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Abstract
The immune surveillance system is complex and regulated 
by different actors. Programmed death protein-ligand 1 
(PD-L1), the only approved biomarker in clinical practice, 
has proven to be imperfect in selecting patients to 
immune checkpoint inhibitors treatment. Therefore, new 
biomarkers, and new therapeutic targets, are needed to 
maximise the efficacy of immunotherapy. V-domain Ig 
Suppressor of T-cell Activation (VISTA) is a programmed 
death protein-1 (PD-1) homolog expressed on T cells and 
on antigen-presenting cells, which regulates processes 
of activation and repression of the immune system with 
not yet completely clarified mechanisms. Its blockage 
has demonstrated in vitro and in vivo antitumour activity. 
The clinical research of VISTA antagonists is ongoing. 
Particularly, CA-170, an orally delivered dual inhibitor of 
VISTA and PD-L1, has shown to have clinical efficacy in 
phase I and II clinical trials in different advanced solid 
tumour types. Further data are needed to define whether 
this drug class can become a new therapeutic option for 
patients with VISTA expressing cancers.

Biological background
V-domain Ig Suppressor of T-cell Activation 
(VISTA) (also known as differentiation of 
embryonic stem cells 1, Gi24, B7-H5, SISP1, 
DD1α and programmed death protein-1 
(PD-1) homolog (PD-1H)), is a 55 000 to 65 
000 Da molecular weight type I immunoglob-
ulin membrane protein, highly conserved 
across different species, especially in the cyto-
plasmatic domain.1 VISTA is codified by Vsir 
gene, located within the intron of the CDH23 
gene on chromosome 10,1 and is highly 
expressed on mature antigen-presenting cells 
(APCs) characterised by high CD11b and, 
to a lesser extent, on CD8+, CD4+ and regu-
latory T cells (Tregs) as well as on tumour-
infiltrating lymphocytes (TILs).2 VISTA is a 
co-inhibitory receptor on CD4+ cells, while 
it acts as co-inhibitory ligand for T cells, as 
demonstrated by in vitro experiments where 
VISTA-immunoglobulin fusion protein 
inhibited their activation, proliferation and 
cytokines production during anti-CD3 acti-
vation.3 This observation is strengthened by 
the evidence that VISTA−/− CD4+ T cells had 
stronger antigen-specific proliferation and 
cytokine production as compared with wild-
type ones.4 5 Therefore, as a paradigm, it 

also acts as ligand when expressed on APCs 
(myeloid cells), conveying inhibitory signals 
extrinsically to T cells (figure  1).6 Its coun-
terpart has not been completely elucidated, 
but recent in vitro evidences discovered V-Set 
and Immunoglobulin domain containing 
3 (VSIG-3), also known as Immunoglobulin 
Superfamily member 11 (IGSF11) and Brain-
specific and Testis-specific Immunoglob-
ulin Superfamily (BT-IgSF), as co-inhibitory 
ligand on tumour cells.7 The extracellular 
domain of VISTA shares a structural simili-
tude with programmed death protein-ligand 
1 (PD-L1); however, VISTA is not associated 
with the CD28-B7 family as it does not cluster 
with, thus VISTA and PD-1 checkpoint path-
ways are independent.2 Differently from 
other negative checkpoint regulators such 
as cytotoxic T-lymphocyte-associate protein 
4 (CTLA-4), PD-1 and lymphocyte-activation 
gene 3 (LAG3), VISTA seems to be constitu-
tively expressed on resting T cells, thus being 
a homeostatic regulator that actively normal-
ises immune response at the earliest stages.8 
Indeed, experimental models showed that 
VISTA agonists could prevent acute graft-
versus-host disease (GVHD) in mice, but 
only when treatment was initiated between 
1 and 0 days before GVHD induction,9 while 
VISTA antagonists lead to autoimmunity 
phenomena.1 In addition, unlike VISTA, 
CTLA-4 is expressed on T-cell surface and 
blocks its activation at the priming stage, 
while PD-1 has an inhibitory function at the 
effector stage (figure 1).10

VISTA-deficient mice have been created 
to further explore its physiological role. 
A model characterised by exon 1 deletion 
showed higher frequency of activated T cells 
in the spleen that, after in vitro re-activation, 
produced more gamma interferon, tumour 
necrosis factor alpha and interleukin 17A; 
at the same time, mice were characterised 
by more myeloid cells in the spleen, higher 
plasma levels of chemokines and increased 
immune-infiltrates in the lung, liver and 
pancreas.4 5 A second murine model, based 
on the backcrossing of VISTA heterozygous 
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Figure 1  Expression of V-domain Ig Suppressor of T-
cell Activation (VISTA) and its role in maintaining T-cell 
quiescence. VISTA acts as inhibitory receptor on T cells, 
and as ligand when expressed on APCs. VISTA normalises 
immune responses at the earliest stages of T-cell activation, 
while CTLA-4 and PD-1 have inhibitory functions at T cells 
priming and effector stages.
APC, antigen-presenting cell; CTLA-4, cytotoxic T-
lymphocyte-associate protein 4; IFN, interferon; IL, 
interleukin; PD-1, programmed death protein-1; PD-L1, 
programmed death protein-ligand 1; TNF, tumour necrosis 
factor.

mice, was characterised by overt autoimmunity, especially 
dermatitis as well as otitis, eye-related inflammation and 
seizures along with high autoantibody titres and renal 
immune complex deposition.11 Mice models showed 
VISTA upregulation in the tumour microenvironment 
(TME), playing a critical role in antitumour immunity3 
through its contribution to the generation and stability of 
Tregs12 and its expression on tumour-infiltrating myeloid 
cells. Indeed, a 10-fold increase of VISTA expression has 
been found in myeloid-derived suppressors cells (MDSCs) 
in the TME as compared with peripheral lymph nodes. 
Such differences might be explained by local factors such 
as hypoxia.3 Despite its expression is consistently detected 
on immune cell infiltrates, human protein has also been 
shown in tumour cells with a cytoplasmatic pattern.13–17 
VISTA antagonism promotes tumour-specific effector T 
cells activation, reduces the induction and function of 
adaptive Tregs and enhances myeloid APCs-mediated 
inflammatory responses, thus involving both innate and 
adaptive immunity processes in vivo. Agents directed 
against VISTA reshape TME as well, by reducing MDSCs 
and tumour-specific Tregs and by increasing TILs prolif-
eration and effector T cells function.3 7 8 On the other 
side, overexpression of VISTA increased tumour growth 
in fibrosarcoma models thorough the ligand activity on 
suppressing T-cell immunity.1 Some preclinical works 
suggest that blocking VISTA reduces growth of different 
neoplasms, regardless of their immunogenic status 
or origin (transplanted or induced). Notably, VISTA 

and PD-1 checkpoints do not seem to be redundant in 
antigen-specific responses and in chronic inflammation, 
paving the way to explore VISTA blockade both as single 
therapy and in combinations in tumours treatment.18

In cancer models, VISTA deficiency leads to resistance 
to GL261 glioma through CD4+ T cells and some clones 
of anti-VISTA suppress different cancer cell lines.3 4 18

A hamster monoclonal VISTA-neutralising antibody 
(13F3 clone) suppressed tumour growth of murine mela-
noma B16-OVA model,3 CT26 colon cancer, MB49 bladder 
carcinoma, B16BL6 melanoma.19 In animal models, 
VISTA inhibition was observed to be effective regard-
less of its expression on tumour cells, and also of PD-L1 
expression.3 The synergic effect of dual VISTA/PD-L1 
blockage was observed both in terms of immunological 
T cells response, in double VISTA/PD-L1 knockout mice, 
and of therapeutic efficacy, in murine model treated with 
specific monoclonal antibodies (mAbs).18

VISTA expression has been analysed in multiple tumour 
types, with contrasting results when assessing its potential 
prognostic and predictive role.13–15 19–24 VISTA expression 
on tumour cells, but not on immune cells, was associated 
with prolonged progression-free survival (PFS) and overall 
survival (OS) in patients with high-grade serous ovarian 
cancer,22 and when assessed by immunohistochemistry on 
TILs of oesophageal adenocarcinoma revealed a favour-
able outcome and particularly long-term survivors in the 
earlier stages of disease (T1/T2 tumours).23 VISTA+ and 
CD8+ TILs subtype had a better OS in a cohort of hepato-
cellular carcinomas,15 while a poorer OS has been found 
in oral squamous-cell carcinoma patient subgroup with 
VISTA high and CD8 low expression.16 Moreover, VISTA 
expression was found to be an independent negative 
prognostic factor in cutaneous melanoma,20 but it was not 
correlated with clinical outcomes among treatment-naïve 
patients with gastric cancer.24

Notably, a study evaluated VISTA expression prior to 
treatment and at the time of progression in 16 patients 
with advanced melanoma treated (and responding) with 
anti-PD-1 ± anti-CTLA-4 mAbs.25 The authors reported 
significantly increased density of VISTA+ lymphocytes 
at the time of progression, as well as increased tumour 
PD-L1 expression. Similar results were reported in pros-
tate cancer following ipilimumab treatment.26

Targeted agents under development and current 
ongoing clinical trials
The first anti-VISTA molecule ever developed was an 
intravenously delivered mAbs, called JNJ-61610588. It has 
been investigated in a first-in-human open-label phase 
I study (​ClinicalTrials.​gov Identifier NCT02671955), 
which enrolled patients with solid tumours, who had 
already received at least one line of therapy for advanced 
disease. The trial foresees an experimental dose esca-
lation part, exploring the maximum tolerated dose 
(MTD); a biomarker evaluation part among patients 
with non-small cell lung cancer (NSCLC), treated at or 
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Table 1  Targeted agents under development

Name of the compound Mechanism of action Phase of clinical trial development Company

JNJ-61610588 Human monoclonal antibody 
against VISTA

I Janssen Research & 
Development (USA)

CA-170 Small molecule
VISTA/PD-L1 antagonist

I/II Curis (USA),
Aurigene (India)

PD-L1, programmed death protein-ligand 1; VISTA, V-domain Ig Suppressor of T-cell Activation.

below the recommended phase II dose (RP2D) until 
disease progression (PD); two dose expansion parts, one 
among participants with NSCLC and one among patients 
with different solid cancers (small cell lung cancer, head 
and neck (HN), pancreatic, colorectal, cervical cancer) 
treated at the RP2D until PD. The enrolment is closed, 
and results are awaited.

VISTA is a PD-1H that participates in creating and 
maintaining an immune-suppressive TME, through the 
promotion of Tregs maturation and the prevention of 
T cells activation.27 It shares many properties with PD-1, 
PD-L1 and other B7 family proteins, particularly being 
co-upregulated in TILs, but it differs for the pattern of 
expression. VISTA exerts its inhibitory role on APCs inde-
pendently of PD-1, thus supporting the possible synergic 
effect if the two pathways were simultaneously blocked,28 
as shown in the aforementioned preclinical models.11

A study, presented at the Society for Immunotherapy 
of Cancer (SITC) Meeting in 2018, aimed at estab-
lishing VISTA expression on different tumour types by 
quantitative immunofluorescence of the corresponding 
protein on cancer tissue microarrays and by a genomic 
approach.29 VISTA expressing tumours were found to 
be low-grade glioma, glioblastoma multiforme, clear 
cell renal cell carcinoma, HN squamous cell carcinoma, 
sarcomas and malignant pleural mesothelioma (MPM). 
Moreover, pathways associated with aberrant high or 
low VISTA expression were identified by RNA signature 
analysis from the Pan-Cancer Atlas dataset, among which 
were: Arf6, VEGFR1, Lissencephaly gene (LIS1), Ras, FAS 
(CD95), EPHB, FOXA1 and ErbB2/ErbB3.29

In this setting, a first-in-class oral small-molecule selec-
tively targeting and inhibiting both VISTA and PD-L1/
PD-L2, called AUPM-170 or CA-170, was designed. This 
agent demonstrated in vitro immune-modulation activity, 
and in vivo antitumour efficacy in syngeneic cancer 
models. It did not exert specific immune function, with 
regard to other immune checkpoints like CTLA-4, TIM3, 
LAG3 or BTLA.30 31 A phase I study enrolled patients with 
advanced solid tumours and lymphomas (​ClinicalTrials.​
gov Identifier NCT02812875, CA-170–101), without symp-
tomatic central nervous system involvement, for which 
standard therapies, including approved anti-PD-1/PD-L1, 
were no longer effective. The dose expansion phase Ib, 
planned to confirm safety and tolerability of oral CA-170 
after having exploited the dose-limiting toxicities (DLTs), 
the MTD and RP2D, focused on solid tumours known 
to express VISTA only. Secondary and exploratory end 

points included pharmacokinetic, preliminary anticancer 
activity, biomarkers and pharmacodynamic effects.

Exploratory efficacy data from the first 50 enrolled 
patients, with at least one tumour response evaluation 
in the phase Ia CA-170–101 trial, were presented at SITC 
Meeting in 2018. Patients were treated with a dose up to 
1200 mg twice daily in 21 days cycles. Overall, 33 patients, 
both immune checkpoint inhibitors (ICIs) naïve or 
pretreated, had a stable disease (SD) as best response 
according to response evaluation criteria in solid tumours 
(RECIST). No partial/complete responses (PR/CR) were 
observed. About 20% of patients remained on treatment 
for at least seven cycles. No DLTs were observed. The 
majority of treatment-related adverse events (TRAEs) 
were of grade 1–2, including fatigue, nausea, chills, 
pruritus, constipation, vomiting, fever, anorexia. TRAEs 
grade 3–4 occurred in five patients: lipase increase, 
amylase increase, blood bilirubin increase, fatigue, hypo-
kalaemia, nausea and vomiting.32

Results from the mesothelioma cohort in the dose 
expansion phase Ib trial were presented at 2019 SITC 
Congress.33 VISTA showed to be highly expressed in MPM 
(almost 90% expression on tumour and inflammatory 
cells), particularly in epithelioid subtype, rather than in 
biphasic and sarcomatoid. Its expression correlated with 
mesothelin expression and, contrary to what observed 
with PD-L1 expression, was associated with more favour-
able prognosis. No correlation with PD-1, PD-L1 or 
tumour mutational burden was found.21 Twelve patients 
with pretreated MPM were treated with CA-170, and no 
responses were reported. Seven out of 11 patients eval-
uable for response (>1 postbaseline tumour assessment) 
had a SD as best response (two treated at 200 mg twice 
daily, five treated with escalated dose up to 1200 mg twice 
daily). One patient remained on study treatment for over 
21 weeks with SD, and four patients for >12 weeks.33

The phase II trial is unfolding (Clinical Trials Registry-
India CTRI/2017/12/011026) and started the enrolment 
on January 2018. It restricts the inclusion to patients 
affected by NSCLC, HN/oral cavity cancer, microsatel-
lite instability-high or mismatch repair deficient posi-
tive cancers and Hodgkin’s lymphoma (HL), who have 
already received from one up to three lines of therapy 
(ICIs excluded). It randomises patients to receive CA-170 
400 vs 800 mg daily in continuous, until PD or intolerable 
toxicities, with an open-label design. The first activity 
results were presented at 2018 SITC Congress. Among 
56 patients with at least one response evaluation, the 
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Table 2  Current ongoing clinical trials

Identifier number Tumour type Setting Phase Drug
Treatment 
arms Status

ClinicalTrial.gov 
NCT02671955

Solid tumours Advanced 
disease, >2nd line 
of treatment

I JNJ-61610588 Single arm, 
open label

Recruitment 
terminated (12 
patients enrolled)

ClinicalTrials.gov 
NCT02812875

Solid tumours and 
lymphomas

Advanced 
disease, >2nd line 
of treatment

I CA-170 Single arm, 
open label

Active (estimated 
enrolment of 300 
patients)

Clinical Trials 
Registry-India 
CTRI/2017/12/011026

NSCLC, HN/oral 
cavity,
MSI-High or dMMR 
cancers, HL

Advanced 
disease, from 
2nd to 4th line of 
treatment

II CA-170 Randomised, 
parallel group, 
multiple arm, 
open label

Active (estimated 
enrolment of 130 
patients)

dMMR, mismatch repair deficient; HL, Hodgkin's lymphoma; HN, head and neck; MSI, microsatellite instability; NSCLC, non-small cell lung 
cancer.

clinical benefit rate (CBR), defined as rate of SD/PR/
CR by immune-related response criteria in solid tumours 
and by Lugano criterion for HL, was 52%. Better results 
have been observed at the lower dose, but curiously 
with higher toxicities. Immune-related adverse events 
were globally reported in 8 patients: hypothyroidism in 
five cases, two cases of skin rash and one case of grade 3 
neutropenia and anaemia that led to treatment discontin-
uation.34 An updated subanalysis restricted to 13 patients 
with non-squamous NSCLC, presented as poster at the 
European Society for Medical Oncology Congress 2019, 
reported a CBR >70%, but without objective responses, 
with a median PFS of 4.6 and 2.8 months with 400 or 
800 mg, respectively.35

Tables 1 and 2 summarize main characteristics of anti-
VISTA agents under development and current ongoing 
clinical trials.

Conclusions
VISTA is a critical immune checkpoint hampering 
the generation of antitumour immunity. Its blockage 
reduces adaptive Tregs, impairs their suppressive func-
tion and potentiates both tumour-specific T cells activa-
tion and APCs inflammatory response.26 The molecular 
bases of such effects are not fully understood,36 even if 
evidence supports both T-cell extrinsic and intrinsic 
role of VISTA, and putative ligands have recently been 
discovered.6 7 37 The development of VISTA inhibitors, 
notably CA-170 that is the first small molecule targeting 
PD-1/PD-L1 axis entering the clinical research, retains 
some interesting aspects: the possibility of simultaneous 
multimolecules blockage, working at multiple levels on 
immune-surveillance mechanisms; the oral route of 
administration, which simplify patient’s management 
and reduces risks related to infusion; the potential good 
activity in tumours with high VISTA expression, but low 
PD-L1 expression (eg, MPM).33 The role of VISTA is 
under assessment, and currently available safety and effi-
cacy data do not preclude further investigations. A better 
understanding of the molecular pathways involved and 

regulated by VISTA, together with the identification of 
its ligands in vivo, could be fundamental to define the 
role of this biomarker among the negative checkpoint 
regulators, and its proper value as a therapeutic target. Its 
function at the T cells quiescence state, upstream of the 
priming and effector phases, and its engagement within 
the TME rather than on cancer cells, provide a rationale 
to a combined blockage of VISTA, CTLA-4 and PD-1/
PD-L1 axes.
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