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Abstract

Motivation: While deep-learning algorithms have demonstrated outstanding performance in se-

mantic image segmentation tasks, large annotation datasets are needed to create accurate models.

Annotation of histology images is challenging due to the effort and experience required to carefully

delineate tissue structures, and difficulties related to sharing and markup of whole-slide images.

Results: We recruited 25 participants, ranging in experience from senior pathologists to medical stu-

dents, to delineate tissue regions in 151 breast cancer slides using the Digital Slide Archive. Inter-

participant discordance was systematically evaluated, revealing low discordance for tumor and stroma,

and higher discordance for more subjectively defined or rare tissue classes. Feedback provided by se-

nior participants enabled the generation and curation of 20 000þ annotated tissue regions. Fully
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convolutional networks trained using these annotations were highly accurate (mean AUC¼0.945), and

the scale of annotation data provided notable improvements in image classification accuracy.

Availability and Implementation: Dataset is freely available at: https://goo.gl/cNM4EL.

Contact: lee.cooper@emory.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Accurate segmentation of tissue regions in histology images is a

challenging problem with important applications in computational

pathology. The ability to accurately delineate tissue regions can

provide important information for computational diagnosis, prognos-

tication, assessments of treatment response and investigations of can-

cer biology. The problem of semantic segmentation, or exhaustive

pixel-level classification of tissues, is particularly challenging. While

deep-learning methods have demonstrated promising results in general

semantic image segmentation problems, these encoder-decoder convo-

lutional architectures require large training datasets to generalize well.

Generating annotated histology datasets with adequate scale presents

significant challenges, especially when careful delineation of regions

or structures is required, and the lack of annotated histology remains

a significant barrier in the growth of computational pathology.

Semantic segmentation is particularly challenging, as complete label-

ing of the scene is required. Generating a meaningful number of anno-

tations requires engaging with multiple experts, and even experienced

pathologists will exhibit some inter-rater discordance. Annotations

need to be captured on many images, as remarkable histologic varia-

tions can be observed even within a single lab, and variations in tissue

processing (fixation, staining, mounting) and imaging have a strong

influence on image texture and color. Data augmentation techniques

are often used when training networks to simulate this variation by ar-

tificially manipulating the color and contrast of images with some suc-

cess, reducing the annotation burden. Still, a pathologist with

significant clinical demands often cannot produce enough annotations

on their own to adequately train deep-learning models for challenging

applications like semantic segmentation. Interfaces for viewing and

annotating whole-slide histology images, collaborative review and

data management are also a critical element in engaging pathologists

to scale the production of accurate ground truth.

Crowdsourcing has been extensively used in general non-medical

tasks, and has been shown to markedly speed and scale the process of

image annotation (Su, 2012). In the life sciences, crowd-based

approaches based on gamification or micropayments enabled successful

scaling of biological annotations (Hughes et al., 2018). In pathology,

however, the value of crowdsourcing is not immediately apparent due

to the complexity and subjectivity of tasks, scale of whole-slide scans

(necessitating custom large-scale viewers and annotation platforms),

and domain expertise needed; a recent systematic review found that al-

most all crowdsourcing articles in the pathology literature focused on

malaria diagnosis and relatively simple scoring of immunohistochemical

biomarkers (Alialy et al., 2018). Recent work has established the value

of crowdsourcing for nucleus detection and segmentation microtasks in

hematoxylin and eosin stained images, and that research fellows and

some non-pathologists (NPs) are able to reach acceptable concordance

with senior pathologists (SPs) (Irshad et al., 2015, 2017). This work

was based on a limited number of slides (10), focused on small regions

of interest (400�400 up to 800�800 pixels), and did not explore more

challenging tasks such as semantic segmentation. Moreover, this work

did not investigate how to organize participants and leverage their vari-

ous experience levels, and how technology can facilitate feedback and

collaboration between more and less experienced participants to im-

prove crowdsourcing efficiency and accuracy.

To address some of these issues, we investigate the use of crowd-

sourcing in the context of semantic segmentation of breast cancer

images. This task is widely regarded as the most laborious and chal-

lenging type of ground truth generation (Kovashka et al., 2016).

We describe our experience using web-based technology to facilitate an

international crowdsourcing effort, and in expanding this effort to in-

clude junior pathology residents (JPs) and medical students. We also

describe how training and directed feedback using web-based tools like

the Digital Slide Archive (DSA) can be instrumental in streamlining the

annotation and review process. Our annotation efforts focus on triple-

negative breast cancer (TNBC), an aggressive genomic subtype that

comprises�15% of breast cancer cases (Plasilova et al., 2016).

2 Materials and methods

2.1 Dataset description
The dataset used in this study consists of 151 hematoxylin and eosin

stained whole-slide images (WSIs) corresponding to 151 histologically-

confirmed breast cancer cases. These images of formalin-fixed paraf-

fin-embedded tissues were acquired from the Cancer Genome Atlas,

with triple-negative status determined from clinical data files. A repre-

sentative region of interest (ROI) was selected within each slide by the

study coordinator, a medical doctor, and approved by a SP. The mean

ROI size was 1.18 mm2 (SD ¼ 0.80 mm2). ROIs were selected to be

representative of predominant region classes and textures within each

slide. Very large ROIs were avoided to prevent degradation in quality

due to participant fatigue (Irshad et al., 2015). Regions with high

tumor density were selected whenever possible, for two reasons: (i) to

maximize the proportion of ROI occupied by tumor; (ii) to minimize

the need to distinguish normal/inflammatory cells and cancerous tissue,

an exhaustive process requiring expertise not expected from NPs.

2.2 Participant recruitment and training
The study workflow is illustrated in Figure 1. Research interest

groups on social media (including Facebook and LinkedIn) were

used to recruit participants, who were asked to submit a resume and

brief motivation statement to the study coordinator. A total of 25

participants, including 20 medical students, 3 JPs and 2 SPs were

selected during recruitment. Throughout this manuscript, we use the

following notation to denote the various participant classes: SP (se-

nior resident or faculty); JP; NP. JPs were defined as pathology resi-

dents who have not finished their second year of residency training.

Participants underwent a training session, composed of introductory

videos and a detailed document describing guidelines, histological

patterns to annotate, common pitfalls as well as instructions for

using the DSA interface. Supplementary Table S1 illustrates sample

instructions provided to participants to help improve and standard-

ize the annotation process. Slack, an online team communication

tool, was used for NPs to ask questions and to receive feedback

from other participants and pathologists. Extensive feedback was
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provided on the first slide annotated by a participant, serving as a

de-facto practical component of their training.

2.3 Structured crowdsourcing
We use the term structured crowdsourcing to refer to systematic as-

signment of tasks based on participant experience and expertise. SPs

assisted in mentoring and correcting annotations made by NPs. Two

types of ROIs were annotated: (i) a ‘core’ set comprising 151 large

ROIs to be used for training and validating algorithms (ALs) and (ii)

an ‘evaluation’ set comprising 10 smaller ROIs used to evaluate

inter-participant concordance.

Each participant was asked to annotate 5–6 ROIs from the core

set (uniquely assigned to the participant) and all 10 evaluation

ROIs. ROIs from challenging slides (21 total) were assigned to SPs

and JPs, whereas all other ROIs (130 total) were evenly distributed

among the participants. Slides were considered challenging if a con-

siderable fraction of the ROI was occupied by uncommon features

like extensive tumor cell vacuolation, stromal epithelialization or

stromal hyalinization. Throughout the study, SPs provided feedback

and made corrections to the core slides annotated by the partici-

pants. Feedback was not provided on evaluation set ROIs to avoid

biasing the analysis of inter-participant concordance.

2.4 The DSA annotation interface
The DSA is an open-source web-based digital pathology platform

for the management, visualization and annotation of WSI datasets

(Gutman et al., 2013, 2017). A Docker software container along

with instructions for creating a DSA instance is available at: https://

github.com/DigitalSlideArchive/digitalslidearchive.info. Figure 2

shows a screenshot of the DSA interface used for annotation. This

interface organizes annotations by region class (e.g. tumor, necro-

sis). Each class has a style that defines the rendering properties for

its annotations including class names and boundary colors. These

styles were pre-defined in a template by the study coordinator in

consultation with an SP, and serve to improve the consistency of

annotations across participants and to facilitate review. The DSA

also provides a REST API for programmatic management of slide

and annotation data that was used throughout the study to enable

management of users, slide assignments, annotations, review and

inter-participant concordance analyses.

2.5 Annotation review process
The following regions were annotated during crowdsourcing:

(i) predominant classes including tumor, stroma, lymphocyte-rich

regions and necrosis. (ii) Non-predominant classes including artifacts,

adipose tissue, blood vessels, blood (intravascular or extravasated red

Fig. 1. Study overview. (A) Slides from the TNBC cohort were reviewed for difficulty and the study coordinator selected a single representative ROI in each slide.

(B) Participants were recruited on social media from medical student interest groups. Documentation and instructional videos were developed to train partici-

pants in breast cancer pathology and the use of DSA annotation tools. A spreadsheet lists slide-level descriptions of histologic features for each of the 151 images

to aid in training. (C) Participants were each assigned six slides based on experience. Challenging slides were assigned to faculty/pathology residents, while

standard slides were distributed among all participants. (D) The DSA was used by participants to draw the outlines of tissue regions in their assigned slides/ROIs.

A Slack workspace enabled less experienced users to ask questions and receive guidance from the more experienced users. (E) Ten evaluation ROIs were identi-

fied in the slides and were annotated by all participants in an unsupervised manner to enable inter-participant comparisons. (F) Agreement between each pair of

participants was evaluated using the Dice coefficient to generate an inter-participant discordance matrix

Fig. 2. Screenshot of the DSA and HistomicsTK web interface. The main view-

port allows panning and zooming within the slide. Annotations are grouped by

class into layers (middle right panel) whose style properties like color and fill

can be adjusted (bottom right panel). Other features include: controlling anno-

tation transparency, an interactive mode to highlight individual annotations,

and ability to download the WSI, regions of interest or annotations. Annotation

properties can also be programmatically manipulated using the DSA API
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blood cells), glandular secretions and extracellular mucoid material

and (iii) challenging classes including plasma cells, mixed inflammatory

infiltrates (e.g. neutrophils), normal ducts or acini, metaplastic changes

(osteoid matrix, cartilaginous metaplasia, etc.), lymph vessels, skin ad-

nexa, angioinvasion and nerves. Since stroma is the most prevalent

component in many slides, it was considered to be the ‘default’ class

and defined by absence of annotations. JPs and NPs were directed to

focus their effort on annotating predominant classes and to ask for

feedback on Slack when annotating non-predominant or challenging

classes. Providing feedbacks publicly on the Slack channel allowed all

participants to access and learn from each other’s questions and

responses. The study coordinator and SPs reviewed all annotations for

mistakes using two mechanisms: (i) providing feedback to the partici-

pants on the Slack channel and (ii) generating new correction overlay

annotations that are patched on top of the original annotations

(Supplementary Fig. S1). Two phases of review and corrections were

used (Supplementary Methods and Supplementary Fig. S3).

2.6 Measuring annotation discordance
The polygonal coordinates are queried using the DSA server REST

API and are converted to a mask image format offline, where pixel

values encode region class (Supplementary Fig S1). The Inter-

participant discordance was assessed for the 300 unique pairs of

participants using their annotations on the evaluation set images.

Discordance was measured using the Dice coefficient:

Di;j ¼ 1� 2 �
PNc

c¼1 Ic \ Jcj j
PNc

c¼1 Icj j þ Jcj j
(1)

where i and j are two participants, with corresponding masks I, J, com-

posed of c binary channels, where Nc is the number of classes being con-

sidered. Di;j lies in the range [0, 1], where 0 indicates no discordance.

Our analysis makes comparisons on the effect of experience level and

feedback on annotation quality. We used two techniques to visualize dis-

cordance between participants. The first is a bi-clustered heatmap of the

inter-participant discordance matrix that groups participants based on

discordance profiles. The second is a multidimensional scaling (MDS)

analysis of the discordance matrix that depicts participants as points in

two-dimensional space and where proximity indicates concordance.

2.7 Semantic segmentation and classification models
A pre-trained fully convolutional VGG-16, FCN-8 network was

trained to segment histology images into five classes: tumor, stroma, in-

flammatory infiltrates, necrosis and other classes (Long et al., 2015).

Shift and crop data augmentation was used to improve model robust-

ness—see Supplementary Methods for details. Focusing on the 125

ROIs from infiltrating ductal carcinomas [the majority of TNBCs

(Plasilova et al., 2016)], we first applied color normalization to the

RGB images of the ROIs (Reinhard et al., 2001). Several different types

of models were trained to evaluate different aspects of crowdsourcing:

Firstly, to investigate the effects of using crowdsourced versus

single-expert annotations for training, we trained ‘comparison’

models for semantic segmentation. These models used annotations

from evaluation set ROIs for training, and were evaluated on the

post-correction core-set annotations (see Supplementary Fig. S2C).

Second, to evaluate peak accuracy, we trained ‘full’ models for

semantic segmentation using the largest amounts of crowdsourced

annotations possible. The full models were trained using annota-

tions from core-set ROIs, assigning the ROIs from 82 slides (from

11 institutes) to the training set, and the ROIs from 43 slides (from

seven institutes) to the testing set. Strict separation of ROIs by insti-

tute into either training or testing provides a better measure of how

models developed with our data will generalize to slides from new

institutions and multi-institute studies.

Finally, to evaluate the effect of training set size on the accuracy

of predictive models, we developed ‘scale-dependent’ image classifi-

cation models using varying amounts of our crowdsourced annota-

tion data (Supplementary Fig S5). Since training hundreds of

semantic segmentation models is time prohibitive, we instead

trained classification models based on the pre-trained VGG-16 net-

work to classify 224�224 pixel patches from the three predominant

classes: tumor, stroma and inflammatory infiltration, using the same

train/test assignment used in the semantic segmentation model (see

details in Supplementary Methods).

3 Results

Our study produced a total of 50 057 polygonal annotations, includ-

ing 3988 corrections. Following integration of the corrections

(Supplementary Fig. S1B), a total of 20 340 polygonal annotations

were extracted from the final mask images. The number of annota-

tions within each ROI ranged from 11 to 541. Supplementary Table

S2 describes the number of annotations by class, with the predomin-

ant classes representing more than 71% of the annotations. This

data can be visualized in a public instance of the DSA at https://goo.

gl/cNM4EL. Mask images derived from this data are used in train-

ing and validation are available at: goo.gl/UoUm9w. Further details

can be found in the Supplementary Materials.

3.1 Annotation concordance is class-dependent
Discordance varies significantly by class, and reflects the difficulty

and subjectivity inherent in the classes (Fig. 3 and Supplementary

Fig. S2). Tumor annotations were the least discordant, with 0.13

(SP–SP), 0.16 (NP–NP) and 0.15 (SP–NP). These results indicate

that both the bias (SP–NP) and variance (NP–NP) of annotations

made by NPs are lower when only the predominant class is consid-

ered (Mann–Whitney P ¼ 3.66e�30 and P ¼ 1.99e�168, for SP–

NP and NP–NP, respectively).

SPs had low median discordance for tumor (0.13), stroma (0.19)

and necrosis (0.09), and had relatively higher discordance for

lymphocytic infiltration (0.48). The median discordance between

NPs and SPs was 0.14, 0.27, 0.54 and 1.0 for tumor, stroma,

lymphocyte infiltration and necrosis/debris, respectively. Similarly,

the median discordance among NPs was 0.14, 0.33, 0.50 and 1.0

for tumor, stroma, lymphocytic infiltration and necrosis/debris, re-

spectively. The high discordance for necrosis/debris reflects the fact

that many participants either missed this class when it was truly pre-

sent or misclassified stroma as necrosis.

Supplementary Figure S4A shows the pixel-wise average SP–NP

discordance between NPs and pathologists for two typical regions.

Most of the discordance for tumor occurs around the region bound-

ary. On the other hand, discordance for lymphocytic infiltration

and, to a lesser extent, necrosis/debris follows a more diffuse pat-

tern, and is not limited to the region boundary.

3.2 Feedback improves annotation quality
There was some clustering of participants by experience level, with

three of the more experienced participants (two SPs and one JP) being

highly mutually concordant as seen in the MDS plot (Fig. 3). The me-

dian SP–SP discordance was 0.24, compared to 0.30 for NP–NP.

Discordance for SP–NP comparisons lies in the middle of this range

at 0.27. Predictions of a semantic segmentation AL trained on cor-

rected annotations from independent institutions results in discordance

3464 M.Amgad et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz083#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz083#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz083#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz083#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz083#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz083#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz083#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz083#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz083#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz083#supplementary-data
https://goo.gl/cNM4EL
https://goo.gl/cNM4EL
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz083#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz083#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz083#supplementary-data


values similar to those of SPs (Fig. 3); the median SP-AL discordance is

0.22 overall and 0.15 for tumor. Three primary mistakes observed dur-

ing the correction of core-set annotations were: (i) imprecise region

boundaries, (ii) region misclassification and (iii) missing annotations

for non-predominant classes. Examples of common mistakes are pre-

sented in Supplementary Figure S4B. Discordance analysis results of

the pre- and post-correction core-set annotations were consistent with

trends observed in the evaluation set, but were notably lower. The me-

dian discordance between pre- and post-correction masks is 0.08 for

all classes (SD ¼ 0.30). This was significantly lower (Wilcoxon

P ¼ 8.77e�14) for binary tumor classification (0.01, SD ¼ 0.11).

Predominant classes had relatively low discordance, non-predominant

classes had higher discordance, while challenging classes were almost

always missing in NP annotations and were added by SPs in

corrections.

The following are pre- and post-correction discordance values

for other region classes (median 6 SD): stroma (0.09 6 0.15),

lymphocytic infiltrate (0.08 6 0.31), necrosis (0.25 6 0.42), blood

(0.02 6 0.32), exclude (0.01 6 0.42), fat (3.98e�4 6 0.29), extra-

cellular mucoid material (0.50 6 0.50), glandular secretions

(0.87 6 0.42) and blood vessel (1.00 6 0.28).

3.3 Accuracy of semantic segmentation models
The comparison semantic segmentation models had similar accuracy

whether they were trained with NP annotations or SP annotations

(median DICE ¼ 0.820 versus 0.822, Fig. 3C and D). This result is

consistent with the concordance results presented in Section 3.1.

The segmentations generated by the full semantic segmentation

model were highly accurate and concordant with human annota-

tions of ROIs in the testing set (see Table 1 and Supplementary Fig.

S6). The model predictions correspond well to region boundaries

and are often more granular than human annotations (see Figure 4

and Supplementary Figs S7–S9). When misclassifications occur, they

are generally due to the composition of the training set.

Errors were found in uncommon or mixed patterns including:

dense pure plasma cell infiltrates (classified as tumor), acellular

hyaline stroma (classified as tumor) and necrotic regions containing

dense inflammatory infiltrates (classified as infiltrates). Examples of

these errors are shown in Supplementary Figure S10.

3.4 Increasing scale improves image classification

accuracy
The accuracy of scale-dependent models for patch classification are

presented in Figure 4C (extended results Supplementary Table S3).A

peak AUC above 0.95 was observed when all training data were

used. With training data from only 2–4 randomly selected slides,

AUCs of 0.78–0.9 are observed. Average AUC increases rapidly

from 0.88 for two slides to 0.94 for eight slides. Average AUC con-

tinues to increase from 8 to 49 slides but with much slower growth.

Beyond 49 slides growth in average AUC continues but is modest.

This asymptotic trend is often observed in machine learning experi-

ments where orders of magnitude more data are needed to signifi-

cantly improve performance near the asymptote.

4 Discussion

The success of convolutional networks in analyzing histology images

has increased interest in strategies for producing annotation data.

While ALs are demonstrating diagnostically meaningful perform-

ance in many applications, large amounts of annotations are

required to develop and validate these models. This necessitates

Fig. 3. Evaluation slide set concordance and model accuracy. (A) Inter-participant discordance matrices for SP, JP, NP and AL. (B) 2-D MDS plots of participant discord-

ance. (C, D) Testing accuracy and confusion of comparison models trained on evaluation set ROIs from SPs (cyan) and NPs (magenta), measured against post-correction

masks from the core set. Confusion matrix values are percentages relative to total pixel count. (Color version of this figure is available at Bioinformatics online.)

Table 1. Testing accuracy of full semantic segmentation model

Mean AUC (SD) DICE Accuracy

Overall 0.945 (0.042) (micro) 0.888 0.799

Tumor 0.941 (0.058) 0.851 0.804

Stroma 0.881 (0.056) 0.800 0.824

Inflammatory 0.917 (0.150) 0.712 0.743

Necrosis 0.864 (0.237) 0.723 0.872

Other 0.885 (0.129) 0.666 0.670
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engaging multiple participants in annotation studies, and the ability

to efficiently organize participants with a range of experience levels

is one approach to scaling the annotation process. While significant

expertise is needed for accurate semantic annotation of histology,

our study provides an example application where non-experts can

be trained to effectively perform much of the time-consuming work.

While non-experts cannot be expected to recognize rare patterns

or to accurately annotate difficult cases, a large majority of the

Fig. 4. Model performance over the testing set. (A) Visualization of full semantic segmentation model predictions on testing set regions of interest. Color codes

used: red (tumor); transparent (stroma); cyan (inflammatory infiltrates); yellow (necrosis). (B) Area under ROC curve for semantic segmentation algorithm, broken

down by region class. (C) Effect of training sample size on scale-dependent patch classification models. Each point represents the macro-average AUC of a single

model, trained on different sets of randomly selected slides. (Color version of this figure is available at Bioinformatics online.)

3466 M.Amgad et al.



work in delineating tissue boundaries does not fall in these catego-

ries. By utilizing expertise where it is needed, in the annotation of

rare or difficult classes, and in reviewing and correcting the annota-

tions of non-experts, we were able to produce a large dataset con-

taining over 20 000 annotated tissue regions. This resource can be

used to train semantic segmentation models for breast cancer hist-

ology to characterize the tumor microenvironment and inflamma-

tory infiltration, both of which are known to strongly correlate with

cancer progression and patient outcomes (Fouad and Aanei, 2017).

The annotations in our study were produced using the DSA, a

web-based digital pathology platform. While DSA provides a wide

array of annotation tools, future development will enhance review

and collaboration capabilities by formalizing these processes in spe-

cialized interfaces. These enhancements will increase the utility of

DSA for annotation studies, education and diagnostic review includ-

ing tumor boards.

Although concordance among participants was generally strong,

important sources of discordance between SPs and NPs were

observed (Supplementary Fig. S4). In the predominant classes, dis-

cordance was often observed in cases where judgment was either dif-

ficult or subjectively defined (e.g. a region is lymphocyte-rich if at

least 80% of its area was occupied by lymphocytes). Less frequently

occurring non-predominant classes were also often missed by NP

participants, likely due to difficulty in recognizing these classes and

a lack of training. Examples of annotation errors include stromal

regions being mislabeled as necrosis or vice versa, hyalinized or acel-

lular stroma misclassified as mucinous change, plasma cells being

mislabeled as lymphocytes, and endothelial cells, activated fibro-

blasts or activated histiocytes being mislabeled as tumor. Missed

classes include blood vessels, glandular secretions, as well as rare

metaplastic changes and non-lymphocytic inflammatory infiltrates

(it should be noted that much of the discordance arises from non-

predominant classes added by the SPs during correction). We pro-

vide further evidence of the utility of NP annotations, showing that

comparison models derived from NP annotations had similar accur-

acy to models derived from SP annotations. These comparison

experiments were based on the limited set of ROIs for which both

SP and NP annotations were available, and hence we still recom-

mend supervision and feedback by SPs following the initial training

of NP participants.

Semantic segmentation models derived from our annotation data-

set were highly accurate, and provide new opportunities for feature ex-

traction from breast cancer histology and tissue based studies. These

models have a high macro-average AUC (0.897) and class-wise AUCs

ranging from 0.881 (stroma) to 0.941 (inflammatory). Visualization

shows that many of the areas where the human and computational

prediction disagree is due to increased sensitivity of the models to

granular regions that are not annotated by human participants.

While our study presents important findings on annotating hist-

ology images, there are a number of research questions that were not

addressed. Our study relied on medical students and graduates, with

the rationale being that basic familiarity with histology and general

biology may reduce error rates. Future studies may investigate whether

this assumption is correct, and if it is possible to engage a broader

pool of participants that lack this training to further scale annotation

efforts. Our study also did not evaluate intra-participant discordance,

an issue that is known to be significant in pathology. Measuring intra-

participant discordance would provide a baseline to evaluate inter-

participant discordances against, and would provide better context for

the differences in discordance observed among and between partici-

pants with different experience levels. The time participants spent in

making annotations was also not recorded, nor was the time that

more experienced users spent correcting annotations. This informa-

tion, while difficult to acquire reliably, could provide further insights

on how to best allocate resources in structured crowdsourcing studies.

Finally, we would point out that the value of crowdsourcing likely

varies by application. The amount of data required varies with the dif-

ficulty of the prediction task, whether the model is expected to gener-

alize to specimens from different institutions, expectations for

prediction model accuracy and the availability of experts to produce

annotations. In some tasks, a well-resourced organization may be able

to engage their pathologists to produce sufficient annotations for ‘in-

house’ models not intended to generalize to specimens generated at

other labs.
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