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ABSTRACT: Enzymes exist as ensembles of conformations
that are important for function. Tuning these populations of
conformational states through mutation enables evolution
toward additional activities. Here we computationally evaluate
the population shifts induced by distal and active site mutations
in a family of computationally designed and experimentally
optimized retro-aldolases. The conformational landscape of
these enzymes was significantly altered during evolution, as pre-
existing catalytically active conformational substates became
major states in the most evolved variants. We further
demonstrate that key residues responsible for these substate
conversions can be predicted computationally. Significantly, the
identified residues coincide with those positions mutated in the laboratory evolution experiments. This study establishes that
distal mutations that affect enzyme catalytic activity can be predicted computationally and thus provides the enzyme (re)design
field with a rational strategy to determine promising sites for enhancing activity through mutation.
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■ INTRODUCTION

The most proficient catalysts known on Earth are enzymes,
which accelerate diverse chemical reactions by many orders of
magnitude. Their extraordinary catalytic power is mainly
attributed to highly preorganized active sites, which properly
position the catalytic machinery for efficient transition state
(TS) stabilization.1−5 The existence of a link between active site
dynamics and the chemical step has been recently investigated
and debated;1,6−9 however, this is totally independent of the
fact that enzymes are inherently dynamic entities that sample a
vast ensemble of conformational states important for their
function.10,11 The ability of enzymes to fluctuate between
different well-defined thermally accessible conformations is
important for substrate binding, regulation, inhibition, and
product release.
Enzymes exist as an ensemble of conformational substates,

whose populations can be shifted by substrate binding and also
by introducing mutations during evolution toward novel
function. The concept of population shifts or redistributions
of protein conformational states underlies efforts to rationalize
substrate binding mechanisms and allosteric regulation.10,12

The alteration of enzyme function by introducing mutations to
its sequence13 can be compared with the phenomenon of
allosteric regulation, as mutations may directly affect the
populations of individual conformational substates of the
enzyme,14−16 which in turn influences catalytic activity.

Notably, such mutations are often distant from the active
site.17−19 Several studies have examined the conformational
dynamics of some specialized enzymes16,20 and the role of
population shifts induced by mutations in enzyme evolu-
tion.21,22 The ability of some enzymes to catalyze promiscuous
reactions has been associated with their conformational
plasticity and changes in the conformational landscape.23 In a
recent study, Campbell and co-workers demonstrated for a
model system that a change in function can be achieved
through population of pre-existing conformational substates.14

Static X-ray structures of several intermediate variants for
evolving a phosphotriesterase into an arylesterase were
analyzed.
Many computational strategies are available to study protein

dynamics. Molecular dynamics (MD) simulations, a widely
accepted tool for evaluating the enzyme conformational
dynamics in atomistic detail,24,25 is particularly useful in this
regard. Long-time-scale MD, for example, has been used to
explore the role of allosteric regulation and distal active site
mutations on the conformational dynamics of an acyltransferase
(LovD) enzyme.18,26 MD, in contrast to X-ray crystallography,
was able to elucidate the reasons for catalytic activity differences
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observed in LovD variants. Nuclear magnetic resonance
(NMR) experiments have also provided key information
about conformational ensembles of enzymes and changes in
amino acid networks in the different substates.27,28 All of these
studies based on different techniques support the idea that
enzymes can have low populations of many different conforma-
tional states, which can be gradually tuned to become major
states to allow novel function.
Retro-aldolases (RA) that cleave the methodol substrate (see

Figure 1a) are, from a mechanistic perspective, the most
complex computationally designed enzymes to date.13,29,30

They follow a multistep pathway involving enzyme-bound
Schiff base intermediates that convert substrate into product.
Analysis of initial computational designs generated with
Rosetta31 revealed that the most active enzymes only offer a
105-fold kcat/kuncat improvement due to the lack of precision and
specificity in their interactions with the substrate.32,33 Further
laboratory-directed evolution (DE) engineering of the
computationally designed RA95 boosted its specific activity
by more than 4400-fold.34 The kinetic characterization of the
variants indicated that the increase in catalytic efficiency was
mainly due to an improvement in kcat, which was principally
achieved via mutations located all around the enzyme structure
(see Figure 1b,c). These distal active site mutations caused
pronounced molecular changes. Surprisingly, the computation-
ally designed catalytic lysine was unexpectedly abandoned in
favor of a new lysine residue in the opposite site of the binding
pocket created during the DE evolution.34 The variant RA95.5-

8 presents a higher activity than RA95.0, RA95.5, and RA95.5-5
(Figure 1b). It is also a promiscuous variant catalyzing
asymmetric Michael additions of carbanions to unsaturated
ketones,35 Knoevenagel condensations of electron-rich alde-
hydes and activated methylene donors,36 and the synthesis of γ-
nitroketones.37 Very recently, Hilvert and co-workers using a
new ultrahigh-throughput droplet-based microfluidic screening
platform evolved RA95.5-8 into the highly active artificial
aldolase RA95.5-8F, whose activity rivals the efficiency of
natural class I aldolases.19 This new variant features a catalytic
tetrad that emerged along the DE pathway, highlighting that
sophisticated active sites can be created even in laboratory-
evolved enzymes.
In this study, we demonstrate that the mutation points

introduced for achieving the highly active artificial aldolase
RA95.5-8F could have been predicted a priori from long-time-
scale MD simulations coupled to residue-by-residue correlation
measures. Our study starts with the evaluation of the active site
conformational dynamics of the different retro-aldolase variants
obtained during laboratory-based evolution, followed by a
detailed analysis of the population shift induced by mutations.
Finally, we demonstrate that MD simulations coupled to
residue-by-residue correlation can identify the residues involved
in the population shift toward the catalytically active states.
Interestingly, the residues identified with MD and the positions
mutated along the evolutionary process for achieving a highly
proficient retro-aldolase coincide. This study thus provides a

Figure 1. Reaction mechanism catalyzed by designed and evolved RA95 variants. (a) Scheme showing amine catalysis of the retro-aldol reaction
mechanism. (b) Representation of the mutation sites introduced by Directed Evolution (DE). Sphere sizes are weighted according to the number of
times the position was mutated along the evolutionary pathway (spheres are also colored from yellow to red depending on the mutation frequency of
the position). (c) Representation of the catalytic efficiencies of the RA95 variants (in purple, right axis in log(kcat/KM)), together with the distances
(in Å) between the Cα of the different mutations (shown in black spheres) and the catalytic lysine (nitrogen atom of side chain). The mean mutation
distance is marked with a red square. The catalytic efficiencies of the enzymes (kcat/KM in M−1 s−1) are represented in purple. For RA95.0, only the
11 mutations introduced with Rosetta are shown.
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rational strategy to determine promising sites for enhancing
novel activity by mutation.

■ RESULTS

Evolution of Active Site Conformational Dynamics.
Our analysis starts with the exploration of the RA95 active site
conformational dynamics to evaluate the molecular changes
induced by the distal active site mutations (the mean distance
between the catalytic lysine and the introduced mutations from
RA95.5 to RA95.5-8F is ca. 15 Å; see Figure 1c).19,34 We
analyze both the apo and Schiff base intermediate states (see

Figure 1a). In Figure 2, an overlay of the different structures
visited along the long-time-scale MD simulations is provided
together with key catalytic distances. The available X-ray
structures of the RA95 variants with a diketone inhibitor bound
are also shown.
The computational design RA95.0, created from a (βα)8

barrel scaffold (16 mutations on PDB, 1LBL; see Table S1 in
the Supporting Information), contains Glu53 that was assumed
to activate a water molecule to promote the C−C bond
cleavage at the Schiff base intermediate. Our simulations
indicate that ca. 11 water molecules are present around the

Figure 2. Representation of the enzyme active site conformational dynamics: (a) RA95.0; (b) RA95.5; (c) RA95.5-5; (d) RA95.5-8; (e) RA95.5-8F
with Tyr180 acting as the base; (f) RA95.5-8F with Tyr51 deprotonated; (g) plot of the distance between the base and the β-alcohol that will be
deprotonated along the three 1 μs MD trajectories. Catalytic residues are represented by blue sticks (for visualization purposes Asn110 has not been
included). X-ray structures with the diketone inhibitor bound are displayed for: RA95.0 (PDB 4A29, in purple), RA95.5 (PDB 4A2S, in two types of
green, lime green for the inhibitor bound to position 83 and light green for position 210), RA95.5-5 (PDB 4A2R, orange), RA95.5-8F (PDB 5AN7,
in yellow).
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catalytic Lys210 in the apo state (Figure S3 in the Supporting
Information). We observe a rather long distance between
Glu53 and the catalytic Lys210 (ca. 7.1 ± 2.8 Å at the Schiff
base intermediate; see Figure 2 and Figure S1 in the Supporting
Information), suggesting a minor role of Glu53 in positioning a
preorganized water molecule ready for catalysis. Indeed, our
observations are in line with the reported low activity of the
computational RA95.0 variant and the fact that full activity is
retained after mutating Glu53 to alanine.
The initial RA95.0 computational design was further evolved

through DE to RA95.5, where six mutations were introduced
(Table S1 in the Supporting Information).34 Interestingly, a
second lysine appeared at position 83, which in the case of the
most evolved RA variants was found to be more effective than
Lys210 as a catalytic group under normal turnover conditions.34

Glu53 was replaced by serine (E53S), and a new tyrosine
residue at position 51 was installed (V51Y) for promoting the
β-alcohol deprotonation (see Figure 1c). In our MD
simulations of the Schiff base intermediate, we observe two
clear conformations of the L6 loop (residues 180−190), which
induce two different orientations of the intermediate (see
Figure 2b and Figure S7 in the Supporting Information). The
positions of these conformations coincide with the two possible
binding modes of the inhibitor (one bound to position 83 and
another to position 210) observed in the RA95.5 crystallo-
graphic structure. This high flexibility of the Schiff base
intermediate leads to a poorly preorganized active site, with a
catalytic distance of ca. 5.0 ± 1.4 Å between the base and the β-
alcohol (the distance is ca. 4.9 ± 1.2 Å in the apo state; see
Figure S1 in the Supporting Information). The mean hydrogen
bond angle is ca. 74 ± 52° (Figure S4 in the Supporting
Information); therefore, an ideal hydrogen bond conformation
is hardly sampled during the MD runs. The active site of the
enzyme is solvent exposed with ca. 10 water molecules around
Lys83 (see Figure S3 in the Supporting Information),
indicating that water could also play a crucial role in assisting
the reaction.
RA95.5-5, generated by additional rounds of mutagenesis and

plate screening, has six additional mutations, three of them at
the enzyme active site (E53T, S110N, and G178S), and the rest
on the protein surface (R23H, R43S, and T95M, see Table S1
in the Supporting Information). The X-ray of this variant in the
presence of a diketone inhibitor confirmed that it is exclusively
bound at Lys83 (see Figure 2c, X-ray in orange). Our MD
simulations revealed that the Schiff base intermediate is still not
well positioned for catalysis, as the distance between the base
and the β-alcohol is ca. 5.4 ± 1.1 Å and the angle is ca. 73 ±
30° (Figure S4 in the Supporting Information). A further
evolved variant, RA95.5-8, contains five additional mutations:
three near the active site (S178 V, K135N, and G212D), and
two distal (S43R, F72Y, see Table S1). This new variant is ca.
60-fold more active than RA95.5, which is mainly due to an
increase in kcat rather than KM. The MD simulations performed
indicate that the distance between Lys83 and Tyr51 is ca. 4.6 ±
0.8 Å in the apo state (Figure S1 in the Supporting
Information) but ca. 5.5 ± 1.6 Å for the Schiff base
intermediate. The hydrogen bond angles for deprotonating
the β-alcohol are quite broad, but the average angle (ca. 98 ±
36°) is larger than in the other variants, consistent with the
higher catalytic efficiency observed for this enzyme (see Figure
S4). As observed in Figure 2d, the Schiff base intermediate is
still quite flexible and can occupy two different pockets. It can
be oriented in a conformation similar to that observed for

RA95.5-5, as well as in the catalytically productive binding pose
observed for the highly evolved RA95.5-8F (see below). The
latter state is, however, hardly visited along the MD simulation
of this variant.
We finally evaluated the highly evolved RA95.5-8F variant,

which provides a >109 rate enhancement. This enzyme exhibits
a kcat value of 10.8 s−1 and a kcat/KM value of 34000 M−1 s−1,
values comparable to those of natural class I aldolases.19

RA95.5-8F contains 13 additional mutations scattered through-
out the whole protein (see Figure 1b,c). This enzyme possesses
a catalytic tetrad composed by the RA95.5-8 triad Lys83, Tyr51,
and Asn110, with an additional Tyr180 (due to the F180Y
mutation). Of particular note, the original catalytic Lys210 is
mutated to leucine. Our MD simulations, like the X-ray
structure, show that the catalytic tetrad is perfectly arranged to
bind the substrate and adapt to geometric and electrostatic
changes occurring during the mechanistically complex reaction
pathway. In the apo state, the distance between Tyr51 and
Lys83 is ca. 4.6 ± 0.9 Å but ca. 7.2 ± 1.4 Å between Tyr180 and
Lys83 (see Figure S1 in the Supporting Information). For the
Schiff base intermediate, we investigated the possibility of either
Tyr51 or Tyr180 acting as the base for deprotonating the β-
alcohol (compare Figure 2e,f). Our results indicate that Tyr180
is substantially better positioned for deprotonating the alcohol,
as it stays at ca. 3.1 ± 0.8 Å (ca. 5.9 ± 1.2 Å for Tyr51) with an
angle close to the ideal 180° (ca. 143 ± 38°, see Figure S4 in
the Supporting Information). This stable and catalytically
competent conformation of the Schiff base intermediate is
mainly due to the formation of a hydrogen bond between the
oxygen atom of the β-alcohol and Tyr51. In fact, when the
Y180F mutation is introduced in RA95.5-8F, slightly longer
distances are observed (ca. 3.6 ± 1.3 Å between Tyr51 and the
alcohol). However, a more drastic effect is observed in the
Y51F variant (ca. 4.6 ± 2.1 Å for Tyr180-OSchiff). In Y51F, the
key hydrogen bond with Tyr51 for maintaining the catalytically
competent conformation of the Schiff base intermediate is lost
(see Figure S15 in the Supporting Information). This is in line
with the 4- and 90-fold decreases in kcat observed
experimentally for Y180F and Y51F, respectively.19 The
importance of both Tyr51 and Tyr180 for catalysis was also
found experimentally, as replacing both residues resulted in a
17000-fold decrease in kcat.

19 The overlay of some representa-
tive MD snapshots with the X-ray structure reveal a highly
preorganized active site, with the Schiff base intermediate
properly positioned for catalysis most of the simulation time
because of the enhanced hydrogen bond network due to the
presence of Tyr180. These results are in line with the recent
finding by the Hilvert laboratory that the rate-limiting step of
the process in the most evolved RA95.5-8 and RA95.5-8F
variants is not the C−C bond scission (as in RA95.0), but
rather the product release step.38

The Schiff base conformation adopted in RA95.5-8F matches
that observed in the X-ray structure, but interestingly, the
binding pose is well matched with that of the computational
design RA95.0 (check purple and yellow structures in Figure
2e). The decrease in the pKa of the catalytic lysine observed
experimentally19,34 is in line with the decrease in the water
solvation shell of Lys83 (from 11 to 6), which favors its
deprotonated form, and thus facilitates Schiff base formation
(see Figure S3 and Table S2 in the Supporting Information).

Evolution of Conformational Dynamics for Enhancing
Retro-Aldolase Activity. The evaluation of the enzyme active
site conformational dynamics has revealed that distal mutations
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progressively stabilized the catalytically competent arrangement
for catalysis. This is especially true for the highly evolved
RA95.5-8F enzyme, which features a catalytic tetrad that stays
in the catalytically competent arrangement for the entire
simulation. The analysis of the structural differences observed
along the MD simulations using Principal Component Analysis
(PCA) indicates that a population shift occurred along the
evolutionary pathway (see Figure 3 and Figure S9 and movies
in the Supporting Information). The first principal component
(PC1) is able to distinguish inactive states (those presenting a
long distance between the base and the β-alcohol, in red in
Figure 3b) from the catalytically competent states (active,
marked in green in Figure 3b). The main difference between
both states arises from the different binding modes of the Schiff
base intermediate in the enzyme active site and conformational
changes in the flexible loops L1 (residues 52−66), L2 (82−89),
L6 (180−190), and L7 (211−215) (see movies in the
Supporting Information).
The least proficient enzymes (RA95.0) explore conforma-

tional substates that barely sample catalytically proficient
distances (marked in pink in Figure 3). This is observed for
all variants from RA95.0 to RA95.5-8. DE mutations
progressively stabilize catalytically competent substates (see
conformational states marked in green in Figure 3). The major
conformational states in RA95.5-8F have the catalytic Tyr180
properly positioned to deprotonate the alcohol of the Schiff
base intermediate. What is more important is that all
conformational states are catalytically productive. Our micro-
second time scale MD simulations have thus been able to
capture significant differences in the conformational substates
sampled by the evolved DE variants. Nevertheless, we are aware
that much longer or multiple short MD simulations will be
needed to capture both kinetics and thermodynamic aspects of
this system.39

RA95.0 is substantially more flexible than the rest of the
variants (see Figure S7 in the Supporting Information), and a

gradual reduction in the conformational flexibility of loops L1
(residues 52−66) and L6 (residues 180−190) is observed,
RA95.5-8F being substantially less flexible than the other
variants. DE mutations decreased enzyme flexibility and thus
increased its thermostability, as observed experimentally.19

Identification of Residue Pathways for Novel Func-
tion. Our microsecond time scale MD simulations have
provided a rationalization of the differences in the catalytic
efficiencies of the designed and evolved DE variants. They have
also demonstrated that the conformational landscape along the
evolutionary pathway is significantly altered, with the catalyti-
cally active conformational substates progressively populated to
an increasing extent. This study, together with work on other
enzymes,18,25,26,40 demonstrates the power of MD for ration-
alizing DE evolutionary pathways. However, the main question
is whether MD can be used as a predictive tool to determine, a
priori, which changes might enable novel function. By analogy
to DE, the latter changes could be located either close to the
enzyme reaction center or at distal positions. Although some
studies have used MD to propose mutations in the past,13,39,41

the predictions were always restricted to the active site.
As shown in the previous sections, RA enzymes sample

different conformational states that are not equally populated
and these populations shift upon introduction of mutations.
The population shift concept has been used previously to
rationalize substrate binding mechanisms and allosteric
regulation.10,42 From a computational perspective, allosteric
processes have been evaluated via MD to generate molecular
ensembles coupled with community network analysis, which
identifies clusters of highly connected residues based on
residue-by-residue correlation and proximity.42,43 Given the
high similarity of both processes, we hypothesized that
correlation-based measures might be useful in the enzyme
design field as well.
We developed a new tool, DynaComm.py, that explores

residue-by-residue correlated movements and inter-residue

Figure 3. Representation of the MD trajectories projected into the two most important principal components (PC1, PC2) based on Cα contacts for
(a) RA95.0, (b) RA95.5, (c) RA95.5-5, (d) RA95.5-8, and (e) RA95.5-8F Schiff base intermediates. For each substate, the mean distance between
the heteroatom of the base and the oxygen of the Schiff base β-alcohol is represented together with the standard deviation (in Å). Those states
exploring distances in the 2.0−4.0 Å range are shown in green: i.e., they are catalytically competent, and other states are shown in red. PC1 (x axis)
differentiates inactive states (low PC1 values, pink structure in (b)) that present long catalytic distances from those properly oriented for the catalysis
(high PC1 values, green structure in (b)). An overlay of the interpolated structures along PC1 and PC2 is also displayed for RA95.5.
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Figure 4. Representation of the shortest path map (SPM) along the evolutionary pathway: (a) 1LBL; (b) RA95.0; (c) RA95.5; (d) RA95.5-5; (e)
RA95.5-8. The size of the sphere is indicative of the importance of the position, and black edges represent the communication path: i.e., how the
different residues are connected. Those points mutated via DE are marked in purple (if they are included in the SPM), in orange if they are located in
adjacent positions of the SPM (in parentheses is shown how far in the sequence from the closest residue included in SPM), and in green if the
mutation is located at more than five positions away in sequence from the SPM. In 1LBL (a), the positions have been colored according to their
evolutionary conservation using Evolutionary Trace Server (most conserved in red; less conserved in gray).46 (f) Analysis of the H-bond network in
RA95.5-8. Those hydrogen bonds that have been maintained at least half of the simulation time are represented by sticks: in blue those hydrogen
bonds that occur between backbone atoms, in pink those contacts between backbone and side-chain positions, and finally in yellow hydrogen bonds
between side chains. The weight of the hydrogen bond (HB) stick indicates how frequently the HB is observed.

Figure 5. (a) Root mean square fluctuation (RMSF, in Å) for RA95.5-8 variant along the microsecond time scale MD simulations. Amino acids
identified with the Shortest Path Map (SPM) for each enzyme are indicated using gray dots. Directed evolution (DE) mutations are marked with
dots in purple (if they are included in the SPM), orange (if displaced by a few positions from SPM), and green (if located more than five positions
from the path). The locations of the most mobile loops L1 (residues 52−66), L2 (residues 82−89), L6 (residues 180−190), and L7 (residues 211−
215) are marked. The catalytic residues, also included in the SPM, are marked with blue dots. (b) Shortest path map computed for RA95.5-8
projected over the interpolated structures along PC1. Loops L1, L2, L6, and L7 are colored in light green, yellow, blue, and cyan, respectively.
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distances as in previous allosteric studies42,44 (see Computa-
tional Details for more details). This generates a complex graph
based on proximity and correlation. We further evaluated the
latter graph by making use of the Dijkstra algorithm as
implemented in the igraph module45 to identify the shortest
path lengths. This generates a map that we call the shortest
path map (SPM), which identifies pairs of residues that have a
higher contribution to the communication pathway. We applied
this tool to the accumulated 3 μs MD simulations performed
for the studied enzyme variants and compared the SPMs
obtained with the DE mutation sites (see Figures 1b, 4, and 5
and Figure S8 and S12−S14 in the Supporting Information).
When the structures in Figure 4b−e were compared, it was
found that the residues identified by SPM and the positions
mutated experimentally during DE are strikingly similar. What
is more important is that the SPM can be constructed along the
DE process to track which positions could be mutated for
pursuing novel RA activity (see Figures 4, and 5). In RA95.0,
five out of six DE mutations are included in the SPM (marked
in purple in Figure 4); the missing site is located at an adjacent
position (D183 in orange; see Figure 4b). The same happens in
RA95.5, where the exact mutation sites or adjacent positions
are predicted by SPM (only T95 is displaced five positions from
SPM). The same holds for RA95.5-5 (four out of five predicted,
one out of five in an adjacent position, see S43 in Figure 4d).
The most evolved RA95.5-8F variant, which contains a highly
preorganized catalytic tetrad, was generated from the previous
RA95.5-8 enzyme. Interestingly, the SPM of RA95.5-8
highlights that the catalytic Lys83, Try51, and Asn110 are all
contained in the SPM, and more importantly Phe180, which
was subsequently mutated to Tyr180 to complete the catalytic
tetrad, is also included in the path. This evidences the
correlated movement of these positions. In RA95.5-8, seven
mutations are predicted, four are in adjacent positions, and only
two are displaced six positions from SPM (see S151 and N90 in
Figure 4e).
The analysis of the most conserved hydrogen bonds (HB)

along the MD trajectories indicates that some of the residues
included in the SPM also participate in the protein HB network
(see Figure 4 and Figure S12 in the Supporting Information).
We also find that there is not a direct correlation between the
residues included in the path and the most flexible parts of the
protein (see Figure 5 and Figure S8 in the Supporting
Information). However, most of the residues included in SPM
are located adjacent to flexible regions of the enzyme (see
Figure 5 and Figure S12). Interestingly, a detailed analysis of
the evolutionary conservation of the positions included in the
SPM on the original scaffold 1LBL (see Figure 4a) reveals that
many of them are quite conserved.46 SPM thus successfully
identifies the residues involved in the conversion between the
sampled conformational states, which seem to be the target
points for DE for enhancing the novel function.

■ DISCUSSION
Enzymes display a variety of conformational substates that can
be converted into major catalytically competitive states by
introducing both active sites and distal mutations. The
existence of such accessible conformational substates implies
that catalytic promiscuity is an inherent characteristic of some
enzymes, which might be exploited to enable the emergence of
novel functions as has been done in some examples.14,15,35,36,47

Long-time-scale molecular dynamics (MD) simulations can
assess these enzyme conformational landscapes and thus

identify conformational substates, whose populations can be
shifted to enhance new catalytic activities. The main question
that remains to be answered is how one can identify which
mutations are required to favor the desired population shift.
Directed evolution (DE) has shown us that these amino acid
changes occur not only at the enzyme active site but also at
distal positions. So far, the computational prediction of these
mutation points has been extremely challenging, especially for
distal residues that are usually key for activity.17,18

Our study provides evidence that MD, coupled to
correlation-based tools similar to those used to investigate
processes such as allosteric regulation and molecular recog-
nition, can be successfully applied in the enzyme (re)design
field. We have developed the shortest path map (SPM), which
analyzes the different conformational substates sampled along
the MD trajectory and identifies which residues are important
for the substate interconversion. Therefore, if catalytically
competent states are sampled in the MD simulation, the new
tool facilitates identification of residues that contribute to the
inactive-to-active interconversion. SPM thus identifies not only
active sites but also distal residues that could lead to a
population shift toward the catalytically competent conforma-
tion for novel activity. This is totally unprecedented and thus
opens the door to new computational paradigms that are not
restricted to active site alterations. We are currently developing
additional strategies based on the analysis of possible hydrogen
bond and noncovalent interactions of the identified SPM
position and surrounding residues to propose specific amino
acid changes for novel function.
Interestingly, application of the SPM tool to the original

scaffold 1LBL that was used to generate the RA95.0
computational design already identifies the key mutation sites
that were ultimately modified via DE (see Figure 4a and Figure
S14 in the Supporting Information). This indicates that the
residues identified with SPM presenting a higher contribution
(i.e., larger spheres in the graph) could be used for the design of
smart libraries for experimental evolution. Thus, this study
suggests that the highly active RA95.5-8F retro-aldolase variant
could have been generated much more efficiently had the SPM
tool been applied at the start of the process.
The success of SPM in this particular enzyme could be

related to the fact that the original scaffold (1LBL) is an indole-
3-glycerol phosphate synthase.48 This enzyme has 30%
sequence identity to imidazole-glycerol phosphate synthase
(IGPS), which is a known allosterically regulated enzyme.44,49

Nussinov and co-workers argued that allostery is an intrinsic
property of all dynamic (nonfibrous) proteins, which suggests
that the SPM tool might be applied to other cases as well.12

The recent study of Hilvert and co-workers on these RA
enzymes has indicated that, especially in the most evolved
variants, product release is rate-limiting.50 Although we have
restricted our study to the retro-aldolase evolution case, our
laboratory is investigating the applicability of this tool to other
unrelated systems that are also limited by product release.
Another important observation is that both 1LBL and IGPS are
(βα)8 barrel enzymes, which is the most common enzyme fold
in the Protein Data Bank.51 In addition, many of the residues
included in SPM are quite conserved, especially those located at
the end of the β-sheets. This is of importance, as the catalytic
groups in (βα)8 barrel enzymes are usually located at the ends
of these different β-strands.52
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■ CONCLUSIONS
This work demonstrates that more active enzymes could be
designed computationally if the conformational dynamics of the
enzyme were exploited. Most of the currently available
computational strategies are highly focused on optimizing the
chemistry and overlook other equally essential steps such as
substrate binding, product release, and associated conforma-
tional changes often required for catalysis. Future computa-
tional enzyme design strategies will need to extensively evaluate
the enzyme conformational dynamics if more proficient enzyme
variants are to be pursued.

■ COMPUTATIONAL DETAILS
Molecular Dynamics Simulations. MD simulations in

explicit water were performed using the AMBER 16 package.53

The Amber 99SB force field (ff99SB) was used, and parameters
for the Schiff base intermediates were generated using the
general AMBER force field (gaf f),54 with partial charges set to
fit the electrostatic potential generated at the HF/6-31G(d)
level by the restrained electrostatic potential (RESP) model.55

Amino acid protonation states were predicted using the H++
server (http://biophysics.cs.vt.edu/H++). Water molecules
were treated using the SHAKE algorithm, and long-range
electrostatic effects were considered using the particle mesh
Ewald method.56 The Langevin equilibration scheme was used
to control and equalize the temperature with a 2 fs time step at
a constant pressure of 1 atm and temperature of 300 K, and an
8 Å cutoff was applied to Lennard−Jones and electrostatic
interactions. Production trajectories were run for 1000 ns and
were analyzed using the cpptraj module included in the
AMBER 16 package. PCA analysis was done with the pyEMMA
software.57

Shortest Path Map Analysis. The first step of the shortest
path map (SPM) calculation relies on the construction of a
graph based on the computed mean distances and correlation
values, in a fashion similar to that in previous studies (see the
Supporting Information for further details).42,44 The graph is
then further simplified by making use of the Dijkstra algorithm
as implemented in the igraph module45 to identify the shortest
path lengths. The algorithm goes through all nodes of the graph
and identifies which is the shortest length path to go from the
first until the last protein residue. The method therefore
identifies which edges of the graph are shorter, i.e. more
correlated, and that are more central for the communication
pathway. Only those edges having a higher contribution are
represented, and they are weighted according to their
contribution (see the Supporting Information for more details).
All of these algorithms have been implemented in the new

developed DynaComm.py python code, and all structure figures
were illustrated using PyMOL (http://www.pymol.org). A
web-based server of DynaComm.py will be available on our
group webpage (http://silviaosuna.wordpress.com/tools).
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