected PRU of�208 was observed in 259 and 199 patients (54.5%

and 41.9%), respectively. After the correction of PRU on the basis of hematocrit, 70 patients

with HPR were re-classified as non-HPR and 10 patients without HPR were re-classified as

HPR. The re-classification rate was 16.8% and the correction of PRU reduced the prevalence

of HPR by 23.2%. There were 17 patients without the PON1 192R allele or CYP2C19 no func-

tion allele, 137 carrying�1 PON1 192R allele but not the CYP2C19 no function allele, 37 carry-

ing�1 CYP2C19 no function allele but not the PON1 192R allele, and 284 carrying�1 PON1
192R allele and the CYP2C19 no function allele. Among them, the frequencies of HPR by orig-

inal PRU were 17.7%, 38.7%, 51.4%, and 64.8%, respectively, and those by corrected PRU were

11.8%, 23.4%, 35.1%, and 53.5%, respectively.

Patient characteristics are presented in Table 2. Patients with HPR by original PRU were

more frequently female (59.1% vs 41.7%, respectively; P< 0.001) with lower platelet counts

(median, 19.9 × 104/μl vs 21.0 × 104/μl, respectively; P< 0.001), and hematocrit levels (median,

38.7% vs 40.5%, respectively; P < 0.001) compared with those without HPR. Compared with

non-carriers, carriers of�1 PON1 192R allele (91.5% vs 85.2%, respectively; P = 0.031) and�1

CYP2C19 no function allele (78.4% vs 54.6%, respectively; P < 0.001) more frequently had

HPR by original PRU. A similar trend was observed when comparing patients with and

Table 2. Univariate analysis of high platelet reactivity in patients undergoing elective neurointervention.

Variables Total (n = 475) HPR by original PRU HPR by corrected PRU

HPR (n = 259) Non-HPR (n = 216) P value HPR (n = 199) Non-HPR (n = 276) P value

Sex, male 232 (48.8) 106 (40.9) 126 (58.3) <0.001 86 (43.2) 146 (52.9) 0.037

Age (years) 68 (58–75) 68 (59–75) 67 (57–75) 0.336 68 (59–74) 68 (58–76) 0.862

Body mass index 22.9 (21.0–25.0) 22.8 (20.8–24.9) 23.0 (21.1–25.2) 0.483 23.2 (21.0–25.2) 22.5 (21.0–24.6) 0.128

Hypertension 284 (59.8) 159 (61.4) 125 (57.9) 0.436 122 (61.3) 162 (58.7) 0.567

Dyslipidemia 269 (56.6) 144 (55.6) 125 (57.9) 0.619 113 (56.8) 156 (56.5) 0.955

Diabetes mellitus 113 (23.8) 58 (22.4) 55 (25.5) 0.434 45 (22.6) 68 (24.6) 0.609

Ischemic heart disease 91 (19.2) 49 (18.9) 42 (19.4) 0.885 33 (16.6) 58 (21.0) 0.226

Current smoking 56 (11.8) 24 (9.3) 32 (14.8) 0.062 20 (10.1) 36 (13.0) 0.318

Calcium channel blocker 230 (48.4) 134 (51.7) 96 (44.4) 0.113 101 (50.8) 129 (46.7) 0.388

β-blocker 57 (12.0) 31 (12.0) 26 (12.0) 0.982 21 (10.6) 36 (13.0) 0.410

ACEI/ARB 177 (37.3) 102 (39.4) 75 (34.7) 0.296 78 (39.2) 99 (35.9) 0.459

Proton pump inhibitor 351 (73.9) 194 (74.9) 157 (72.7) 0.584 148 (74.4) 203 (73.6) 0.841

Clopidogrel <7 days 74 (15.6) 45 (17.4) 29 (13.4) 0.237 34 (17.1) 40 (14.5) 0.442

Platelet count (× 104/μl) 20.5 (17.3–23.8) 19.9 (16.5–23.1) 21.0 (18.4–24.9) <0.001 19.9 (16.9–22.7) 21.0 (18.0–25.0) <0.001

Hematocrit (%) 39.4 (36.5–42.2) 38.7 (35.7–40.9) 40.5 (38.0–43.5) <0.001 39.7 (37.0–42.6) 39.2 (36.2–42.0) 0.118

Total cholesterol (mg/dl) 185 (158–211) 188 (160–212) 182 (157–210) 0.389 190 (161–215) 180 (155–209) 0.024

HDL-C (mg/dl) 54 (47–65) 55 (47–68) 53 (46–63) 0.064 56 (48–67) 54 (46–63) 0.074

LDL-C (mg/dl) 110 (87–127) 110 (86–124) 110 (87–128) 0.688 110 (88–131) 110 (86–125) 0.298

�1 PON1 192R allele 421 (88.6) 237 (91.5) 184 (85.2) 0.031 184 (92.5) 237 (85.9) 0.026

�1 CYP2C19 no function allele 321 (67.6) 203 (78.4) 118 (54.6) <0.001 165 (82.9) 156 (56.5) <0.001

�1 CYP2C19 increased function allele 3 (0.6) 3 (1.2) 0 (0) 0.255 3 (1.5) 0 (0) 0.073

Data are presented as n (%) or median (interquartile range). ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; HDL-C, high-density

lipoprotein-cholesterol; HPR, high platelet reactivity; LDL-C, low-density lipoprotein-cholesterol; PRU, P2Y12 reaction unit.

https://doi.org/10.1371/journal.pone.0254067.t002
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without HPR by corrected PRU, except when comparing higher total cholesterol levels

(median, 190 mg/dl vs 179 mg/dl, P = 0.024) between patients with HPR by corrected PRU or

those without HPR.

In a multivariate analysis, carrying�1 PON1 192R allele (odds ratio [OR] 1.96, 95% confi-

dence interval [CI] 1.03–3.76), male sex (OR 0.50, 95% CI 0.32–0.78), treatment with a calcium

channel blocker (OR 1.69, 95% CI 1.11–2.59), hematocrit (OR 0.87, 95% CI 0.83–0.92, per 1%

increase), platelet count (OR 0.92, 95% CI 0.88–0.96, per 1 × 104/μl increase), and carrying�1

CYP2C19 no function allele (OR 4.17, 95% CI 2.67–6.60) were associated with HPR by original

PRU. Similarly, carrying�1 PON1 192R allele was associated with HPR by corrected PRU

(OR 2.34, 95% CI 1.21–4.74) after adjustment for age, sex, treatment with ACEI/ARB, hemato-

crit, platelet count, total cholesterol, and carrying�1 CYP2C19 no function allele (Table 3).

Discussion

This study clarified the associations between the carrier status of PON1 Q192R and HPR with

clopidogrel in patients undergoing elective neurointervention. Carrying�1 PON1 192R allele

as well as�1 CYP2C19 no function allele was associated with HPR, which occurred in approx-

imately half of the patients with clopidogrel in the present study. The prevalence of HPR was

markedly higher in patients carrying both�1 PON1 192R allele and the CYP2C19 no function

allele compared with noncarriers.

Previous studies reported the prevalence of HPR with clopidogrel on the basis of a PRU of

�208 ranged from 18.3% to 57.1% [22,23]. Together with multiple clinical, hematological, and

biochemical parameters, the CYP2C19 no function allele was associated with the inter-patient

variability of platelet inhibition in response to clopidogrel [4,24,25]. In the present study, more

than two-thirds of patients were carriers of�1 CYP2C19 no function allele, which is in

Table 3. Multivariate analysis of high platelet reactivity in patients undergoing elective neurointervention.

Variables OR (95% CI) P value

HPR by original PRU

Sex, male 0.50 (0.32–0.78) 0.002

Age (per 1-year increase) 1.00 (0.98–1.02) 0.854

Treatment with calcium channel blocker 1.69 (1.11–2.59) 0.015

Hematocrit (per 1% increase) 0.87 (0.83–0.92) <0.001

Platelet count (per 1 × 104/μl increase) 0.92 (0.88–0.96) <0.001

Total cholesterol (per 10 mg/dl increase) 1.05 (0.99–1.11) 0.082

�1 PON1 192R allele 1.96 (1.03–3.76) 0.039

�1 CYP2C19 no function allele 4.17 (2.67–6.60) <0.001

HPR by corrected PRU

Sex, male 0.54 (0.34–0.83) 0.005

Age (per 1-year increase) 1.00 (0.98–1.02) 0.993

Treatment with ACEI/ARB 1.47 (0.97–2.26) 0.073

Hematocrit (per 1% increase) 1.05 (1.00–1.11) 0.032

Platelet count (per 1×104/μl increase) 0.92 (0.88–0.95) <0.001

Total cholesterol (per 10 mg/dl increase) 1.06 (1.00–1.12) 0.033

�1 PON1 192R allele 2.34 (1.21–4.74) 0.011

�1 CYP2C19 no function allele 4.53 (2.87–7.30) <0.001

ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; CI, confidence interval; HPR,

high platelet reactivity; OR, odds ratio; PRU, P2Y12 reaction unit.

https://doi.org/10.1371/journal.pone.0254067.t003
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accordance with the observation that the frequency of carriers of�1 CYP2C19 no function

allele is markedly higher in East Asian populations compared with Western populations

[6,26].

Similar to a previous study [19], the current study showed a significant negative association

between hematocrit and PRU. Correcting for hematocrit resulted in an 8% re-classification

and 15.4% reduction in the prevalence of HPR using a PRU threshold of�208, which may

more accurately identify patients that would benefit from alternative antiplatelet therapy.

Compared with the previous study, the current study showed a larger re-classification rate of

16.8% and a reduction in the prevalence of HPR of 23.2%. These differences between studies

might be related to the relatively lower hematocrit levels in the current study that might

explain the trend for re-classification as non-HPR by corrected PRU. In addition to the signifi-

cant impact of carrying�1 CYP2C19 no function allele, this study revealed that carrying�1

PON1 192R allele was a contributing factor for HPR based on the original and corrected PRU

with clopidogrel in patients undergoing elective neurointervention. About 85% of clopidogrel

is metabolized by CES1 and the remaining 15% is metabolized into a biologically active thiol

metabolite via two steps. First, monooxygenation of the thiophene ring produces 2-oxo-clopi-

dogrel. Second, oxidative cleavage of the thiolactone ring of 2-oxo-clopidogrel yields sulfenic

acid, which is subsequently reduced to a thiol, an active metabolite bearing an exocyclic double

bond (Fig 1). CYP2C19 contributes to both steps in the clopidogrel bioactivation pathway—

the formation of 45% of 2-oxo-clopidogrel and 21% of the active metabolite [27]—whereas the

PON1-mediated hydrolysis of 2-oxo-clopidogrel generates an endo metabolite, in which the

double bond migrates from an exocyclic to an endocyclic position in the piperidine ring [28].

Unlike the active metabolite, the endo metabolite is unstable and ineffective for platelet inhibi-

tion [29]. These findings suggest that carriers of�1 PON1 192R allele have higher PON1 activ-

ity that accelerates the increase in the endo metabolite of clopidogrel compared with non-

carriers. Moreover, lower CYP2C19 activity might further reinforce this cascade via the

delayed metabolism of 2-oxo-clopidogrel by CYP2C19, which allows PON1 to metabolize

2-oxo-clopidogrel into the endo metabolite. Therefore, compared with Western populations,

the impact of PON1 Q192R on HPR with clopidogrel might be more apparent in East Asian

populations, in which carriers of CYP2C19 no function alleles are common. This study showed

a markedly higher prevalence of HPR by original and corrected PRU in patients carrying�1

PON1 192R allele and the CYP2C19 no function allele compared with noncarriers. Although

no significant association between PON1 polymorphisms and response to clopidogrel was

reported by Saiz-Rodrı́guez et al. [18], this might be due to ethnic differences or combined

assessment of the PON1 polymorphisms, PON1 Q192R, L55M (rs854560; c.163T>A or p.

Leu55Met), and C-108T (rs705379; c.-108C>T). Our results are consistent with previous stud-

ies [13–16] but were opposite to those of Bouman et al. [8]. This suggests a difference in the

role of PON1 between Western and East Asian populations. PON1 contributes to the antioxi-

dative function of high-density lipoprotein-cholesterol, which potentially suppresses platelet

aggregation [30]. Therefore, in addition to CYP2C19 and PON1 polymorphisms, differences in

lipoprotein levels and their association with vascular disease risk might explain these results

[31]. Our findings may have clinical utility in that PON1 and CYP2C19 genotyping may pro-

vide prognostic information on the efficacy of clopidogrel in patients undergoing neurointer-

vention. Further study is needed to investigate the relative risk of thromboembolic

complications between the carrier status of PON1 192R allele and CYP2C19 no function allele,

the benefit of alternative antiplatelet therapy with ticagrelor or prasugrel in patients carrying

�1 PON1 192R allele and the CYP2C19 no function allele, and whether the de-escalation of

DAPT to clopidogrel monotherapy can avoid more bleeding events in non-carriers.
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In addition to hematocrit, this study revealed clinical and biochemical parameters including

sex, lower platelet count, and higher total cholesterol level that were also associated with HPR

by original and corrected PRU with clopidogrel. A recent report demonstrated that lower

platelet count was associated with larger mean platelet volume, which reflected greater pro-

thrombotic activity [32]. Another report demonstrated an association between total cholesterol

level and clopidogrel resistance [33]. However, these associations remain controversial and the

mechanism is unclear. Further study with larger samples might provide reliable conclusions.

This study had several limitations. First, this study did not include genetic polymorphisms

other than CYP2C19�2, �3, and �17, and PON1 Q192R on post-clopidogrel platelet reactivity.

Notably, PON1 L55M, which lowers the activity of PON1 [34], and has an allele frequency of

3.4% in East Asians [21], was not included in the analysis. Moreover, in addition to the partial

role of CYP2C19, many other enzymes are involved in the metabolism of clopidogrel, and the

Fig 1. Pathway involved in the formation of the active and endo metabolites of clopidogrel in patients with polymorphisms in cytochrome P450 family 2

subfamily C member 19 (CYP2C19) and paraoxonase-1 (PON1). In carriers of�1 PON1 192R allele, high PON1 activity may accelerate an increase in the

production of the endo metabolite of clopidogrel. Low CYP2C19 activity in carriers of�1 CYP2C19 no function allele may reinforce this cascade via the

delayed metabolism of 2-oxo-clopidogrel into an active metabolite, which allows PON1 to metabolize 2-oxo-clopidogrel into the endo metabolite of

clopidogrel. GSH, glutathione.

https://doi.org/10.1371/journal.pone.0254067.g001

PLOS ONE PON1 Q192R alters clopidogrel response in patients undergoing neurointervention

PLOS ONE | https://doi.org/10.1371/journal.pone.0254067 August 5, 2021 8 / 11

https://doi.org/10.1371/journal.pone.0254067.g001
https://doi.org/10.1371/journal.pone.0254067


role of PON1 could be relatively minor. Therefore, this study cannot exclude alternative results

that might be related to other genetic polymorphisms. Second, the study was performed at a

single center with a relatively small number of patients with limited clinical and laboratory

information, which may have introduced some selection bias. Third, previous studies showed

a PRU of�208 predicted thromboembolic events following pipeline embolization device

placement for IA [17]; however, we could not systematically evaluate associations between

periprocedural thromboembolic complications and HPR due to the heterogeneity of endovas-

cular procedures and additional treatment for HPR (e.g., some patients with HPR received

additional antithrombotic agents before and after treatment). Fourth, the lack of a multiple-

comparison correction might have led to false-positive results. Finally, participants in this

study were mostly Japanese, which might limit the generalizability of the findings.

Conclusions

Alongside clinical, hematological, and biochemical parameters and the presence of�1

CYP2C19 no function allele, carrying�1 PON1 192R allele is associated with HPR by original

and corrected PRU with clopidogrel in patients undergoing elective neurointervention,

although alternative results that might be related to other genetic polymorphisms cannot be

excluded.
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31. Paré G, Çaku A, McQueen M, et al. Lipoprotein(a) Levels and the Risk of Myocardial Infarction Among

7 Ethnic Groups. Circulation. 2019; 139:1472–1482. https://doi.org/10.1161/CIRCULATIONAHA.118.

034311 PMID: 30667276

32. Miller MM, Henninger N, Słowik A. Mean platelet volume and its genetic variants relate to stroke severity

and 1-year mortality. Neurology. 2020; 95:e1153–e1162. https://doi.org/10.1212/WNL.

0000000000010105 PMID: 32576634

33. Su J, Zheng N, Li Z, Huangfu N, Mei L, Xu X, et al. Association of GCK gene DNA methylation with the

risk of clopidogrel resistance in acute coronary syndrome patients. J Clin Lab Anal. 2020; 34:e23040.

https://doi.org/10.1002/jcla.23040 PMID: 31605429

34. Brophy VH, Jampsa RL, Clendenning JB, et al. Effects of 5’ regulatory-region polymorphisms on para-

oxonase-gene (PON1) expression. Am J Hum Genet. 2001; 68:1428–1436. https://doi.org/10.1086/

320600 PMID: 11335891

PLOS ONE PON1 Q192R alters clopidogrel response in patients undergoing neurointervention

PLOS ONE | https://doi.org/10.1371/journal.pone.0254067 August 5, 2021 11 / 11

https://doi.org/10.1016/j.clinthera.2019.04.037
https://doi.org/10.1016/j.clinthera.2019.04.037
http://www.ncbi.nlm.nih.gov/pubmed/31128980
https://doi.org/10.1111/jth.12376
http://www.ncbi.nlm.nih.gov/pubmed/24118870
https://doi.org/10.1001/jama.2011.290
http://www.ncbi.nlm.nih.gov/pubmed/21406646
https://doi.org/10.1038/nature15393
http://www.ncbi.nlm.nih.gov/pubmed/26432245
https://doi.org/10.1136/ejhpharm-2017-001359
http://www.ncbi.nlm.nih.gov/pubmed/31157110
https://doi.org/10.1161/CIRCINTERVENTIONS.114.002232
https://doi.org/10.1161/CIRCINTERVENTIONS.114.002232
http://www.ncbi.nlm.nih.gov/pubmed/26152562
https://doi.org/10.1007/s10557-015-6585-6
http://www.ncbi.nlm.nih.gov/pubmed/25860557
https://doi.org/10.1160/TH11-01-0046
https://doi.org/10.1160/TH11-01-0046
http://www.ncbi.nlm.nih.gov/pubmed/21544318
https://doi.org/10.2165/00003088-200241120-00002
https://doi.org/10.2165/00003088-200241120-00002
http://www.ncbi.nlm.nih.gov/pubmed/12222994
https://doi.org/10.1124/dmd.109.029132
https://doi.org/10.1124/dmd.109.029132
http://www.ncbi.nlm.nih.gov/pubmed/19812348
https://doi.org/10.1021/tx2004085
http://www.ncbi.nlm.nih.gov/pubmed/22103858
https://doi.org/10.1093/eurheartj/ehs042
http://www.ncbi.nlm.nih.gov/pubmed/22374717
https://doi.org/10.1016/0021-9150%2893%2990183-u
https://doi.org/10.1016/0021-9150%2893%2990183-u
http://www.ncbi.nlm.nih.gov/pubmed/8141836
https://doi.org/10.1161/CIRCULATIONAHA.118.034311
https://doi.org/10.1161/CIRCULATIONAHA.118.034311
http://www.ncbi.nlm.nih.gov/pubmed/30667276
https://doi.org/10.1212/WNL.0000000000010105
https://doi.org/10.1212/WNL.0000000000010105
http://www.ncbi.nlm.nih.gov/pubmed/32576634
https://doi.org/10.1002/jcla.23040
http://www.ncbi.nlm.nih.gov/pubmed/31605429
https://doi.org/10.1086/320600
https://doi.org/10.1086/320600
http://www.ncbi.nlm.nih.gov/pubmed/11335891
https://doi.org/10.1371/journal.pone.0254067

