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Abstract: Partial information decomposition allows the joint mutual information between an output
and a set of inputs to be divided into components that are synergistic or shared or unique to each
input. We consider five different decompositions and compare their results using data from layer 5b
pyramidal cells in two different studies. The first study was on the amplification of somatic action
potential output by apical dendritic input and its regulation by dendritic inhibition. We find that
two of the decompositions produce much larger estimates of synergy and shared information than
the others, as well as large levels of unique misinformation. When within-neuron differences in
the components are examined, the five methods produce more similar results for all but the shared
information component, for which two methods produce a different statistical conclusion from the
others. There are some differences in the expression of unique information asymmetry among the
methods. It is significantly larger, on average, under dendritic inhibition. Three of the methods
support a previous conclusion that apical amplification is reduced by dendritic inhibition. The second
study used a detailed compartmental model to produce action potentials for many combinations of
the numbers of basal and apical synaptic inputs. Decompositions of the entire data set produce similar
differences to those in the first study. Two analyses of decompositions are conducted on subsets of the
data. In the first, the decompositions reveal a bifurcation in unique information asymmetry. For three
of the methods, this suggests that apical drive switches to basal drive as the strength of the basal
input increases, while the other two show changing mixtures of information and misinformation.
Decompositions produced using the second set of subsets show that all five decompositions provide
support for properties of cooperative context-sensitivity—to varying extents.

Keywords: information theory; partial information decomposition; pointwise partial information
decomposition; synergy; redundancy; cooperative context-sensitivity; apical amplification; apical
drive; misinformation

1. Introduction

A breakthrough in information theory happened in 2010 when Williams and Beer [1]
published a method called partial information decomposition, which provided a framework
under which the mutual information, shared between the inputs and output of a proba-
bilistic system, could be decomposed into components that measure different aspects of
the information: the unique information that each input conveys about the output; the
shared information that all inputs possess regarding the output; the information that the
inputs in combination have about the output. They also defined a measure of redundancy,
Imin, together with a method for obtaining a partial information decomposition (PID),
which is also commonly referred to as Imin. Several authors criticised the definition of
the redundancy component in the Imin PID [2–5], thus spawning several new methods
for computing a partial information decomposition. Harder and colleagues [2] defined a
new measure of redundancy based on information projections, with a PID denoted here
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as Iproj, and they introduced the distinction between source redundancy and mechanistic
redundancy. Griffiths and Koch [4] developed a measure of synergy, while independently,
Bertschinger and colleagues focused on defining a measure of unique information and
defined an optimisation approach to estimate each of the four PID components; it turned
out that both approaches resulted in the same decomposition, commonly called Ibroja.
Taking a pointwise approach, Ince [5] considered measuring redundancy at the level of
each individual realisation of the probabilistic system by considering a common change
in surprisal, thus creating a measure of redundancy for the system, and PID Iccs. James
and colleagues defined a measure of unique information by using a lattice of maximum
entropy distributions based on dependency constraints, with PID, Idep. Finn and Lizier [6]
introduced a very detailed pointwise approach, with PID, Ipm. Niu and Quinn [7] pro-
duced a decomposition, Iig, based on information geometry. Makkeh and colleagues [8,9]
defined a measure of shared information and PID, Isx. Most recently, Kolchinsky [10] used
a general approach to define a measure of redundancy based on Blackwell ordering. The
corresponding PID has been named Iprec.

The Imin, Iproj, Ibroja and Idep PIDs are guaranteed to have nonnegative components.
In [7], it is claimed that Iig is a nonnegative PID, but examples of systems producing a
negative estimate of redundancy were discovered in 2020. Nevertheless, this PID has
given sensible results in many systems. No guarantee of non-negativity was given for the
Iprec PID, and an example of negative synergy has been found. The other three methods
are defined in a pointwise manner by considering information measures at the level of
individual realisations and defining partial information components at this level. Pointwise
PIDs can produce negative components and they are described as providing misinformation
in such cases [11].

An important feature of PID is that it enables the shared information and synergistic
information in a system to be estimated separately. This provides an advance on earlier
research in which the interaction information was used to estimate synergy [12,13], but
could be negative, and the three-way mutual information [14] or coinformation [15], which
also could be negative, was used as an objective function in neural networks with two
distinct sets of inputs from receptive and contextual fields, respectively.

Partial information decomposition has been applied to data in neuroscience, neu-
roimaging, neural networks and cellular automata; see, e.g., [16–23]. A major selling point
of the Isx PID is that the components are differentiable, unlike other PIDs. This makes it
possible to build neural networks with a particular neural goal involving PID components
as the objective function [24,25]. For an overview of PID, see [26], and for an excellent
tutorial, see [27].

We will provide a systematic comparison of the different methods by applying the
Ibroja, Idep, Iccs, Ipm and Isx PIDs to data recorded in two different studies. Further detail
and illustration of these PID methods are provided in Appendices A–H. In Appendix I,
further comparisons are provided involving the Imin, Iproj, Iig and Iprec PIDs. First,
we present comparisons of detailed analyses of physiological data recorded from cortical
layer 5b (L5b) pyramidal neurons in a study of GABAB receptor-mediated regulation of
dendro-somatic synergy [28]. The influence of GABAB receptor-mediated inhibition of the
apical dendrites evoked by local application of the GABAB receptor agonist baclofen will
be studied by making within-neuron paired comparisons of PID components. Secondly, we
will also shed light on unique information asymmetries as revealed by the PID analyses,
as well as discussing the evidence for apical amplification in the presence and absence of
GABAB receptor-mediated inhibition of apical dendrites.

The stereotypical morphology of pyramidal neurons suggests that they have at least
two functionally distinct sets of fine dendrites, the basal dendrites that feed directly into
the cell body, or soma, from where output action potential(AP)s are generated, and the
dendrites of the apical tuft, which are far more distant from the soma and connected to
it by the apical trunk. Inputs to the branches of the apical tuft arise from diverse sources
that specify various aspects of the context within which the feedforward input to the basal
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dendrites is processed [29,30]. These apical inputs are summed at an integration zone near
the top of the apical trunk (see Figure 1), which, when sufficiently activated, generates
Ca2+-dependent regenerative potentials in the apical trunk, thus providing a cellular
mechanism by which these pyramidal cells can respond more strongly to activation of their
basal dendrites when that coincides with activation of their apical dendrites [31]. Though
these experiments require an exceptionally high level of technical expertise, there are now
many anatomical and physiological studies indicating that some classes of pyramidal cell
can operate as context-sensitive two-point processors, rather than as integrate-and-fire
point processors [31–33]. Thick-tufted L5b pyramidal cells are the class of pyramidal cell
in which operational modes approximating context-sensitive two-point processing have
most clearly been demonstrated, but it may apply to some other classes of pyramidal cell
also, though not to all [34]. Mechanistically, these operations are supported by dendritic
nonlinear integration of synaptic inputs, including dendritic Ca2+ spikes and the voltage-
dependence of the transfer resistance from dendrite to soma [28,35]. These advances in
our knowledge of the division of labor between apical and basal dendrites now give the
interaction between apical and basal dendritic compartments a prominent role within the
broader field of dendritic computation [36].

Figure 1. Reconstruction of a biocytin-filled L5b pyramidal neuron recorded from the rat somatosen-
sory cortex. Basal and apical tuft dendrites are indicated. These sets of dendrites directly influence
two distinct integration zones that can emit spikes: the axon initial segment close to the soma of the
neuron, which initiates Na+-dependent APs, and the integration zone in the apical dendrite, which
initiates dendritic Ca2+ spikes.

The second study [37] considers data on spike counts obtained using an amended
version of the Hay compartmental model [38]. Spike counts are available for many different
combinations of basal and apical inputs. While PIDs can be computed for the entire dataset,
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an interesting diversity of balance between basal drive and apical drive is revealed by
applying the PID methods to subsets of the data defined by various combinations of basal
and apical inputs. For one set of subsets, this reveals a bifurcation in unique information
asymmetry and a difference among the methods in how this is expressed. A different
analysis of subsets allows a full discussion of the extent to which evidence of cooperative
context-sensitivity is revealed by the nature of the PID components.

Many empirical findings have been interpreted as indicating that cooperative context-
sensitivity is common throughout perceptual and higher cognitive regions of the mam-
malian neocortex. For example, consider the effect of a flanking context on the ability to
detect a short faint line. A surrounding context is neither necessary nor sufficient for that
task, but many psychophysical and physiological studies show that context can have large
effects, as reviewed, for example, by Lamme [39–41]. In [42,43], theoretical studies on the
effects of context (then called ‘contextual modulation’) were explored. The ideal properties
of cooperative context-sensitivity are described in Section 2.

The goal of this work is two-fold. First, for the datasets considered, we wish to compare
the results obtained by employing the different PID methods on probability distributions
defined using real and simulated data. Secondly, we intend to use the various PIDs to make
inferences about the functioning of the pyramidal cells under investigation.

2. Methods
2.1. Data

Physiological data recorded from rat L5b pyramidal neurons during dual patch-clamp
recordings from soma and apical dendrite before and during local application of the
GABABB receptor agonist baclofen was taken from [28]. Spike count data obtained using
an amended version of the Hay compartmental model was taken from [37].

2.2. Notation and Definitions

We consider trivariate probabilistic systems involving three discrete random variables:
an output Y and two inputs B and A. Hence, underlying the discrete data sets we consider
a probability mass function Pr(Y = y, B = b, A = a), where y, b, a belong to the finite
alphabets AY,AB,AA, respectively.

We now define the standard information theoretic terms that are required in this work
and they are based on results in [44]. We denote by the function H, the usual Shannon
entropy, and note that any term with zero probability makes no contribution to the sums
involved. The joint mutual information that is shared by Y and the pair (B, A) is given by,

I(Y; B, A) = H(Y) + H(B, A)− H(Y, B, A). (1)

The information that is shared between Y and B, having taken into account the
influence of A is:

I(Y; B|A) = H(Y, A) + H(B, A)− H(A)− H(Y, B, A), (2)

and the information that is shared between Y and A having taken into account the influence
of B is:

I(Y; A|B) = H(Y, B) + H(B, A)− H(B)− H(Y, B, A). (3)

The information shared between Y and B is:

I(Y; B) = H(Y) + H(B)− H(Y, B) (4)

and between Y and A is:

I(Y; A) = H(Y) + H(A)− H(Y, A) (5)
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The interaction information [45] is a measure of information involving all three variables,
Y, B, A and is defined by:

I I(Y; B; A) = I(Y; B, A)− I(Y; B)− I(Y; A) (6)

The coinformation [15] is closely linked to the interaction information, being its negative,
and is given by:

coi(Y; B; A) = I(Y; B) + I(Y; A)− I(Y; B, A) (7)

2.3. Partial Information Decomposition

The information decomposition can be expressed as [24]:

I(Y; B, A) = Iunq(Y; B|A) + Iunq(Y; A|B) + Ishd(Y; B, A) + Isyn(Y; B, A). (8)

Adapting the notation of [24] we express our joint input mutual information in four
terms as follows:

UnqB ≡ Iunq(Y; B|A) denotes the unique information that B conveys about Y;

UnqA ≡ Iunq(Y; A|B) is the unique information that A conveys about Y;

Shd ≡ Ishd(Y; B, A) gives the shared (or redundant) information that both
B and A have about Y;

Syn ≡ Isyn(Y; B, A) is the synergy or information that the joint variable
(B, A) has about Y that cannot be obtained by observ-
ing B and A separately.

It is possible to make deductions about a PID by using the following four equations,
which give a link between the components of a PID and certain classical Shannon measures
of mutual information. The following are in ([24], Equations (4) and (5)), with amended
notation; see also [1].

I(Y; B) = UnqB + Shd (9)

I(Y; A) = UnqA + Shd, (10)

I(Y; B|A) = UnqB + Syn, (11)

I(Y; A|B) = UnqA + Syn. (12)

Using (8)–(10), we may deduce the following connections between classical informa-
tion measures and partial information components.

I I(Y; B; A) = Syn− Shd (13)

I(Y; B)− I(Y; A) = UnqB−UnqA (14)

When the partial information components are known a priori to be non-negative, we
may deduce the following from (1), (9), (10). When the interaction information in (6) is pos-
itive, a lower bound on the synergy of a system is given by the interaction information [45].
When the coinformation in (7) is positive, a lower bound on the shared information of a
system is given by the value of the coinformation [15]. Furthermore, the expression in (14)
provides a lower bound for UnqB, when I(Y; B) > I(Y; A). Thus some deductions can
be made without considering a PID. While such deductions can be useful in providing
information bounds, it is only by computing a PID that the actual values of the partial
information components can be obtained.

When making comparisons between different systems, it is sometimes necessary
to normalise the PID components by dividing each term by their sum, the joint mutual
information, I(Y; B, A). Such normalisation will be applied in the analyses considered in
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the sequel. This means that the sum of the PID components is equal to unity and so they
are negatively correlated.

In this study, the PID component, Shd, has not been separated into sum of source,
ShdS, and mechanistic, ShdM, terms [2,42,46] as:

Shd = ShdS + ShdM

because not all of the five PIDs considered include definitions regarding how to achieve
this task. For probability distributions in which the inputs B and A are marginally indepen-
dent, the source shared information, ShdS, should be equal to zero, and hence the shared
information, Shd, is entirely mechanistic shared information—shared information due to
the probabilisitic mechanism involved in the information processing.

2.4. Unique Information Asymmetry

We define the unique information asymmetry (UIA) to be UnqB − UnqA.
From (11), (12), (14) we have that:

UnqB−UnqA = I(Y; B)− I(Y; A) = I(Y; B|A)− I(Y; A|B). (15)

The value of UIA is the same for every PID method. When UIA > 0, we say that the basal
input is mainly driving, whereas when UIA < 0 it is the apical input that is mainly providing
the drive. Asymmetries for which UIA > 0 and UnqA is zero or small in magnitude are of
interest in relation to property CSS3 of cooperative context-sensitivity, as defined below.

2.5. Pointwise PID Methods

The PID methods Ibroja and Idep produce PID components that are non-negative,
whereas Iccs, Ipm and Isx can produce negative values. The PIDs Iccs, Ipm and Isx are
pointwise-based methods in which local information measures are employed at the level of
individual realisations of the random variables. Local mutual information is explained by
Lizier in [11]. If U, V are discrete random variables then the mutual information I(U, V)
shared between U and V can be written as an average of the local mutual information
terms i(u; v), for each individual realisation (u, v) of (U, V), as follows:

I(U; V) = ∑
u,v

p(u, v) log2
p(u, v)

p(u)p(v)
= ∑

u,v
p(u, v) log2

p(u|v)
p(u)

= ∑
u,v

p(u, v) log2 i(u; v), (16)

where

i(u; v) = log2
p(u|v)
p(u)

is the local mutual information associated with the realisation (u, v) of (U, V).
The local mutual information i(u; v) is positive when p(u|v) > p(u), so that “knowing

the value of v increased our expectation of (or positively informed us about) the value of the
measurement u” [11]. The local mutual information i(u; v) is negative when p(u|v) < p(u),
so that “knowing about the value of v actually changed our belief p(u) about the probability
of occurrence of the outcome u to a smaller value p(u|v), and hence we considered it less
likely that u would occur when knowing v than when not knowing v, in a case were u
nevertheless occurred” [11]. Of course, the average of these local measures is the mutual
information I(U; V), as in (16), but when pointwise information measures are used to
construct a PID there can be negative averages. For further details of how negative values
of PID components can occur, see [5,6,8,42].

In the analyses reported below, it will be found that the pointwise PIDs can give
negative values for the unique information due to A, or for the unique information due to
B, or both. We interpret this to mean that the unique information provided by A, or by B is,
on average, less likely to result in predicting the correct value of the output Y. We adopt
the term ‘misinformation’ from [6,8,11], and describe this as ‘unique misinformation due to
A (or B)’.
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2.6. Ideal Properties of Cooperative Context-Sensitivity

We now state key properties of cooperative context-sensitivity (which are a modified
form of those specified for contextual modulation in [43]), while recognising that in any
biological system these properties are likely to be observed only as an approximation to the
ideal. It is assumed that the basal input is driving and the apical input provides the context.
The context amplifies the transmission of information about the necessary, or driving, input
when criterion CCS3 is met.

CCS1: The drive, B, is sufficient for the output to transmit information about the input,
so context, A, is not necessary.

CCS2: The drive, B, is necessary for the output to transmit information about the input,
so context, A, is not sufficient.

CCS3: The output transmits unique information about the drive, B, but little or no
unique information or misinformation about the context, A, although synergistic
or shared mechanistic components, or both, are present.

CCS4: The context strengthens the transmission of information about B when B is weak. As
the strength of B increases, the synergy and shared mechanistic information decrease.

2.7. Statistics

Summary statistics are presented as the sample median and the sample quartiles.
Significance testing based on within-neuron differences is conducted using a two-sided
exact Wilcoxon signed rank test of equality of population medians, and the threshold for
declaring statistical significance of a single test is P < 0.05. Where multiple tests are used,
the individual p-values were corrected by using the Bonferroni method to ensure that the
family-wise error rate is at most 0.05; if m simultaneous tests are conducted, a test with
p-value P has a corrected value of min(mP, 1).

2.8. Software

The Ibroja PID was estimated using compute UI [47]. The discrete information theory
library dit [48] was used to estimate the Imin, Iproj, Iccs, Idep and Ipm PIDs. R [49] code
was also used to estimate the Iig, Iccs and Idep PIDs. An amended version of the Iprec
redundancy measure was provided by Artemy Kolchinsky [50]. Python code was called
from RStudio [49] by using the reticulate package [51]. The graphics were produced by using
the ggplot2 package [52] in RStudio. Statistical testing made use of the coin package [53]
in RStudio.

3. Results
3.1. Real Data from Patch-Clamp Recordings in L5b Pyramidal Neurons

In a study of GABAB receptor-mediated regulation of dendro-somatic synergy in L5b
pyramidal neurons [28], the relationship between AP output, Y, to input currents during
combined current injections into the soma, S (referred to as basal input, B, in the sequel) and
distant apical dendrite of thick-tufted L5b pyramidal neurons, D (referred to as apical input,
A, in the sequel) in rat somatosensory cortex was recorded. Current waveforms injected
via patch-clamp pipettes were used to mimic synaptic responses to contralateral hind limb
stimulation in vivo [54]. AP trains were recorded for ≥25 (range: 25–49) combinations of
different current levels (see Figure 2).
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Figure 2. Dual dendritic and somatic patch-clamp recording from a L5b pyramidal neuron of rat
somatosensory cortex enables the study of amplification of somatic AP output by apical dendritic
input and its regulation by dendritic inhibition. (A) Locations of dual dendritic and somatic patch-
clamp recordings are indicated on a biocytin-filled L5 pyramidal neuron. After recordings in the
control condition, the GABAB agonist baclofen (50 µM) was puffed onto the apical dendrite at 50 to
100 µM distal to the dendritic patch pipette. Example membrane potential responses to combined
current injections into soma and dendrite are shown in control condition (left) and during the puff of
baclofen (right). Peak current amplitude was 1000 pA for dendritic and somatic current injections.
(B) Top, injected current waveforms based on in vivo responses to sensory stimulation [54]. Dendritic
current is shown in green, somatic in purple. Bottom, raster plot of APs emitted in individual
episodes during increasing levels of dendritic and somatic stimulation strength. Control is shown on
the left. A raster plot of APs emitted in the same neuron during activation of dendritic GABABRs
by a puff of baclofen onto the apical dendrite is shown on the right. Different levels of the injected
current in 36 combinations are indicated by the right colour bars (S, somatic; D, dendritic). The
peak amplitude of the current waveform was increased from 0 pA (white) to 1250 (black) in soma
and dendrite, respectively. Step size was 250 pA. (C) Peri-stimulus time histogram of APs across all
current combinations for both conditions. All data were obtained from [28].
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The normalised injected waveforms were scaled by separate amplification factors
ranging from 0 pA up to 1500 pA, resulting in, at most, 49 trials for each neuron. Trials for
which there were no APs for a treatment condition were omitted from consideration. Care
was taken to ensure that the input distributions for the treatment conditions considered
within a neuron contained exactly the same combinations of somatic and dendritic ampli-
tude. This is particularly important since there is interest in comparing the PIDs obtained
under different treatment conditions within each neuron. Ensuring that the input (B, A) dis-
tributions match ensures that any observed difference in a PID component within a neuron
is not simply due to a difference in the input distributions. Data of time-varying input cur-
rents and resulting AP times, from the admitted trials, were binned into non-overlapping
segments of 120 ms to maximise the joint mutual information (see [28], Figure S1). Within
each bin, the AP number, mean somatic and mean dendritic signals were computed. The
values of each of the input signals were binned into quartiles to maximise entropy [27].
The output was categorised as 0, 1 or 2+ APs. Thus, we generated a 4 by 4 by 3 probability
distribution for each of the neurons considered under each of the treatment conditions.

3.1.1. Classic Mutual Information Measures

The classic mutual information measures were computed for each neuron under each
of the two experimental conditions. The values of the joint mutual information (JMI)
between the AP count (Y) and the pair of basal and apical inputs (B, A) ranged from
0.49 to 0.93 bit for neurons in the Control condition and from 0.45 to 1.02 bit for neurons
exposed to baclofen. Therefore, the information measures computed for each neuron under
each condition were normalised by dividing by their respective JMI values. Normalised
values are displayed in Figure 3. It is worth noting that, when normalised, the information
measure values satisfy the equations:

I(Y; B) + I(Y; A|B) = 1 = I(Y; A) + I(Y; B|A) (17)

which means that I(Y; B) and I(Y; A|B) are negatively correlated, as are I(Y; A) and
I(Y; B|A).

Figure 3. Physiological L5b neuronal recording data. For each of the 15 neurons under each of
the Control and Baclofen conditions, the values of the four normalised classic mutual information
measures that are involved in the definition of a PID are displayed. Their values are given as their
relative contributions to the joint mutual information in each case.

Following the vertical dashed lines in Figure 3, we notice that the mutual information
between the AP count and the basal input is much larger than that between the AP count
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and the apical input, indicating clear unique information asymmetry. For these neurons,
the AP count is more strongly related to the basal than the apical input. This is the case
for both of the experimental conditions. We can, therefore, anticipate that each of the PIDs
considered will also express these asymmetries between the values of their unique basal
and apical PID components.

In Figure 3, for most neurons under both conditions, we see that when I(Y; B|A) is
high, the corresponding I(Y; A) values are low and when the I(Y; B) values are large, the
corresponding I(Y; A|B) values are small. These simply reflect the negative correlations
between the respective normalised measures as a result of (17).

From Table 1, we find that I(Y; B) increases on average when baclofen is present and
that the sample distribution of values has shifted upwards while having approximately
the same interquartile range. It is also noticeable that I(Y; A) has decreased on average in
the presence of baclofen and that the sample distribution of values has shifted downwards
with an approximate 50% reduction in interquartile range. By considering (17), we find
corresponding changes in the conditional mutual information I(Y; B|A) and I(Y; A|B),
which indicate, on average, an increase in the conditional dependence between the AP
output and the basal input along with a decrease in the conditional dependence between
the AP output and the apical input. These changes, which are associated with the presence
of baclofen, show that, as expected, when there is an inhibitory input to the distal apical
dendrite, the AP output becomes more strongly related to the basal input and less strongly
related to the apical input. It remains to be seen just how these changes are reflected in the
differences between the components of the PIDs.

Table 1. Physiological L5b neuronal recording data. Summary statistics for the sample of 15 neurons.
Summary statistics of the normalised information measures, showing for each measure the median
and interquartile range for the sample of 15 neurons under both experimental conditions, given as
percentages of the joint mutual information.

Condition I(Y ; B) I(Y ; A) I(Y ; B|A) I(Y ; A|B) I I(Y ; B; A)

Control 61.2 16.3 83.7 38.8 26.9
(52.1, 69.8) (11.8, 19.5) (80.5, 88.2) (30.2, 47.9) (14.5, 30.0)

Baclofen 77.6 5.2 94.8 22.4 13.6
(71.6, 86.3) (4.3, 8.2) (91.8, 95.7) (13.7, 28.4) (9.6, 22.3)

All thirty values of the interaction information are positive. Thus, we can deduce the
presence of at least some synergy a priori for all fifteen neurons under each condition for
PIDs that are guaranteed to possess nonnegative components.

3.1.2. Comparison of PID Components

The components of the five PIDs are plotted in Figure 4. For each PID component,
the values given by the Ibroja, Idep and Iccs appear to be reasonably similar for each of
the Control and Baclofen conditions, although the Iccs method provides a small negative
value of unique information due to the apical input for a few neurons. By way of contrast,
the Ipm and Isx provide different ranges of values for each PID component, particularly
evident in the plots of shared information and synergy where their ranges of values do
not overlap at all with those of the PIDs Ibroja, Idep and Iccs, and they give much larger
values for these components. In particular, both of the methods Ipm and Isx give very
negative values of the unique information due to the apical input, much more strongly
negative in the case of Ipm. Ipm also gives negative values in most cases for the unique
basal information; for Isx this happens only in one case. Furthermore, the ranges of values
provided by Ipm and Isx do not overlap at all except for the case of the unique information
due to the basal input. The Ipm method also has values for synergy that are greater than 1,
which suggests somewhat counter-intuitively that more information is transmitted in the
form of synergy than is available in the joint mutual information.
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Figure 4. Physiological L5b neuronal recording data. Plots of each PID component, connected by
each neuron, for the five PID methods: (A) UnqB, (B) UnqA, (C) Shd and (D) Syn. For each neuron
under each experimental condition, the values of the PID components are given as proportions of the
respective joint mutual information.

Summary statistics for the sample of fifteen neurons are given in Table 2. For each of
the PID components, the median values for the Ipm and Isx PIDs are very different from
those produced by the Ibroja, Idep and Iccs methods, being much smaller (or negative) for
UnqB and UnqA and also much larger for the components Shd and Syn. On average, The
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Idep and Iccs PIDs generally have slightly larger values of the unique informations than
does the Ibroja PID, and correspondingly lower values for Shd and Syn. It is clear from
Table 2 and Figure 4 that, for these data sets, the Ipm and Isx methods produce remarkably
different PIDs. If one were interested in estimating the actual value of each component,
then researchers using different methods would obtain very different values, including
much larger estimates of shared information and synergy.

Table 2. Physiological L5b neuronal recording data. Summary statistics for 15 neurons. PID compo-
nents are shown for each PID method and each experimental condition. The sample median (Md)
and the sample quartiles (qL, qU) are stated as percentages of the joint mutual information.

Control Baclofen

Ibroja Idep Iccs Ipm Isx Ibroja Idep Iccs Ipm Isx

qL 33.7 43.5 39.7 −33.1 13.9 65.7 65.8 64.3 −16.0 13.6
UnqB Md 49.7 51.9 47.7 −27.8 18.5 74.5 74.6 70.0 −12.7 19.2

qU 60.8 65.7 61.1 −24.7 28.3 82.0 84.3 78.4 −8.2 24.0

qL 0.2 6.1 1.7 −79.8 −33.3 0.0 1.9 −0.7 −88.5 −34.5
UnqA Md 0.7 10.3 6.7 −67.8 −24.2 0.7 4.0 −0.1 −81.7 −22.2

qU 5.3 13.6 12.2 −59.2 −15.6 1.9 5.5 2.1 −72.7 −15.5

qL 9.4 3.9 6.3 80.0 36.7 3.5 1.8 3.6 85.5 38.8
Shd Md 11.9 5.4 7.4 86.6 38.3 5.0 2.7 4.7 88.4 42.9

qU 17.1 6.6 10.1 91.9 43.5 5.5 3.4 7.6 94.2 46.0

qL 25.9 20.3 26.9 109.3 62.3 12.7 11.3 16.7 101.4 55.8
Syn Md 38.6 32.2 34.3 112.4 65.1 21.1 17.7 23.2 106.3 58.7

qU 44.4 38.6 39.2 116.6 66.2 27.2 25.9 28.5 110.0 62.3

If the interest in the components were relative, however, and involved comparing PID
components under different conditions, then perhaps the dramatic differences between
the Ipm and Isx methods and the other methods would be somewhat attenuated, thus
rendering the results produced by the different PID methods to be fairly similar in a relative
sense, if not at an absolute level.

The purpose of the the study by Schulz et al. [28] was to examine the effect of the
GABAB receptor-mediated dendritic inhibition on dendritic integration, and, in particular,
whether it was associated with a change in synergy. This involves the examination of
within-neuron differences of the synergy component, and means that the comparison of
the relative values of synergy in the absence and presence of local baclofen application
that activated GABAB receptors in the distal apical dendrite. We now turn attention to
these comparisons.

3.1.3. Analysis of Within-Neuron Differences in PID Components

In Figure 5, the within-neuron differences in each PID component are plotted for each
neuron. It is clear that the five PID methods produce differences which lie on the same
scale. For UnqB, we see that the differences for all but one neuron are positive for all of
the five PID methods, suggesting a general increase in UnqB in the presence of baclofen.
For UnqA, most of the differences are negative for all five PIDs, thus indicating a general
decrease in UnqA in the presence of baclofen. The Shd component differences reveal a
possible divergence of the PID methods. Meanwhile, the Ibroja, Idep and Iccs differences
are almost all negative and those for Ipm and Isx are mostly positive, thus suggesting
a general increase rather than a general decrease. Apart from one neuron, the synergy
differences are all negative, suggesting a general decrease in synergy in the presence of
baclofen.

These observations on the plots of the component differences are also reflected in the
summary statistics provided in Table 3.
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Figure 5. Physiological L5b neuronal recording data. Within-neuron differences in each PID com-
ponent for 15 neurons, taken as Baclofen minus Control. Different vertical scales are employed for
each component.

Table 3. Physiological L5b neuronal recording data. Summary statistics of within-neuron differences
for 15 neurons. The sample median (Md) and the sample quartiles (qL, qU) of the differences (taken
as Baclofen minus Control) are provided for each PID component.

Ibroja Idep Iccs Ipm Isx

qL 21.7 16.9 14.6 12.6 13.1
UnqB Md 26.6 22.1 22.1 14.8 14.8

qU 24.2 24.2 23.4 19.2 17.8

qL −0.0 −9.0 −8.9 −14.1 −15.3
UnqA Md −0.0 −6.2 −6.8 −11.6 −13.5

qU 0.0 −4.0 −5.1 −5.7 −8.4

qL −10.3 −3.4 −3.6 0.1 1.1
Shd Md −7.4 −2.5 −2.4 2.5 2.7

qU −4.6 −1.8 −1.8 3.8 5.1

qL −19.0 −13.0 −14.4 −8.0 −6.6
Syn Md −14.9 −10.6 −9.9 −6.5 −4.3

qU −12.6 −6.8 −5.7 −2.9 −3.6
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3.1.4. Statistical Significance

For the physiological L5b neuronal recording data [28], there is interest mainly in the
synergy components. Suppose that five different researchers were to each use a different
PID method and then apply a statistical test of the null hypothesis that the median value
of synergy is the same in the absence and in the presence of baclofen. It turns out that all
five researchers would find a significant reduction, on average, in the synergy component
(all p-values are less than 0.001) when baclofen is present. Therefore, despite the dramatic
differences between the PID results, both in the absence and presence of baclofen, all five
researchers would arrive at the same formal statistical conclusion.

Suppose, however, that interest lay in the shared information component. For this
component, all five PIDs do not produce the same formal statistical conclusion. The
researchers using Ibroja (P < 0.001), Idep (P < 0.001) and Iccs (P < 0.006), would all find a
statistically significant reduction, on average, in the shared information in the presence
of baclofen. On the other hand, the researcher using Ipm would declare that there is
no statistically significant difference, on average, in this component when baclofen is
introduced (P = 0.2), and with Isx the researcher would declare a statistically significant
increase, on average, in the shared component (P < 0.006).

3.1.5. Unique Information Asymmetry

Recall from Section 2.3 that the unique information asymmetry (UIA) is defined
as UnqB − UnqA. For a given probability distribution, the UIA has the same value for
every PID. Figure 6 shows the UnqB and UnqA values for each experimental condition
and each PID. The 15 neurons have positive values of the UIA under each experimental
condition. Despite the fact that the Iccs PID has a few very small negative values for UnqA,
it appears that the three PIDs, Ibroja, Idep and Iccs, have very similar patterns to each
other under each of the experimental conditions. On the other hand, Ipm and Isx express
the asymmetries very differently, and even differently from each other. Apart from one
of the 15 neurons, Ipm has negative values for UnqB and more negative values for UnqA.
Hence, the asymmetries are being expressed in terms of there being much more unique
apical misinformation than unique basal misinformation. For each of the 15 neurons, Isx
has positive values for UnqB and negative values for UnqA. Therefore, it expresses the
asymmetry as a balance of unique basal information and unique apical misinformation,
with the former being larger for some neurons and smaller for others.

One property of apical amplification (CSS3) in a neuron is that there is no or little
unique apical information or misinformation in a PID, coupled with the requirement that
synergy or mechanistic shared information, or both, are present. It is clear in Figure 6 that
both Ipm and Isx mostly have large unique misinformation components and so, while they
do have large values of synergy, their PIDs are generally not compatible with property
CCS3. Therefore, we focus on the other three PIDs. For Ibroja, most of the neurons have
small nonnegative unique apical components, as well as appreciable synergy components
(see Figure 4), and so they provide some evidence of apical amplification. The Idep and Iccs
PIDs tend to produce larger values for the unique information than those obtained using
Ibroja, but in the Control condition, a few neurons have small unique apical components,
and this is more markedly the case in the presence of baclofen. From Figure 4, we see that
several of these neurons also have appreciable values for synergy. Thus, some evidence of
apical amplification is given by these neurons when using the Idep and Iccs methods, but
the Ibroja method provides the strongest support for apical amplification.

Some summary statistics of the UIA values and their differences, with Bonferroni-
corrected p-values, are provided in Table 4. The UIA is significantly positive, on average,
under the control condition, and also in the presence of baclofen. When baclofen is present,
the UIA is significantly larger, on average, than in the control condition. For the Ibroja,
Idep and Iccs PIDs, these results, taken together with Figure 5, which shows for 14 of the
neurons that in the presence of baclofen there is an increase in the transmission of unique
basal information, coupled with a decrease in shared information and synergy, confirm
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the finding in [28] that ‘GABABR-mediated inhibition shifts the balance toward somatic
control of AP output and potently decreases apical amplification’.

Figure 6. Physiological L5b neuronal recording data. A plot of the unique information asymmetries
provided by each of the five PIDs for each experimental condition for 15 neurons.

Table 4. Physiological L5b neuronal recording data. Summary statistics of the values of unique
information asymmetry for 15 neurons. The sample median (Md) and the sample quartiles (qL,
qU) are stated as percentages of the joint mutual information. The differences between the unique
information asymmetries are taken as Baclofen minus Control. The quoted p-values have been
Bonferroni-corrected since three simultaneous tests have been performed.

Control Baclofen Difference

qL 33.3 64.7 21.8
Md 44.6 74.5 27.9
qU 60.7 80.1 33.4

P < 0.0002 < 0.0002 < 0.0004

3.2. Simulated Data from a Detailed Compartmental Model

Shai et al. [37] reported simulations of an L5b model neuron that was based on a model
originally fitted to data recorded from the rat somatosensory cortex by Hay et al. [38] and
then adapted it to recordings from the adult mouse visual cortex by manual manipulation
of dendritic calcium and IH conductance parameters. NMDA/AMPA synapses were
randomly distributed across the tuft and basal dendrites ranging in number from 0 to 300,
in steps of 10, in the basal dendrites and 0 to 200, in steps of 10, in the apical dendrites.
While many bursts of APs were observed, information regarding their occurrence was
not recorded and, thus, is unavailable in the data set (Adam Shai, personal communication).
Hence, we work with spike counts.

Information regarding the observed numbers of APs for the combinations of numbers
of basal and apical inputs used in the study is provided in Figure 7. No APs are evoked by
apical inputs when there are 0 or 10 basal inputs, but when there are no apical inputs, APs
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occur provided that the number of basal inputs is at least 160. This suggests that the basal
input is driving when the number of apical inputs is very low. When the number of basal
inputs is very low (30–50), APs occur as long as the number of apical inputs is 110 or larger,
suggesting that apical inputs may be the more effective driver of AP output under certain
circumstances. When the numbers of basal and apical inputs are both larger then at least
3, APs occur.

Figure 7. Simulated mouse L5b neuron model data. The number of action potentials emitted are
provided for 651 combinations of the numbers of basal and apical inputs to the cell. The number of
basal inputs ranges from 0 to 300 in steps of 10. The number of apical inputs ranges from 0 to 200 in
steps of 10.

Since there are relatively few combination with 1 or 4 APs (see Figure 7), the categories
of the output variable Y were taken to be 0, 1–2, 3–4 APs. The numbers of basal and apical
inputs were not categorised. Each of the 651 observed combinations was given a probability
of 1/651, with the remaining possibilities having a probability of 0, thus creating 31 values
for the basal input, B, 21 values for the apical input, A, and 3 possible values for the AP
count, Y, in a 31 by 21 by 3 probability distribution.

Several classical information measures were computed for this probability distribution
(see Table 5).

Table 5. Simulated mouse L5b neuron model data. Estimated mutual information measures. Some
estimated classical mutual information measures (the unit is bit), given to two decimal places. The
numbers in parentheses are the values of the measures as a percentage of the joint mutual information.

I(Y ; B) I(Y ; A) I(Y ; B|A) I(Y ; A|B) I(Y ; B, A) I I(Y ; B; A) H(Y)

0.74 0.16 1.37 0.79 1.54 0.63 1.54
(48.3) (10.7) (89.3) (51.7) (100) (41.0) (100)

In this 31 by 21 by 3 system, the joint mutual information I(Y; B, A) is 1.54 bits, while
the difference I(Y; B)− I(Y; A) is 0.58 bit. Therefore, in any PID, the unique information
due to basal input will be larger than that contributed by apical input by 0.58 bit. The
interaction information in this system is 0.63 bit, which is 41% of the joint mutual informa-
tion. Thus, without performing a PID, we can deduce, for any PID having nonnegative
components, that at least 41% of the mutual information between the output Y and the
inputs (B, A) will be due to synergy.

To obtain the actual values of the partial information components, the five PIDs were
applied to the whole data set and the results are given in Figure 8.
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Figure 8. Simulated mouse L5b neuron model data. Stacked bar plots showing the values of the
components for each of the five PIDs using the full data set

We now describe the bar plots in terms of percentages of the joint mutual information.
As expected, all five PIDs reveal the asymmetry between the unique basal and apical
components, possibly due to the disparity in numbers of apical and basal inputs—but see
Figures 9 and 10, which contain a combination where both basal and apical have the same
range of inputs: 0–200. There are differences in how this asymmetry is expressed. The
Ibroja PID has 37.7% of the joint mutual information transmitted as information unique to
the basal input and no unique information due to the apical input. For the Idep PID, the
respective numbers are 42.2% and 4.5%, while for the Iccs PID, they are 43.7% and 6.1%.
This suggests that for all three PIDs, the basal input is primarily driving, while the apical
input is mostly amplifying. Thus, these three PIDs express the asymmetry in a similar
manner, with Ibroja providing the strongest suggestion of apical amplification.

On the other hand, the PIDs Ipm and Isx express the asymmetry rather differently.
For Ipm, 13.8% is transmitted as information unique to the basal input, whereas 23.9% is
transmitted as unique apical misinformation. The corresponding numbers for Isx are 17.4%
and 20.3%. These two PIDs express the asymmetry in a similar manner. The numbers
suggest that both the basal and apical inputs are driving, with the basal input transmitting
information while the apical input is contributing a larger percentage as misinformation.
For all five PIDs, a large percentage of the joint mutual information is transmitted as
synergy, with much larger percentages for the PIDs Ipm and Isx than for the other three
PIDs. Furthermore, the percentage of information transmitted as shared information is
much larger for the PIDs Ipm and Isx.

3.2.1. PID Analysis for Varying Strengths of Basal and Apical Input

In previous work on cooperative context-sensitivity [42,43], by utilising pre-defined
probability models and particular transfer functions, it was possible to explore ideal proper-
ties, as defined in Section 2. In order to investigate such matters here with realistic data, we
consider increasing subsets of numbers of basal and apical inputs, from 0–100 to 0–200 for
each of the basal and apical inputs. We think of a range that has larger numbers of inputs
as being stronger than a range with a smaller number of inputs. Therefore, the range 0–130
is viewed as being a stronger input than the range 0–100, and if the ranges of basal and
apical inputs are both, say, 0–150, we consider the strengths of the basal and apical inputs
to be equal.

We take the large range 0–100 as a baseline, as there is no information in several smaller
ranges since there are no APs (Figure 7). Starting with the range 0–100, an additional
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10 units were added incrementally until the range 0–200 was reached. Therefore, when
the basal and apical both have the range 0–100, we see from Figure 7, that there are 11
distinct basal inputs and 11 distinct apical inputs, and for each of the 121 combinations,
there are three possible values for the output. Therefore, the PIDs are based on an 11 by 11
by 3 probability distribution, with each observed combination having an equal probability
of 1/121, with the remaining combinations having probability zero. Similarly, when the
apical range is 0–100 and the basal range is 0–200, the PIDs are based on a 21 by 11 by 3
probability distribution, with each observed combination having equal probability 1/231,
with the rest having probability zero. When the ranges are both 0–200, the PIDs are based
on a 21 by 21 by 3 probability distribution with each observed cell having probability 1/441,
with the rest having probability zero. Thus, there are 121 different combinations of ranges
of basal and apical input. Given the different sizes of the probability distributions and the
resulting differences in the values of the joint mutual information, the components of a
PID in each combination were normalised by dividing by the joint mutual information for
that combination. A representative sample of the 121 PIDs for each of the five methods is
displayed in Figures 9 and 10.

Focusing on the Ibroja results in Figure 9, we notice that there is a large synergy com-
ponent in each combination, as well as an appreciable level of shared information. These
levels of synergy and shared information appear to be fairly constant in all combinations
for which the apical range is 0–130 or greater.

When the apical input is 0–100, however, we do notice some changes in the shared
information and the synergy. As the basal range increases, there is an increase in both of
these components until the range 0–150 and, thereafter, a small decrease in both as the basal
range increases.

We now comment on the changes in the unique information and their relative values
for these PIDs. When the basal input is 0–130 or lower, this asymmetry is negative for the
subsets and there is very little unique basal information at all. On the other hand, when
the basal input is 0–170 or greater, the asymmetry is positive and there is very little unique
apical information. The negative asymmetry is present because the number of basal inputs
is not sufficient to drive APs, whereas apical inputs are more effective at driving APs. With
regard to the the positive asymmetry, now the situation changes, because basal inputs do
drive APs; however, they do this in a more graded fashion than apical inputs (see Figure 7).

When the basal input is 0–150 we find that the asymmetry becomes positive, and one
could say that by considering all the basal input ranges, there is a unique information
asymmetry bifurcation that happens when the number of basal inputs increases from 140 to
150, irrespective of the strength of the apical input. Thus, these results reveal a much more
diverse picture than the PID analysis of the whole dataset. For basal input up to 0–140,
we say that the apical input is driving, whereas this begins to reverse at 0–150 and more
strongly so for the larger basal input ranges. It is interesting that these patterns of results
are not obtained if one were to reverse the roles of basal and apical and consider increasing
apical strength; this reveals a fundamental asymmetry within the distributions.

A unique information asymmetry can also be seen when the basal and apical ranges
are equal. For low values of both basal and apical, there is apical drive and this changes
to basal drive when the numbers of basal and apical inputs both change from 140 to 150.
Even though the basal and apical strengths are equal, we find that the basal input comes to
dominate in terms of unique information, as the common strength increases.

These revelations also apply to the results obtained using the Idep and Iccs PIDs,
although they both tend to produce larger values for the unique information components.

The Ipm and Isx results are given in Figure 10. The comments regarding the unique
information asymmetry bifurcation hold also for these PIDs due to the fact that unique
information asymmetry is the same for all PIDs. It is expressed very differently, however.
With Ipm, both unique informations are generally negative, so the asymmetry is described
as the presence of more unique basal misinformation switching to more unique apical
misinformation. The Isx PID generally expresses the bifurcation in UIA as a mixture of
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unique apical information and unique basal misinformation changing to a mixture of
unique basal information and unique apical misinformation.
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Ibroja Idep Iccs

Figure 9. Simulated mouse L5b neuron model data. Ibroja (left column), Idep (middle column) and
Iccs (right column) PIDs for various combinations of increasing ranges of basal inputs and increasing
ranges of apical inputs: B1(0-100), B2(0-130), B3(0-150), B4(0-170), B5(0-200) and A1(0-100), A2(0-130),
A3(0-150), A4(0-170), A5(0-200).

Figure 9. Simulated mouse L5b neuron model data. Ibroja (left column), Idep (middle column) and
Iccs (right column) PIDs for various combinations of increasing ranges of basal inputs and increasing
ranges of apical inputs: B1 (0–100), B2 (0–130), B3 (0–150), B4 (0–170), B5 (0–200) and A1 (0–100),
A2 (0–130), A3 (0–150), A4 (0–170), A5 (0–200).
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Ipm Isx

Figure 10. Simulated mouse L5b neuron model data. Ipm (left column) and Isx (right column) PIDs
for various combinations of increasing ranges of basal inputs and increasing ranges of apical inputs:
B1(0-100), B2(0-130), B3(0-150), B4(0-170), B5(0-200) and A1(0-100), A2(0-130), A3(0-150), A4(0-170),
A5(0-200).
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information and the synergy. As the basal range increases there is an increase in both of 483
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Figure 10. Simulated mouse L5b neuron model data. Ipm (left column) and Isx (right column) PIDs
for various combinations of increasing ranges of basal inputs and increasing ranges of apical inputs:
B1 (0–100), B2 (0–130), B3 (0–150), B4 (0–170), B5 (0–200) and A1 (0–100), A2 (0–130), A3 (0–150),
A4 (0–170), A5 (0–200).

3.2.2. Cooperative Context-Sensitivity as Revealed by PID Analyses

In these experiments, we add further basal ranges to the previous increasing ranges
of basal inputs considered in Section 3.2.1, up to 0–300. Now, we consider three fixed
apical ranges with a view to assessing the effect of different fixed strengths of apical input
on the basal distributions of the PID components. From Figure 7, we see that for apical
ranges 110–150 and 160–200, there are five distinct input values, and so the probability
distributions range from 11 by 5 by 3 (for basal 0–100), with equal probability 1/55, to 31
by 5 by 3 (for basal 0–300), with equal probability 1/155 for the observed combinations and
zero for the rest. The PID components for each combination of input ranges are normalised
by the joint mutual information for that combination.
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The results obtained with the Ibroja, Idep and Iccs PIDs are given in Figure 11,
and those for the Ipm and Isx PIDs are in Figure 12. We now discuss the plots in
Figures 7, 11 and 12 with regard to the ideal properties of cooperative context-sensitivity
defined in Section 2., with the basal input as the ‘drive’ and the apical input as the ‘context’.

Properties CSS1 and CSS2

In Figure 7, we find, in the absence of apical input, that APs are emitted when the
number of basal inputs is at least 150. This shows that the basal input is sufficient for the
output to transmit information about the input in the absence of context. Thus, property
CSS1 holds: B is sufficient and A is not necessary. When there is no basal input, we see that
no APs are emitted. Thus, the apical input is not sufficient for information transmission
and the basal input is necessary, and therefore, property CSS2 holds.
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Ibroja Idep Iccs

Figure 11. Simulated mouse L5b neuron model data. Ibroja (left column), Idep (middle column) and
Iccs (right column) PIDs for various combinations of increasing ranges of basal inputs and three fixed
ranges of apical inputs: B1(0-100), B2(0-130), B3(0-150), B4(0-170), B5(0-200), B6(0-250), B7(0-300) and
A1(0-100), A6(110-150) and A7(160-200).
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In Figure 11, when the apical inputs are in ranges A6 and A7, and the basal inputs are 541
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Figure 11. Simulated mouse L5b neuron model data. Ibroja (left column), Idep (middle column)
and Iccs (right column) PIDs for various combinations of increasing ranges of basal inputs and three
fixed ranges of apical inputs: B1 (0–100), B2 (0–130), B3 (0–150), B4 (0–170), B5 (0–200), B6 (0–250),
B7 (0–300) and A1 (0–100), A6 (110–150) and A7 (160–200).

Property CSS3

In Figure 11, when the apical inputs are in ranges A6 and A7, and the basal inputs are
in ranges B1–B7, the Ibroja, Idep and Iccs PIDs have large unique basal components as well
as zero or small unique apical components, and synergy and some shared information are
present; hence, these PIDs are consistent with property CSS3. When the apical inputs range
from 0–100, only the Ibroja PIDs for 0–150, 0–170 and 0–300 basal inputs are consistent
with CSS3, while for the Idep and Iccs PIDs, this is so only when the basal input range
is 0–300. In Figure 12, the Ipm PID satisfies property CSS3, mainly when the basal input
ranges are 0–200, 0–250 and 0–300, for all three ranges of apical input. The Isx PID does
not have small components for unique apical information or misinformation and, hence,
it does not produce results that are consistent with property CSS3. Therefore, property
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CSS3 holds most widely for the Ibroja PID, less so for Idep and Iccs, for several basal-apical
combinations with the Ipm PID and not at all for Isx.

Property CSS4

In each of the probability distributions considered, which are defined in terms of
combinations of ranges of basal and apical inputs, B and A are marginally independent, and
so the source shared information, ShdS, is equal to zero. Therefore, the shared information
components describe mechanistic shared information. For Ibroja, in Figure 11, when the
apical input range is 0–100, and the strength of the basal input increases from 0–130 to
0–150, we see that the combined value of the UnqB, Shd and Syn information component
increases, thus increasing the transmission of information about the basal input.
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Figure 12. Simulated mouse L5b neuron model data. Ipm (left column) and Isx (right column) PIDs
for various combinations of increasing ranges of basal inputs and three fixed ranges of apical inputs:
B1(0-100), B2(0-130), B3(0-150), B4(0-170), B5(0-200), B6(0-250), B7(0-300) and A1(0-100), A6(110-150)
and A7(160-200).
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Figure 12. Simulated mouse L5b neuron model data. Ipm (left column) and Isx (right column) PIDs
for various combinations of increasing ranges of basal inputs and three fixed ranges of apical inputs:
B1 (0–100), B2 (0–130), B3 (0–150), B4 (0–170), B5 (0–200), B6 (0–250), B7 (0–300) and A1 (0–100),
A6 (110–150) and A7 (160–200).

As the strength of the basal input is further increased, we find that the shared and
synergistic components generally decrease. This provides support for property CSS4. These
observations hold also for the Idep PID components as well as the Iccs components. In
Figure 12, the Ipm PID does not show the increase in the combined value of the information
components Shd and Syn (UnqB is misinformation), as the basal strength is increased
from 0–130 to 0–150. As the strength of the basal input is increased, we do find, however,
the same pattern of decreasing synergy and shared information as given by Ibroja, Idep
and Iccs. Hence, Ipm is partially consistent with property CCS4. The Isx PIDs show the
same characteristics that were shown with Ibroja, Idep and Iccs and so it is consistent with
property CCS4.
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4. Conclusions and Discussion
4.1. Rat Somatosensory Cortical L5b Pyramidal Neuron Recording Data

The PID analyses reveal that the Ibroja, Idep and Iccs methods produce broadly similar
PIDs for the 15 neurons under each experimental condition, whereas the Ipm and Isx
methods produce components that have very different values than those given by the
Ibroja, Idep and Iccs methods. In particular, the Ipm and Isx methods produce much larger
estimates of shared information and synergy. The Ipm method even produces some values
for synergy that are larger than the joint mutual information, which seems nonsensical.

When the relative values of the PID components are considered—as with the within-
neuron differences in the PID components used in the investigation of the effect of baclofen—
these differences can be considered on the same scale for all five PID methods, and the
results are generally more similar, although not for the shared information component.
Statistical testing shows that for the synergy component, five independent researchers,
each using one of the five methods, would arrive at the same formal statistical conclusion.
Were they to consider the shared information, however, the researchers using the Ipm or
Isx methods would reach a different formal statistical conclusion than obtained by those
using the Ibroja, Idep and Iccs methods.

While the values of the unique information asymmetry are the same for all five
methods, the asymmetry is expressed in different ways. The Ibroja, Idep and Iccs methods
all exhibit strong basal drive and there is evidence of apical amplification for several
neurons. Examination of the within-neuron differences and statistical testing conducted on
the asymmetry values provide support for the conclusion in [28] regarding the effect of
GABABR-mediated inhibition. Neither conclusion applies to the Ipm and Isx methods.

As to the question of which method(s) to rely on, it seems wise, for probability
distributions of the type considered in this study, to employ the Ibroja, Idep and Iccs
methods since they give broadly similar results, rather than the Ipm or Isx method.

4.2. Simulated Mouse L5b Neuron Model Data

The PID analyses of the full dataset again reveal differences among the five methods,
with the Ibroja, Idep and Iccs decompositions again being broadly similar. The Ipm and Isx
methods transmit higher percentages of the information as synergy and shared information
and an appreciable percentage as unique apical misinformation that is larger in magnitude
than the transmitted unique basal information.

A richer picture emerges when various subsets of the data are analysed. When the
basal and apical inputs are treated on an equal footing, and various combinations of
strengths of basal and apical inputs considered, we find that there is a bifurcation in unique
information asymmetry for all PIDs. While the values of the asymmetries are fixed by
classical measures of mutual information, the nature of the asymmetries is only revealed by
the PIDs. For Ibroja, Idep and Iccs, we find that as the strength of the basal input increases,
to the extent that it is sufficient to drive AP output, there is a switch from apical drive to
basal drive, and that this occurs at the same strength of basal input for every strength of
apical input. We also find that this bifurcation happens when we consider combinations
where the basal and apical strengths are equal. The Ipm and Isx PIDs express the asymmetry
in terms of combinations of basal and apical misinformation or a combination of a unique
information with a unique misinformation.

In a second exploration of subsets, increasing basal strengths were considered for
three fixed apical strengths. With regard to cooperative context-sensitivity, we find that all
five PIDs provide at least some support for the ideal properties. The Ibroja PID satisfies
the properties to the fullest extent, with Idep and Iccs close behind. Ipm and Isx provide
partial support.

A challenge in interpreting the results of any PID analysis is that the underlying reality
of any system under investigation is not known; it seems there is no way to know what
the true levels of the PID components actually are. It is possible to define fairly simple
probability models in which there is a clear expectation that synergy, unique information,
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shared information, or a combination of these components, should be present, and such
distributions are often used when evaluating a new PID or performing comparisons among
several existing ones. For some of these standard distributions, the existing methods
can agree, but on others they do not. It is, therefore, useful to consider several different
PIDs and to place more emphasis on those findings where the different PIDs produce the
expected results on simple probability distributions and where they produce similar results
for the system under investigation. The findings obtained in the analyses considered herein
with Ibroja, Iccs and Idep are very plausible since they generally accord with expectations
based on the current understanding of L5b pyramidal cells.

4.3. Biological Implications

Twentieth century psychology and systems neuroscience were built on the assumption
that neurons, in general, operate as point processors that nearly linearly sum all their
synaptic inputs and signal the extent to which that net sum exceeds a threshold. Direct
physiological studies of communication between the apical integration zone and the soma
in layer 5 pyramidal cells of the neocortex show that assumption to be false [31,35,55–57].
Synaptic activation of the apical integration zone that has a limited effect on axonal AP
output by itself can greatly increase the response AP output induced by more proximal
synaptic inputs occurring at about the same time. This study provides the first systematic
comparison of the most widely used information decomposition methods on physiological
data from L5b pyramidal cells, which are known to have particularly prominent dendritic
non-linearities. These analyses strongly support two important interpretations of physio-
logical data in previous reports, despite certain limitations of the used data sets. A technical
limitation of the first study is that direct current injection was used as an experimental
approximation of synaptic inputs. In the second study, the model neuron is expected
to provide limited accuracy in the precise AP number evoked by synaptic inputs due to
the intrinsic difficulties in appropriately modeling the fast underlying conductances [37].
Despite these different constraints, our analyses converge at the conclusion that apical
dendritic inputs may mainly contribute to synergy, i.e., have a modulatory role, rather
than driving output information. The reason for this is that, in the investigated pyramidal
neurons, apical dendritic inputs are bound to recruit an amplifying Ca2+ spike mechanism
in the apical dendrite associated with bursts of several APs if they were to activate somatic
APs directly. Therefore, apical dendritic inputs cannot provide the graded impact on AP
output that basal dendritic inputs do. We can conclude that under these circumstances, the
role of apical dendritic inputs is largely restricted to amplifying output rather than driving
output information. Second, the results directly show that this amplification is reduced by
inhibitory input to the apical zone, which implies that amplification is tightly regulated
by apical inhibition. Based on recent physiological studies [58–60], other neuromodula-
tory systems are expected to play similar regulatory roles. Together, these observations
support the idea that apical amplification may be an important mechanism for contextual
modulation and conscious perception.
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Abbreviations

Partial Information Decomposition
PID Partial Information Decomposition, with components UnqB, UnqA, Shd and

Syn, defined in Section 2.3
Ibroja The PID developed by Bertschinger et al. [3]
Iccs The PID developed by Ince [5]
Idep The PID developed by James et al. [62]
Iig The PID developed by Niu and Quinn [7]
Imin The PID developed by Williams and Beer [1]
Iprec The PID developed by Kolchinsky [10,50]
Iproj The PID developed by Harder et al. [2]
Ipm The PID developed by Finn and Lizier. [6]
Isx The PID developed by Makkeh et al. [8]
Others
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
AP Action potential
GABA gamma-aminobutyric acid
GABAB A G protein-coupled receptor for GABA
JMI Joint mutual information between the output Y and the inputs (B, A), as defined

in Section 2.2
L5b Layer 5b
NMDA N-methyl-D-aspartate
UIA Unique information asymmetry, as defined in Section 2.4

Appendix A. Introduction

We provide simple descriptions of the Imin, Ibroja, Idep, Iccs, Ipm and Isx partial
information decompositions. The notation used varies from paper to paper but throughout
this appendix we assume that there are two sources of information (inputs), S1, S2, and
one target (output), T, and that these discrete random variables have probability mass
function, ps1s2t ≡ Pr(S1 = s1, S2 = s2, T = t), where s1, s2, t belong to the finite alphabets
AS1 ,AS2 ,AT , respectively. Several of the PIDs are defined for more than two sources
(namely Imin, Iccs, Ipm and Isx), but here, we consider only the case of two sources. Several
papers use the term redundancy whereas the term shared information will be used here.

The defining equations for a PID are as follows:

I(T; S1) = Shd + UnqS1 (A1)

I(T; S2) = Shd + UnqS2 (A2)

I(T; S1, S2) = UnqS1 + UnqS2 + Shd + Syn, (A3)

where the PID components are defined in Section 2.3, albeit with slightly different notation.
There are three equations in four unknowns and so to determine the PID components, a
method must be provided for the computation of one of the four components. Then, the
remaining components can be calculated using (A1)–(A3).

The source papers discuss the mathematical theory underlying each PID and most
provide operational interpretations, but here, for simplicity, we consider just the basic defi-
nitions and calculations on a common worked example—the AND probability distribution,
defined in Table A1.
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Table A1. The AND probability distribution.

S1 S2 T p(s1, s2, t)

0 0 0 1
4

0 1 0 1
4

1 0 0 1
4

1 1 1 1
4

We now state in Table A2 some marginal probability distributions that will be required
in the calculations to follow. In all the calculations, logarithms are taken to base 2, so the
unit is the bit.

Table A2. The univariate and bivariate marginal distributions of the AND probability distribution.

(a) (b) (c)

s1 0 1 s2 0 1 t 0 1

p(s1)
1
2

1
2 p(s2)

1
2

1
2 p(t) 3

4
1
4

(d) (e) (f)

t t s2

p(s1, t) 0 1 p(s2, t) 0 1 p(s1, s2) 0 1

s1
0 1

2 0 s2
0 1

2 0 s1
0 1

4
1
4

1 1
4

1
4 1 1

4
1
4 1 1

4
1
4

We now compute the mutual information in (A1)–(A3) that will be required later to
determine the PIDs. Recall that the Shannon entropy has the form [44]:

H(X) = − ∑
x∈AX

px log px (A4)

Using (A4), we obtain the following values for entropies and mutual information:

H(S1) = − 1
2 log 1

2 −
1
2 log 1

2 = 1

H(S2) = − 1
2 log 1

2 −
1
2 log 1

2 = 1

H(T) = − 3
4 log 3

4 −
1
4 log 1

4
.
= 0.8113

H(T, S1) = − 1
2 log 1

2 −
1
4 log 1

4 −
1
4 log 1

4 = 3
2

H(T, S2) = − 1
2 log 1

2 −
1
4 log 1

4 −
1
4 log 1

4 = 3
2

H(S1, S2) = 4× (− 1
4 log 1

4 ) = 2

H(T, S1, S2) = 4× (− 1
4 log 1

4 ) = 2

I(T; S1) = H(T) + H(S1)− H(T, S1)
.
= 0.3113 (A5)

I(T; S2) = H(T) + H(S2)− H(T, S2)
.
= 0.3113 (A6)

I(T; S1, S2) = H(T) + H(S1, S2)− H(T, S1, S2)
.
= 0.8113 (A7)

Equations (A1)–(A3) and (A5)–(A7) will be used in the sequel when computing the six PIDs.



Entropy 2022, 24, 1021 27 of 41

Appendix B. The Imin PID

Williams and Beer [1] formulated a measure of shared information in a semi-pointwise
manner. They expressed the mutual information between a source S and the target, T,
as follows:

I(T; S) = ∑
t∈AT

∑
s∈AS

p(s, t) log
p(s, t)

p(s)p(t)

= ∑
t∈AT

p(t)I(T = t; S),

where:
I(T = t; S) = ∑

s∈AS

p(s|t)i(t; s) =
1

p(t) ∑
s∈AS

p(s, t)i(t; s) (A8)

is the specific information that a source, S, provides about the particular outcome T = t, and:

i(t; s) = log
p(t, s)

p(t)p(s)
= log

p(t|s)
p(t)

is the local or pointwise mutual information between the particular realisations T = t and
S = s. Then, the shared information is defined [1] to be the expected value of the minimum
information that any source provides about each outcome of T:

Imin(T; S1, S2) := ∑
t∈AT

p(t)min{I(T = t; S1), I(T = t; S2)}. (A9)

Application of Imin to the AND Distribution

Applying this to the AND probability distribution, we note from Table A2 (a,b,d,e)
that S1 and S2 have the same distribution, and that (S1, T) and (S2, T) have the same
distribution. Therefore, I(T = t; S1) = I(T = t; S2) and we need only to consider
I(T = t; S1). In what follows, we use 0 log 0 = 0.

Using the fact that p(s|t) = p(s, t)/p(t) in (A8) we have that:

I(T = 0; S1) =
4
3 (

1
2 log

1
2

1
2

3
4
+ 1

4 log
1
4

1
2

3
4
) = 1

3 log 32
27

and:

I(T = 1; S1) = 4× (0 log 0 + 1
4 log

1
4

1
2

1
4
) = 1.

Therefore from (A9),

Shd ≡ Imin(T; S1, S2) =
1
4 (log 32

27 + 1) = 3
2 −

3
4 log 3 .

= 0.3113.

Using (A1)–(A3) and (A5)–(A7) we have:

UnqS1 = I(T; S1)− Shd = 0,

UnqS2 = I(T; S2)− Shd = 0,

Syn = I(T; S1, S2)− Shd −UnqS1 −UnqS2 = 1
2 .

Appendix C. The Ibroja PID

The paper by Bertschinger et al. [3] provides an optimisation approach to find each
of the PID components. We consider the convex optimisation problem for the calculation
of synergy. Let ∆ be the set of all joint distributions for S1, S2, T, and denote the given
distribution by P. Consider the class of distributions:
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∆P =
{

Q ∈ ∆ : q(s1, t) = p(s1, t) and q(s2, t) = p(s2, t), for all s1 ∈ AS1 , s2 ∈ AS2 , t ∈ AT
}

in which the (S1, T) and (S2, T) marginal distributions are constrained to be equal to the
corresponding marginal distributions of the given distribution P.

The synergy is given by [3]:

I(T; S1, S2)−min
Q∈∆

IQ(T; S1, S2), (A10)

where the subscript Q means that the joint mutual information is calculated using the
distribution Q.

Application of Ibroja to the AND Distribution

Here the probability distribution P is the AND distribution. We let qs1s2t ≡ q(t, s1, s2)
be the probability mass function of the distribution Q. For the AND distribution, the (S1, T)
and (S2, T) marginal distributions are given in Table A2(d,e).

Applying the marginal constraints, we have for the (S1, T) and (S2, T) marginal
distributions, the following equations to be solved for the qs1s2t, (s1 = 0, 1; s2 = 0, 1; t =
0, 1), (0 ≤ qs1s2t ≤ 1).

(s1 = 0, t = 0) q000 + q010 = 1
2 , (s2 = 0, t = 0) q000 + q100 = 1

2

(s1 = 0, t = 1) q001 + q011 = 0, (s2 = 0, t = 1) q001 + q101 = 0 (A11)

(s1 = 1, t = 0) q100 + q110 = 1
4 , (s2 = 1, t = 0) q010 + q110 = 1

4

(s1 = 1, t = 1) q101 + q111 = 1
4 , (s2 = 1, t = 1) q011 + q111 = 1

4 (A12)

From (A11), q001 = q011 = q101 = 0. Therefore, from (A12), q111 = 1
4 .

If we let q000 = α, then the other qs1s2t can be expressed in terms of α, as follows:

q000 = α, q010 = 1
2 − α, q100 = 1

2 − α, q110 = α− 1
4 ,

for 1
4 ≤ α ≤ 1

2 . Note that while the marginal distributions of (S1, T) and (S2, T) are kept
fixed (as well as the univariate marginal distributions of S1, S2 and T), the marginal distri-
bution of (S1, S2) now depends on α and it is allowed to change during the optimisation:

Pr(S1 = 0, S2 = 0) = Pr(S1 = 1, S2 = 1) = α,

Pr(S1 = 0, S2 = 1) = Pr(S1 = 1, S2 = 0) = 1
2 − α.

We now find an expression for IQ(T; S1, S2) in terms of α.

HQ(T) = H(T) = 2− 3
4 log 3 (A13)

HQ(S1, S2) = −2α log α− 2( 1
2 − α) log( 1

2 − α) (A14)

HQ(S1, S2, T) = −α log α− 2( 1
2 − α) log( 1

2 − α)− (α− 1
4 ) log(α− 1

4 )−
1
4 log 1

4 (A15)

Therefore, from (A3) we find that:

IQ(T; S1, S2) = H(T)− α log α + (α− 1
4 ) log(α− 1

4 ) +
1
4 log 1

4 . (A16)

For 1
4 < α < 1

2 , the first derivative of IQ(T; S1, S2) is log{(α − 1
4 )/α} < 0. Therefore,

IQ(T; S1, S2) is strictly decreasing with respect to α for 1
4 < α < 1

2 and so the global
minimum is attained when α = 1

2 . Using Equations (A7), (A10), (A13) and (A16), we find
that Syn = 1

2 .
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Therefore, using (A1)–(A3) and (A5)–(A7) we have:

UnqS1 = I(T; S1, S2)− I(T; S2)− Syn = 1
2 −

1
2 = 0, (A17)

UnqS2 = I(T; S1, S2)− I(T; S1)− Syn = 1
2 −

1
2 = 0, (A18)

Shd = I(T; S1)−UnqS1
.
= 0.3113. (A19)

Thus, we have found the Ibroja PID.

Appendix D. The Idep PID

In [62], a method is proposed to quantify the unique information conveyed by the
source variables, S1, S2, about the target, T. The formulation in [62] starts from a lattice
of maximum entropy models that are determined by marginal constraints, where the
lattice structure comes from the hierarchy of the marginal constraints; see Figure A1. The
following description is based on [63]:

U8 : S1S2, S1T, S2T

U5 : S1S2, S1T U6 : S1S2, S2T U7 : S1T, S2T

U2 : S1S2, T U3 : S1T, S2 U4 : S2T, S1

U1 : S1, S2, T

U9 : S1S2T

m

d

b

kj

c

f h i

Figure A1. A dependency lattice of models reproduced from [63]. Edges coloured green (b, d, i, k)
correspond to adding the constraint S1T to the model immediately below. Edges coloured red (c, f, h,
j) correspond to adding the constraint S2T to the model immediately below.

For example, U1 represents the maximum entropy distribution, having probability
mass function q(s1, s2, t), under the constraints that the univariate marginals match exactly
the univariate marginals of the given distribution, which has probability mass function
p(s1, s2, t). That is: q(s1) = p(s1), q(s2) = p(s2), q(t) = p(t).

U2 represents the maximum entropy distribution subject to the constraints
q(s1, s2) = p(s1, s2), q(t) = p(t).
U5 represents the maximum entropy distribution subject to the constraints
q(s1, s2) = p(s1, s2), q(s1, t) = p(s1, t), and so on.

The lattice structure arises from the higher order constraints enforcing corresponding
lower order constraints, so that, for example, imposing a bivariate marginal constraint
such as q(s1, t) = p(s1, t) means also that the lower order constraints q(s1) = p(s1) and
q(t) = p(t) also hold.

The coloured edges correspond to adding a pairwise marginal constraint. Blue edges
represent the constraint S1S2, i.e., preserving the pairwise dependency between S1 and
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S2. Green and red labelled edges correspond to the addition of the S1T and the S2T
dependencies, respectively.

U8 : 0.8113

U5 : 0.3113 U6 : 0.3113 U7 : 0.5409

U2 : 0 U3 : 0.3113 U4 : 0.3113

U1 : 0

U9 : 0.8113

d = 0.3113

b = 0.3113

k = 0.5

i = 0.2296

Figure A2. The dependency lattice with the value of the joint mutual information attached to each
of the models defined in Figure A1. Edges coloured green (b, d, i, k) correspond to adding the
constraint S1T to the model immediately below. The values of b, d, i, k are shown, and we can see that
UnqS1 = 0.2296.

For each model U1 . . . U8, we calculate the mutual information between the sources,
S1, S2 and target, T, under that model: IUi (T; S1, S2). The unique information in S1 is then
obtained as the minimum change in IUi along all the green edges due to the addition of
the S1T constraint to the model below. Similarly, the unique information in S2 can be
obtained as the minimum change in IUi along all the red edges due to the addition of the
S2T constraint to the model below. So, for example, the edge value i is equal to IU7 − IU4 . It
suffices to compute just one unique information [62].

The models U1 −U8 are actually the well-known loglinear models used in statistical
modelling [64,65] and they were fitted here using an iterative proportional fitting algo-
rithm [66], available in base R [49]. In fact, all of the models have closed form solutions
except for model U8.

Application Idep to the AND Distribution

Figure A2 shows the value of the joint mutual information for each of the fitted models
in the lattice. We find that edge i gives the the minimum of the green edge values, and so
UnqS1 = 0.2296.

Therefore, using (A1)–(A3) and (A5)–(A7), we have:

Shd = I(T; S1)−UnqS1
.
= 0.3113− 0.2296 .

= 0.0817,

UnqS2 = I(T; S2)− Shd .
= 0.3113− 0.0817 .

= 0.2296,

Syn = I(T; S1, S2)− I(T; S2)−UnqS1
.
= 0.8113− 0.3113− 0.2296 .

= 0.2704.

Thus we have found the Idep PID.
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Appendix E. The Iccs PID

The Iccs method [5] is the first of the three pointwise methods to be considered. In
this method, a measure of shared information is defined by considering each realisation
individually in a pointwise manner. The pointwise mutual information can be considered
as a change in surprisal, as follows.

i(t; s1) = log
p(t, s1)

p(t)p(s1)
= log

1
p(t)
− log

1
p(t|s1)

,

which is the surprisal at observing the value t of T minus the surprisal at observing T = t
once it is known that S1 = s1. The pointwise interaction information may be written in
terms of changes in surprisal terms as:

i(t; s1; s2) = log
p(t|s1, s2)

p(t)
− log

p(t|s1)

p(t)
− log

p(t|s2)

p(t)

≡ ∆th(s1, s2)− ∆th(s1)− ∆th(s2).

and the negation of this, the pointwise coinformation c(t; s1; s2), measures the overlap in
the change of surprisal about t between the values s1 and s2; see [5].

The Iccs method considers each realisation in the probability distribution and imposes
the requirement that for a realisation to contribute to the shared information, the signs of

∆th(s1, s2), ∆th(s1), ∆th(s2) and c(t; s1; s2)

must all be the same, either positive or negative.

Application of Iccs to the AND Distribution

We now apply this to the AND distribution. The various terms are computed using the
maximum entropy distribution, which has the same pairwise marginal distributions as the
given distribution, P. For the given AND distribution, the maximum entropy distribution
is equal to the AND distribution itself. In fact, the maximum entropy distribution is model
U8 from Figures A1 and A2. Therefore, we use the marginal tables for the AND distribution
that are given in Tables A1 and A2(a–f). The results are given in Table A3. We note that
log x > 0 when x > 1 and log x < 0 when x < 1.

Table A3. The pointwise calculations in the Iccs method applied to the AND distribution.

(s1, s2, t) ∆th(s1) ∆th(s2) ∆th(s1, s2) c(t; s1; s2) Allowed?

(0,0,0) log 4
3 log 4

3 log 4
3 log 4

3 Yes
(0,1,0) log 4

3 − log 3
2 log 4

3 − log 3
2 No

(1,0,0) − log 3
2 log 4

3 log 4
3 − log 3

2 No
(1,1,1) 1 1 2 0 Yes

Only the realisations (0,0,0) and (1,1,1) are allowed to contribute to the estimate of the
shared information, since all of the required values have the same sign, which is positive
in both cases. The other two realisations are excluded since there is a sign mismatch for
each of them. For (0,1,0), ∆th(s1) is positive whereas ∆th(s2) is negative, and vice-versa for
realisation (1,0,0).

Averaging the allowed pointwise values of the coinformation c(t; s1; s2) with respect
to the AND probability distribution, we find that the shared information is:

Shd = 1
4 (log 4

3 + 0) .
= 0.1038.
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Therefore, using (A1)–(A3) and (A5)–(A7), we have:

UnqS1 = I(T; S1)− Shd .
= 0.3113− 0.1038 .

= 0.2075,

UnqS2 = I(T; S2)− Shd .
= 0.3113− 0.1038 .

= 0.2075,

Syn = I(T; S1, S2)− I(T; S2)−UnqS1
.
= 0.8113− 0.3113− 0.2075 .

= 0.2925.

Thus, we have found the Iccs PID.

Appendix F. The Ipm PID

Finn and Lizier [6] provide a fully pointwise approach in which measures of each of
the four PID components are defined for each realisation in the probability distribution.
In other words, the defining equations in (A1)–(A3) are expressed in a pointwise manner.
For each realisation, the pointwise shared information is expressed as the difference of two
nonnegative terms, the first of which is informative and the second misinformative. The
functional forms used in the following definitions were shown in [67] to be the unique
functions, which satisfy four postulates that are motivated by consideration of probability
mass exclusions, which we will meet when discussing the Isx method in Appendix G.

The informative part of the pointwise shared information is [6]:

Shd+ = min{h(s1), h(s2)}, with h(si) = − log p(si), (i = 1, 2). (A20)

The misinformative part of the pointwise shared information is defined to be [6]:

Shd− = min{h(s1|t), h(s2|t)}, with h(si|t) = − log p(si|t). (A21)

The pointwise shared information for a given realisation is then defined to be [6]:

Shdp = Shd+ − Shd−.

The average value of the shared information is obtained by taking the average of the
Shdp terms with respect to the AND distribution. We focus here on the average PID, but the
full pointwise PID can be expressed in much more detail at the atomic level [6] and separate
pointwise PIDs for the informative terms (termed specificities) and for the misinformative
terms (termed ambiguities) can be computed.

Application of the Ipm Method to the AND Distribution

We now compute the average PID for the AND distribution using the marginal
probability distributions in Table A2. The required terms are given in Table A4.

Table A4. Pointwise calculations for application of the Ipm method to the AND distribution.

(s1, s2, t) h(s1) h(s2) Shd+ h(s1|t) h(s2|t) Shd− Shdp

(0,0,0) 1 1 1 log 3
2 log 3

2 log 3
2 log 4

3
(0,1,0) 1 1 1 log 3

2 log 3 log 3
2 log 4

3
(1,0,0) 1 1 1 log 3 log 3

2 log 3
2 log 4

3
(1,1,1) 1 1 1 0 0 0 1

For example, consider the (0,0,0) realisation in the first row. From Table A2(a,b),
Pr(S1 = 0) = 0.5, and so from (A20) h(s1) = − log 0.5 = 1. Similarly, Pr(S2 = 0) = 0.5 and
so from (A20), h(s2) = 1. Therefore, Shd+ = min(1, 1) = 1.

Furthermore, from Table A2(c–e), we have that:

Pr(S1 = 0|T = 0) = Pr(S1 = 0 & T = 0)/ Pr(T = 0) = (1/2)/(3/4) = 3/2
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and so, using (A21), we find that h(s1|t) = log 3
2 . Similarly, h(s2|t) = log 3

2 and, therefore,

Shd− = min(log 3
2 , log 3

2 ) = log 3
2 .

The overall contribution towards the shared information for this realisation is:

Shd = Shd+ − Shd− = 1− log 3
2 = log 4

3 .

The other terms are computed in a similar manner.
The average of the pointwise shared information taken with respect to the AND

distribution is:
Shd = 1

4 log 4
3 + 1

4 log 4
3 + 1

4 log 4
3 + 1

4
.
= 0.5613.

Therefore, using (A1)–(A3) and (A5)–(A7), we have:

UnqS1 = I(T; S1)− Shd .
= 0.3113− 0.5613 .

= −0.2497,

UnqS2 = I(T; S2)− Shd .
= 0.3113− 0.5613 .

= −0.2497,

Syn = I(T; S1, S2)− I(T; S2)−UnqS1
.
= 0.8113− 0.3113 + 0.2497 .

= 0.7497.

Thus, we have found the Ipm PID.

Appendix G. The Isx PID

The Isx PID [8] is another fully pointwise PID method, which builds on the work
of [6,67] and introduces a new method for computing pointwise shared information.

Appendix G.1. Probability Mass Exclusion

Suppose that S is a source and T is the target. The local mutual information for the
realisations S = s and T = t is [8]:

i(t; s) = log
Pr(T = t|S = s)

Pr(T = t)
≡ log

Pr(T = t, S = s)
Pr(S = s)

− log Pr(T = t). (A22)

We may write:

Pr(T = t) = p(s, t) + Pr(T = t and S 6= s),

Pr(S = s) = 1− Pr(S 6= s).

Therefore, the local mutual information may be written as:

i(t; s) = log
Pr(T = t)− Pr(T = t and S 6= s)

1− Pr(S 6= s)
− log p(T = t). (A23)

Hence, forming the conditional probability Pr(T = t|S = s) in (A22) can be con-
ceptualised as happening in two steps. The first is to exclude the probability mass
Pr(T = t and S 6= s) in the numerator and then to rescale the probability by dividing
by 1− Pr(S 6= s). The notion of probability mass exclusion is due to Finn and Lizier [67] and
it is used in the formulation of the Isx method. This basic argument can be extended to the
case of two or more input sources [8]. For two sources, we have:

i(t; s1, s2) = log
Pr(T = t)− Pr(T = t and {S1 6= s1 or S2 6= s2})

1− Pr(S1 6= s1 or S2 6= s2)
− log P(T = t). (A24)

Appendix G.2. Shared Exclusions

From [8], the idea now is that shared information should be linked to shared exclusions
of probability mass, i.e., possibilities being excluded redundantly by all joint sources, e.g.,
the exclusions induced by both S1 6= s1 and S2 6= s2. This suggests the removal of the
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intersection of the events S1 6= s1 and S2 6= s2 (rather than their union), and subsequent
rescaling [8]. This leads to the definition of pointwise shared information (Shdp) as:

Shdp := log
Pr(T = t)− Pr(T = t and {S1 6= s1 and S2 6= s2})

1− Pr(S1 6= s1 and S2 6= s2)
− log Pr(T = t) (A25)

≡ log
Pr(T = t and {S1 = s1 or S2 = s2})

Pr(S1 = s1 or S2 = s2)
− log Pr(T = t),

which may be split into informative (Shd+) and misinformative (Shd−) components:

Shd+ := log
1

1− Pr(S1 6= s1 and S2 6= s2)
≡ log

1
Pr(S1 = s1 or S2 = s2)

, (A26)

Shd− := log
Pr(T = t)

Pr(T = t)− Pr(T = t and S1 6= s1 and S2 6= s2)
,

≡ log
Pr(T = t)

Pr(T = t and {S1 = s1 or S2 = s2))
, (A27)

and:
Shdp = Shd+ − Shd−.

We illustrate only the average Isx PID here, but full pointwise PIDs are available, both
for the informative and the misinformative components; see [8].

Appendix G.3. Application of the Isx Method to the AND Distribution

We now apply this to the AND probability distribution, defined in Table A1. We
consider each realisation in turn and compute the pointwise measure of information along
with its informative and misinformative components.

Realisation (0,0,0)

Referring to Table A1, the exclusions induced by the event S1 = 0 are (1,0,0) and
(1,1,1), and those induced by the event S2 = 0 are (0,1,0) and (1,1,1). Hence, the shared
exclusion induced by both events S1 = 0 and S2 = 0 is (1,1,1). So, excluding (1,1,1), and
rescaling by 1–1/4 gives a probability of 1/3 to each of the three remaining realisations. The
conditional probability that T = 0, given that S1 = 0 or S2 = 0 is then equal to 1, since all
three realisations include the event T = 0. This exclusion (1,1,1), is therefore an informative
exclusion, since its exclusion from the sample space increases the probability that T = 0
from its prior value of 0.75 to the value 1.

Using (A25)–(A27), we consider the informative component, Shd+.

Pr(S1 6= 0 and S2 6= 0) = Pr(S1 = 1 and S2 = 1) = 1
4 .

Therefore,

Shd+ = log
1

1− 1
4
= log 4

3 .

For the misinformative component, Shd−, we note that Pr(T = 0) = 3
4 and:

Pr(T = 0 and S1 6= 0 and S2 6= 0) = Pr(T = 0, S1 = 1, S2 = 1) = 0,

since the realisation (1,1,0) has probability 0. Therefore Shd− = 0, and so the pointwise
shared information contributed by realisation (0,0,0) is:

Shdp = log
4
3

.
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Realisation (0,1,0)

Referring to Table A1, the exclusions induced by the event S1 = 0 are (1,0,0) and
(1,1,1), and those induced by the event S2 = 1 are (0,0,0) and (1,0,0). Hence, the shared
exclusion induced by both events S1 = 0 and S2 = 0 is (1,0,0). So, excluding (1,0,0), and
rescaling by 1–1/4 gives a probability of 1/3 to each of the remaining realisations. The
conditional probability that T = 0, given that S1 = 0 or S2 = 1, is then equal to 2/3,
since two of the remaining realisations include the event T = 0. The exclusion (1,0,0) is
therefore a misinformative exclusion, since its exclusion from the sample space decreases
the probability that T = 0 from its prior value of 0.75 to the lower value of 2/3, while for
this realisation, we know that the event T = 0 has happened.

Using (A25)–(A27), we consider the informative component, Shd+.

Pr(S1 6= 0 and S2 6= 1) = Pr(S1 = 1 and S2 = 0) = 1
4 .

Therefore,

Shd+ = log
1

1− 1
4
= log 4

3 .

For the misinformative component, Shd−, we note that Pr(T = 0) = 3
4 and:

Pr(T = 0 and S1 6= 0 and S2 6= 1) = Pr(T = 0, S1 = 1, S2 = 0) = 1/4,

therefore,

Shd− = log
3
4

3
4 −

1
4
= log 3

2

and so, the pointwise shared information contributed by realisation (0, 0, 0) is:

Shdp = log
4
3
− log 3

2 = − log 9
8 .

This means that the net pointwise contribution is misinformative.
The remaining values are given in Table A5.

Table A5. Pointwise calculations for application of the Isx method to the AND distribution.

(s1, s2, t) Shd+ Shd− Shdp

(0,0,0) log 4
3 0 log 4

3
(0,1,0) log 4

3 log 3
2 − log 9

8
(1,0,0) log 4

3 log 3
2 − log 9

8
(1,1,1) log 4

3 0 log 4
3

Computing the average of the pointwise shared components with respect to the AND
distribution, we obtain:

Shd = 1
4 log 4

3 −
1
4 log 9

8 −
1
4 log 9

8 + 1
4 log 4

3 = 1
2 log 32

27
.
= 0.1226.

Therefore, using (A1)–(A3) and (A5)–(A7), we have:

UnqS1 = I(T; S1)− Shd .
= 0.3113− 0.1126 .

= 0.1887,

UnqS2 = I(T; S2)− Shd .
= 0.3113− 0.1126 .

= 0.1887,

Syn = I(T; S1, S2)− I(T; S2)−UnqS1
.
= 0.8113− 0.3113− 0.1887 .

= 0.3113.

Thus, we have found the Isx PID.



Entropy 2022, 24, 1021 36 of 41

Appendix H. Comparison of the Results

The results are combined in Table A6.

Table A6. The PID components obtained by applying six methods to the AND probability distribution.

PID
Imin Ibroja Idep Iccs Ipm Isx

UnqS1 0 0 0.2296 0.2075 −0.2497 0.1887
UnqS2 0 0 0.2296 0.2075 −0.2497 0.1887

Shd 0.3113 0.3113 0.0817 0.1038 0.5613 0.1226
Syn 0.5000 0.5000 0.2704 0.2925 0.7497 0.3113

For the AND distribution, we see that the Isx method produces components that are
fairly similar to those given by the Idep and Iccs methods. These three methods produce
very different results to those obtained using the other methods. In particular, the Isx
results are very different to those of the Ipm method, and the Imin and Ibroja PIDs suggest
that no unique information is transmitted.

Appendix I. Further Comparison of PIDs

Using the data considered in Section 3.1 [28], we provide comparisons of four addi-
tional PIDs, Imin, Iproj, Iig, Iprec, along with Iccs and Idep. The probability distributions
are of size 4 by 4 by 3, as before. When applying the the Iprec PID, it was found that no
results were forthcoming after several hours, but Artemy Kolchinsky responded by kindly
providing an amended version of his code [50], although it provides only a lower bound
for the measure of redundancy. The components of the seven PIDs are plotted in Figure A3.

We consider first, the results obtained in the Control condition. The Imin, Iproj and
Ibroja provide similar results for UnqB, while the values for the other four PIDs are similar
to each other and generally larger than those for Imin, Iproj and Ibroja, with less variability.
A curious feature of the of the UnqA plots is that Imin is zero for almost all of the data sets,
perhaps indicating that it behaves like a minimum mutual information PID with these data.
The values of UnqA given by Iccs, Idep and Iprec are more variable than the other PIDs, and
larger on average. The shared information is generally higher for the Imin, Iproj and Ibroja
PIDs, while Iccs, Idep and Iig show less variation. The synergy values are generally similar
for all seven PIDs, but slightly higher on average for Imin, Iproj and Ibroja. When Baclofen
is present, the values for UnqB, Shd and Syn are generally very similar for all seven PIDs;
UnqA again is zero for Imin, and Iccs has some negative values. The statistics provided in
Table A7 give numerical expression to these observations of the plots in Figure A3.

As in Section 3.1.3, we consider the within-neuron differences in the PID components.
Summary statistics are available in Table A8, and the corresponding plots are in Figure A4.
In Figure A4 we see that, apart from one neuron, all seven PIDs have a positive value
for UnqB and a negative value for Syn, indicating an increase in UnqB and a decrease
in Syn when Baclofen is present. Apart from a few neurons, UnqA is negative and Shd
negative for all seven PIDs. The numerical summaries in Table A8 show that the seven
PIDs fall, on average, into two groups. Imin, Iproj and Ibroja tend to suggest, on average, a
larger increase in unique information due to the basal input and a larger decrease in shared
information and synergy than do the other four PIDs: Iccs, Idep, Iig and Iprec.

In Section 3.1.4, the results of significance tests were presented. If a further four
researchers were each to use one of Imin, Iproj, Iig or Iprec, and then apply a statistical
test of the null hypothesis that the median value of synergy is the same in the absence
and in the presence of Baclofen, then each of them would find a statistically significant
reduction, on average, in the synergy component (all p-values are less than 0.001). If the
four researchers were also to apply a test concerning the shared information component,
they would again reach the same statistical conclusion, using Imin (P < 0.001), Iproj (P <
0.001), Iig (P < 0.001) and Iprec (P = 0.03), that there is a reduction, on average, in the shared
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information in the presence of Baclofen. They, like the researchers who used Ibroja, Iccs
and Idep in Section 3.1.3, would reach the same statistical conclusion.

Figure A3. Physiological L5b neuronal recording data. Plots of each PID component, connected by
each neuron, for seven PID methods: (A) UnqB, (B) UnqA, (C) Shd and (D) Syn. For each neuron
under each experimental condition, the values of the PID components are given as proportions of the
respective joint mutual informations.
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Table A7. Physiological L5b neuronal recording data. Summary statistics for 15 neurons. PID
components are shown for each PID method and each experimental condition. The sample median
(Md) and the sample quartiles (qL, qU) are stated as percentages of the joint mutual information.

Control Baclofen

Imin Iproj Ibroja Iccs Idep Iig Iprec Imin Iproj Ibroja Iccs Idep Iig Iprec

qL 33.3 33.5 33.7 41.9 43.7 44.0 43.4 64.7 65.2 65.7 66.4 67.9 68.5 66.4
UnqB Md 44.6 49.2 49.7 55.0 56.1 50.3 53.2 74.5 74.5 74.5 73.9 76.3 75.5 74.7

qU 60.7 60.7 60.8 61.1 65.7 68.6 61.7 80.1 81.3 82.0 79.5 84.3 82.8 82.8

qL 0.0 0.1 0.2 1.7 6.1 2.0 1.4 0.0 0.0 0.1 -0.7 1.9 0.4 0.5
UnqA Md 0.0 0.4 0.7 6.7 10.3 4.8 2.7 0.0 0.3 0.7 -0.1 4.0 0.6 1.7

qU 0.0 2.4 5.3 11.4 13.6 8.2 11.7 0.0 1.1 1.9 1.2 5.0 1.2 2.7

qL 11.8 11.0 9.4 6.4 3.4 6.4 3.7 4.3 3.7 3.5 3.7 1.5 3.7 2.8
Shd Md 16.3 13.7 11.9 8.7 5.4 9.5 6.6 5.2 5.1 5.0 4.7 2.7 4.0 3.8

qU 19.3 17.4 17.1 10.1 6.6 10.9 11.4 8.0 6.8 5.5 7.6 3.2 5.2 4.8

qL 30.2 27.5 25.9 25.1 19.0 22.9 24.4 13.8 12.9 12.7 16.4 11.3 12.9 12.2
Syn Md 38.8 38.8 38.6 33.9 32.0 32.6 30.0 22.2 21.7 21.1 21.6 17.0 17.2 19.8

qU 47.7 46.4 44.4 37.3 36.0 38.4 37.8 28.4 27.6 27.2 27.7 24.7 22.7 26.1

Figure A4. Physiological L5b neuronal recording data. Within-neuron differences in each PID
component for 15 neurons, taken as Baclofen minus Control. Different vertical scales are employed
for each component.
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Table A8. Physiological L5b neuronal recording data. Summary statistics of within-neuron differences
for 15 neurons. The sample median (Md) and the sample quartiles (qL, qU) of the differences (taken
as Baclofen minus Control) are provided for each PID component.

Imin Iproj Ibroja Iccs Idep Iig Iprec

qL 21.8 21.7 21.7 14.7 16.9 16.8 16.0
UnqB Md 27.9 28.6 26.6 22.1 22.1 20.4 21.4

qU 33.3 30.3 28.3 23.4 24.2 26.8 26.9

qL 0.0 −1.4 −2.6 −8.9 −9.0 −6.6 −9.7
UnqA Md 0.0 −0.1 −0.3 −6.8 −6.0 −3.5 −1.4

qU 0.0 0.0 0.0 −5.1 −4.0 −1.5 −0.5

qL −11.9 −10.8 −10.3 −3.6 −3.4 −5.9 −7.7
Shd Md −9.3 −9.2 −7.4 −2.4 −2.7 −4.1 −3.3

qU −7.4 −6.4 −4.6 −1.8 −1.8 −3.4 0.2

qL −20.7 −20.2 −19.0 −14.4 −13.0 −16.0 −14.9
Syn Md −19.1 −16.7 −14.9 −9.9 −11.1 −10.6 −12.0

qU −13.4 −13.4 −12.6 −6.8 −7.5 −8.3 −8.1
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