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1 Grupo de Fı́sica Estadı́stica e Interdisciplinaria, CONICET, Centro Atómico Bariloche, Bariloche, Rı́o
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Abstract

In this work we analyze potential environmental drivers of malaria cases in Northwestern

Argentina. We inspect causal links between malaria and climatic variables by means of the

convergent cross mapping technique, which provides a causality criterion from the theory of

dynamic systems. Analysis is based on 12 years of weekly malaria P. vivax cases in Tarta-

gal, Salta, Argentina—at the southern fringe of malaria incidence in the Americas—together

with humidity and temperature time-series spanning the same period. Our results show that

there are causal links between malaria cases and both maximum temperature, with a delay

of five weeks, and minimum temperature, with delays of zero and twenty two weeks. Humid-

ity is also a driver of malaria cases, with thirteen weeks delay between cause and effect. Fur-

thermore we also determined the sign and strength of the effects. Temperature has always

a positive non-linear effect on cases, with maximum temperature effects more pronounced

above 25˚C and minimum above 17˚C, while effects of humidity are more intricate: maxi-

mum humidity above 85% has a negative effect, whereas minimum humidity has a positive

effect on cases. These results might be signaling processes operating at short (below 5

weeks) and long (over 12 weeks) time delays, corresponding to effects related to parasite

cycle and mosquito population dynamics respectively. The non-linearities found for the

strength of the effect of temperature on malaria cases make warmer areas more prone to

higher increases in the disease incidence. Moreover, our results indicate that an increase of

extreme weather events could enhance the risks of malaria spreading and re-emergence

beyond the current distribution. Both situations, warmer climate and increase of extreme

events, will be remarkably increased by the end of the century in this hot spot of climate

change.
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Introduction

Dynamics of malaria epidemics are strongly influenced by climate [1–3]. In particular, at the

geographical fringes of its distribution, malaria dynamics are driven by environmental factors

such as temperature, rainfall, and humidity [4], as well as epidemiological ones, such as immu-

nity [5, 6]. In a high CO2 emission scenario, Northwestern Argentina, the studied region, will

likely suffer a high temperature increase by the end of the XXI century, and the frequency of

heat waves and intense rains will increase [7, 8]. All of these may impact parasite transmission

rates [9], since they are modulated by mosquito vector abundance, and parasite survival and

development, both strongly affected by climate. Malaria persistence in any given region

requires a minimum set of environmental factors that allow both factors to be sustained [9,

10], and thus the quantification of the effects of climate is essential in order to predict, and

help mitigate, the spread of the disease, especially under the current prospects of climate

change [11, 12]. In particular, at the frontiers of malaria incidence, climatic factors fluctuate

between values that curb malaria transmission and values that support it. This opens up the

possibility of studying in situ the effects of climate on the disease dynamics.

In the Americas, the southern fringe of malaria distribution cuts through the north of

Argentina, mainly in Salta province. About 99% of malaria cases there are caused by Plasmo-
dium vivax parasite, although previously in the 20th century P. falciparum and P. malariae also

circulated [13]. In particular P. vivax parasite has a liver dormant stage known as hypnozoite

that causes relapses of the disease, i.e. secondary infections produced after a first infection [14].

Tropical P. vivax strains usually begin to relapse within a month after the initial infection,

while hypnozoites of temperate strains usually have an incubation period of several months

[14, 15]. For instance, in arid and semiarid regions of North-West India, relapses lead to two

P. vivax seasonal peaks 8 months apart between each other [14].

The predominant malaria vector species in Salta province, northwestern Argentina, is the

mosquito Anopheles pseudopunctipennis [16], although An. argytarsis and An. strodei are also

found, together with other less abundant Anophelines [17]. Previous studies show that in the

southern area of the subtropical mountainous rain forests in northwestern Argentina, the

relative humidity is the major determinant of the abundance of An. pseudopunctipennis, An.
argytarsis, An. strodei and An. evansae [17, 18]. Other studies claimed that maximum mean

temperature and maximum mean humidity were the climatic variables that best explained the

abundance fluctuation of An. pseudopunctipennis adults [19]. This species usually breeds in

sun-exposed clean freshwater in association with floating plants and filamentous algae [20]. Its

population density increases between December to April [21]. In some localities, three peaks

of mosquito population were observed: the largest during the spring season (September-

December), the second during autumn (March-May) and the smallest during the summer sea-

son (December-February) [19]. During winter, mosquito population drops to almost zero.

Local temperature is an important variable that determine mosquito survival but also para-

site development inside mosquitoes. The Extrinsic Incubation Period (EIP), i.e. the time

between successive infecting mosquito bites, depends strongly and non-linearly on tempera-

ture [9, 22]. Previous works performed in Kenya, Africa, report a range from 10 to 50 days for

EIP of P. falciparum for temperatures in the range of 10˚ C − 37˚ C. Cooler temperatures give

longer and more variable EIPs [22]. The EIP is often relatively long compared to the life expec-

tancy of mosquitoes, which is around one month. The common assumption is that around

10% of the adult mosquito population will survive to successfully transmit the disease [23].

In Tartagal—the third most populated city in Salta Province, Northwestern Argentina, with

80,000 people—malaria cases occur typically from November to April (summer season), giving

rise to an epidemic-like dynamics, characteristic of a disease at the limit of its geographical
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distribution. Most of the people infected with malaria work on agriculture in rural environ-

ments [16]. In fact, at the time that more workers are attracted to the region, serious flooding

events increase the susceptibility [18, 24]; these are related to deforestation of the native forest

near Tartagal, mainly to establish soy plantations. This trade-off between agricultural develop-

ment and flooding that increases mosquito population, and therefore malaria risk, was

addressed in other parts of the world [25] and might also impact malaria dynamics. In these

low-incidence regions climate usually plays a key role in determining the seasonal pattern of

malaria outbreaks. For instance, previous studies performed in El Oculto and Aguas Blancas,

two localities situated approximately 100 km west from Tartagal, found an association between

monthly malaria cases and maximum mean temperature and rainfall, or mean temperature

and humidity, respectively [19].

Such correlations between climate and disease are often assessed in view of establishing

how climate influences disease transmission. However, correlation has well-known drawbacks;

most famously, “correlation does not imply causation”, because other factors, so-called con-

founding factors, may influence both variables. Furthermore, non-linearity may also obscure

the relationship between the variables, to the point that even when there is a definite influence,

correlation may not be observed, or can even change its sign—the “mirage correlation” prob-

lem [26]. In other words, “lack of correlation does not imply lack of causation”. Still, the goal

is to determine whether climate drives disease dynamics; this led to new techniques aimed at

detecting causal links from time series [27–30].

Convergent cross-mapping (CCM) is a method that tackles those issues considering the

problem from a dynamical systems point of view. According to this view, two variables are

causally linked if they are part of a coupled, possibly non-linear, dynamical system. This

contrasts with the statistical criterion for association, either via direct correlation, or more

complex statistical methods. Specifically, CCM assumes that dynamics are predominantly

deterministic, and employs state space reconstruction, described in the methods section, to

infer whether two variables are part of the same dynamical system, and therefore are causally

connected [26]. Although it is based on classical theorems from deterministic dynamical sys-

tems, the method has been successfully tested on synthetic data [26, 31–33] and applied to a

wide range of real-world problems [34–40].

Moreover, CCM is completely data-driven, that is, its results do not depend on choice of

model equations or statistical models. Its results can also be used to quantify the direction and

strength of the causal variables, e.g. environmental drivers, on the caused variable, such as

number of cases, for each value of the causal variables [41]. This allows us to establish for

which range of values the effect of a given variable is important.

We used CCM to analyze time series of 12 years of humidity, temperature, and malaria

cases from Tartagal city. We established causal links between humidity and temperature, and

malaria cases. We found that these effects lag the causal variable by periods compatible with

some key biological components of malaria transmission.

Materials and methods

Malaria P. vivax number of cases, provided by the Argentinean Ministry of Health, were

recorded from January 2000 to December 2011 every epidemiological week. Symptoms of

P. vivax are mild [16] but people that go to the hospital are treated with primaquine and chlo-

roquine for 14 consecutive days [19]. Asymptomatics were not detected after specifically

designed experiments that were carried out in order to fulfill the requirements to achieve the

certificate of indigenous malaria-free country [42]. During the studied period, the National

Program for Paludism Control (PNP) has developed activities of prevention and control
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consisting of active search for fever cases, and insecticide spraying every semester [16]. In that

context, blood samples were taken from people with malaria symptoms, and blood smears

were giemsa-stained for parasite detection. Positive samples were examined for identification

of the Plasmodium species [19].

Tartagal city is located at the base of the Argentinean sub-Andean hills (22˚ 32’ S, 63˚ 49’

W; 450m above sea level) and holds 3/4 of the San Martı́n population department in Salta

Province, Northwest of Argentina. The city is surrounded by subtropical native forests and

crops such as beans, cotton, soybean, maize, grapefruit and tomato. The climate is subtropical,

with an average annual temperature of about 23˚C (maximum of 39˚C in summer and average

minimum of 9˚C in winter). Annual cumulative precipitation is about 1100 mm, with a dry

season from June to October with a monthly average rainfall of 30 mm, contrasting with the

wet season from November to May with a monthly average rainfall reaching 160 mm [43]. It is

possible to differentiate three seasons: one warm and dry, which corresponds to Spring (Sep-

tember-December), one warm and rainy, which corresponds to Summer (January-April), and

one that is cold and humid which corresponds to Autumn and Winter (May-August) [17].

The city is crossed by the Tartagal River, and its urban area covers approximately 15 km2 [43].

Daily recorded climate data sets for Tartagal city for minimum and maximum relative humid-

ity, rainfall, and minimum and maximum temperature were provided by the National Meteo-

rological Service of Argentina. Rainfall data had too many missing values to perform the

analysis, since the applied methodology requires short-time variability that cannot be recov-

ered using seasonal means or data from other localities.

Convergent cross mapping (CCM)

Convergent cross-mapping (CCM) is a method for detecting causality in nonlinear dynamic

systems [26].

It is based on Takens’s theorem of state-space reconstruction finding that the attractor that

governs a dynamical system can be retrieved through lagged coordinates (by multiples of a

fixed period τ) of a single variable. The state-space reconstruction reveals a shape in an E-

dimensional space, called shadow manifold M, which is an embedding of the dynamical sys-

tem’s true attractor; in other words, it constructs an attractor topologically equivalent to the

“original” one.

One of the corollaries of the generalized Takens’s theorem is the possibility of performing a

cross-mapping between variables observed from the same system [44]. For example, consider

two coupled variables, x and y, in a dynamical system, such that x affects y. The shadow mani-

fold My based on y must map the corresponding (contemporaneous) value of the shadow

manifold Mx based on x. CCM determines how well local neighborhoods on a given shadow

manifold correspond to local neighborhoods on the other. From the reconstructed shadow

manifolds, we can use My to predict states xp in Mx. The prediction skill is obtained by calculat-

ing the correlation coefficient ρ between predicted xp and observed xo states. Convergence

means that the estimates from the cross-mapping improve as we increase the length of the

time-series (L), because the larger the sample of the dynamics the better the shadow manifold

portrays the true attractor. If there is causation, we expect to see convergence, since the corre-

lation coefficient between predicted and observed increases as L increases.

Note that the causal variable leaves a signature on the affected one, but not vice-versa. This

means that, if x causes y as above, My maps onto Mx, but not the other way around, because x
time-series contains no information about y.

In the dynamics of disease transmission, some particularities must be taken into account.

For example, if temperature is a causal factor in malaria cases, then it is reasonable to expect
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that this relationship may not be instantaneous, since mosquito population dynamics and par-

asite cycle occur on the scale of several weeks. In this case, temperature may affect malaria

cases with a delay, which we address by performing the CCM with increasing time lags

between number of cases and temperature, and finding the delay with maximum prediction

skill [31]. Of course, the same holds for other variables.

Another relevant aspect in this context is seasonality. Variables such as temperature and

humidity are seasonal and so very predictable. Therefore, it is necessary to distinguish between

the influence of the season and of the climatic variables themselves. This can be resolved by

constructing a null hypothesis with time series surrogates [45]. For a given variable x(t) (e.g.

temperature or humidity) we obtain a seasonal pattern xs(t) using smoothing splines, which

works better than Fourier decomposition for non-sinusoidal waveforms. The residuals xr(t)
are calculated by the difference between the seasonal cycle and the observed data xr(t) = x(t) −
xs(t). These residuals are then shuffled and added back to the seasonal pattern, generating a

surrogate series x̂ðtÞ which has the same seasonality as the observed data but with shuffled

residuals. Thus, if x(t) is really causally linked to another variable (e.g. y(t)) then y(t) should

predict x(t) better than x̂ðtÞ. In other words, y(t) will be sensitive not only to the seasonal pat-

tern but also to the anomalies (residuals) of the variable x. For each driver variable, we calcu-

lated the prediction skill ρs for 500 surrogates obtaining the probability distribution of ρs. The

value of prediction skill ρ for the original series was compared to the distribution of ρs to assess

whether the result is statistically significant, using a significance level of α = 0.05.

Simple cross-mapping of attractors presents a few pitfalls; notably, high levels of noise and

synchrony between the variables’ dynamics may lead to spurious conclusions [46]. We over-

come the first issue by reestimating the number of malaria cases using a state space model,

described in the next section. The problem with synchrony is dealt with in two parts: first

we use a surrogate method, explained above, to make sure there is a causal link. Secondly, we

analyze the time lag between the variables—a negative time lag is a reliable indication that the

causal direction is correct [46–48].

Quantification of interactions’ strength. Once we have established the causal variables,

we investigated whether they have a negative or positive effect on the number of malaria cases

using the S −map multivariate approach [41]. It consists essentially of the same method of

state space reconstruction, but including the causal variables into the state space axes. From

that reconstruction, we recover a coefficient that is a proxy for the interaction strength

between each driver and the target variable [41]. More specifically, consider that variable y(t)
is affected by E different other variables: xi, i = 1, 2, . . . E. The state space at time t is given by:

x(t) = x1(t), x2(t), . . ., xE(t), for each target time point t. The S-map method produces a local

linear model C that predicts the value y(t) from the multivariate reconstructed state-space vec-

tor x(t) as follows:

yðtÞ ¼ C0ðtÞ þ
XE

i¼1

CjðtÞ xjðtÞ ð1Þ

The model C contains the coefficients C0, C1 . . . CE for each time point t and is obtained

from the singular value decomposition solution according to the method presented in [41].

The coefficients C(t) are related to changes in the magnitude of causal factors over time and

are used here to infer how malaria cases are affected by climate drivers.

Expected number of malaria cases

Epidemiological time series usually show epidemic bursts separated by intervals with no cases

recorded. Nevertheless the number of sequential zeros in a time series should be smaller than
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the dimension of the state-space reconstruction intended [45]. Moreover, an unknown num-

ber of cases are not detected, which introduces observational noise into the series. Observa-

tional and process noise can blur the causality links to be detected by CCM [44, 46].

To circumvent these problems we applied the CCM analyses to the expected number of

recorded cases, which we estimated from the observed time series of number of cases, with

minimal assumptions. To do that we fit to the time series a state-space model of count data

dynamics in discrete time [49]. In this model the expected size of the population of infected

people is the single state variable, and has a growth rate that can change at each time step.

The number of infected people at each time step follow Poisson distributions, which have

the expected number of cases as their only parameters. Finally, the expected number of

recorded cases is a fixed proportion of the number of infected people that are detected.

This model thus describes the number of recorded cases at each time step as a zero-inflated

Poisson variable that evolves freely in time. Under this model, the observed time series of

recorded cases is a realization of a stochastic process, from which we estimate the expected

trajectory in time. Therefore, the time series of expected number of cases estimated by this

model sorts out observation noise caused by detection failures and also averages out process

noise.

We used a Bayesian fit of the model to the data with a Markov Chain Monte Carlo

(MCMC) in JAGS [50] through the rjags [51] and R2jags [52] R packages. We ran four MCMC

chains of 3.6 × 106 interactions each, with a burn-in period of 1.51 × 106 interactions, and thin-

ning interval of 1500 interactions, which thus returned a sample of 4,000 values from the pos-

terior distributions of the expected number of cases at each time step. Chain convergence was

checked by the R̂ statistic, which had a maximum of 1.29. Effective sample size of posteriors

were 560. Codes for the fitting and binary files with the complete output are available at

https://github.com/mathbio/malariaCCM.

Analyses performed

We applied the CCM analysis to the time series of expected number of malaria cases being

caused by time series of maximum and minimum weekly averaged temperatures, maximum

and minimum temperatures’ weekly standard deviation, maximum and minimum weekly

temperature amplitudes, and maximum and minimum weekly averaged relative humidities.

Each variable was tested for lagged effects up to 30 weeks, since we intended to capture the

causality relationships in a single epidemic and mosquito cycle. As previously shown [31], sev-

eral secondary time-lags may also be causally related as a by-product of the main lag. In this

case, we chose the significant time-lag with maximum prediction skill ρ, and used it to deter-

mine the signal and strength of the effects.

Results

Within the studied interval (02 Jan 2000 – 11 Dec 2011), a total of 266 cases of malaria caused

by P. vivax were recorded in Tartagal, with an average of 0.43 case per week and a maximum

of 16 cases in a single week. Malaria cases in Tartagal are typically observed from November to

April (summer season), while during winter (July to September) they drop to zero over several

months (Fig 1).

The estimated mean weekly number of cases were compatible with the observed counts,

ranging from 4.5 × 10 − 5 to 7.88 (mean of posterior distribution), following the same temporal

trend of the observed number of cases (Fig 1). The number of observed cases were in general

larger than the estimated averages, which is expected for count variates with low mean values.

Climate drivers of malaria
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Seasonality

Temperature in Tartagal ranged from 0˚C to 39.8˚C with a mean of minimum temperatures of

16.1˚C and mean of maximum temperatures of 27.8˚C, and humidities ranged from 18.1% to

98.7%. All climate variables showed a clear seasonal trend, that express the alternation of a

rainy, warm and wet summer (December – February) to a colder and not so wet winter

(June – August, Fig 2).

Causality tests

We found causal relationships between four climate variables and malaria cases in Tartagal.

Maximum temperature was causally linked to expected number of malaria cases 5 weeks later,

while minimum temperature, around both 0 and 22 weeks of time-lag, was also important.

Maximum and minimum humidity showed causal links to expected number of cases as well,

with a lag of ca. 13 weeks (Fig 3). In all cases, the prediction skill (ρ) was about 0.5, and there

were several time-lags at which the causal link was significant. As justified in the methods sec-

tion, we picked the time-lags with maximum ρ to interpret the result and perform the follow-

ing analyses. The CCM analysis showed non statistically significant results for both maximum

and minimum temperatures’ standard deviation, and maximum and minimum temperature

amplitudes, for the whole range of time-lags from 0 to 30 weeks.

We note that correlation was weak between the climatic variables and number of malaria

cases: the correlation coefficients are, at most, of 0.3 for all variables and lags studied,

Fig 1. Weekly malaria P. vivax cases for Tartagal city (red) and estimated mean weekly number of cases with its 95% credibility interval (blue).

https://doi.org/10.1371/journal.pone.0219249.g001
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systematically below the values of prediction skill ρ found. This means that, in our study, corre-

lation would not be enough to detect the patterns we found.

Interactions’ strength and direction

Here we look at each causal variable found above and analyze the effect it has on the number

of malaria cases (Fig 4). As expected for non-linear dynamics, both the strength and direction

Fig 2. Weekly values of climate variables (points) and their seasonal trends, fitted by spline regressions.

https://doi.org/10.1371/journal.pone.0219249.g002
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of the causalities that we detected changed markedly along the time series, showing that the

causal effects can emerge, wane, and even reverse as this complex dynamics unfolds. Minimum

humidity lagged by 13 weeks has a positive effect on number of malaria cases almost all over

the time series, but the strength of the interaction decreases with increasing values of mini-

mum humidity (Fig 4a), that is, an increase in this variable has a stronger positive effect when

minimum humidity is low. In contrast, maximum humidity effect (also lagged by 13 weeks)

Fig 3. Significant causal relationships as a function of time-lag via CCM. Plots show in x-axis the time-lags tested for each climate variable and in y-axis the

prediction skill ρ of the observed mean number of malaria cases. Asterisks represent time-lag values that provided a larger ρ than expected by a common seasonal

trend, considered significant with α = 0.05.

https://doi.org/10.1371/journal.pone.0219249.g003
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Fig 4. Interaction strengths for each causal variable as a function of the cause itself. (a) Minimum relative humidity with

time-lag of 13 weeks has a positive effect on the number of malaria cases in most of the points of the time series, though this

causality weakens as humidity increases. (b) Maximum relative humidity with time-lag of 13 weeks had in general a negative

effect on cases that is stronger above 85% of humidity. (c) Minimum temperature with no lag tends to affect positively the

number of cases, especially above 15˚C. (d) Minimum temperature lagged by 22 weeks had the same pattern as minimum
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has generally a negative effect, which becomes more pronounced for values above 85% relative

humidity.

These two results show that cases of malaria are bounded by relative humidity lagged by 13

weeks, which has stronger effects close to the extremes of humidity recorded for the region

(around 20-30% minimum humidity and above 85% maximum humidity, Fig 2a and 2b).

In general a rise in temperature causes an increase in the number of cases, although the

strength of this effect is contingent on current and lagged temperatures. The increase of mini-

mum temperature at lag zero (in the same week as registered cases) had mainly a positive effect

on the number of malaria cases when minimum temperature was above 17˚ (Fig 4), and such

effect strength increases abruptly when minimum temperature increases. The effect of the

minimum temperature lagged by 22 weeks, on the other hand, gets weaker with increasing

temperature, even though its effect was also usually positive. Finally, maximum temperature

lagged by 5 weeks always had a positive effect on number of cases, an effect that was stronger

and much more variable above 25˚C.

The thresholds for the interaction strength were checked by comparing the mean effect

below and above the assumed threshold using a Mann-Whitney (Wilcoxon rank sum) test. In

all cases, the test rejected the null hypothesis (p< 2.2e − 16 for all thresholds).

Discussion

We used a causality criterion from dynamic systems theory to identify causal relationships

between climatic factors and number of malaria cases in Northwestern Argentina. With this

approach we were able not only to quantify causal effects (summarized in Table 1) but also to

highlight key features of the disease dynamics without the need of an explicit model.

In a nutshell, we show that causal links to climatic variables occur at different time lags with

respect to number of cases, and can be interpreted as pertaining to two distinct scales: a longer

one relevant for mosquito population dynamics, and a shorter one compatible with pathogen

cycle. These processes can bring on high vector abundance and conditions favoring parasite

development, which are sine qua non factors for the transmission of the disease.

Number of cases was causally linked to minimum and maximum temperatures lagged by 0

and 5 weeks respectively, with increasing temperature leading to higher number of cases.

These short time lags are probably linked to the Extrinsic Incubation Period (EIP) of the

malaria parasite inside the vector, which strongly depends on temperature [22, 53, 54]. Malaria

symptoms, and therefore cases, appear approximately one week after EIP completion: some

works report a range from 10 to 50 days for EIP [9, 22], taking longer for lower temperatures.

Therefore, lower temperatures can quickly interrupt the parasite cycle, as it becomes longer

relative humidity in (a). (e) Maximum temperature lagged by 5 weeks also had positive effect on cases in most of the time

series, with increasing causal strength as maximum temperature raises.

https://doi.org/10.1371/journal.pone.0219249.g004

Table 1. Summary of significant causal variables found for malaria cases, the direction of their effects, and the behavior of the relationship with different values of

the variable.

variable lag (weeks) sign range of values

Min. relative humidity 13 positive decreases with humidity

Max. relative humidity 13 negative pronounced above 85%

Min. temperature 0 positive pronounced above 17˚ C, increases with T
Min. temperature 22 positive decreases with temperature

Max. temperature 5 positive more pronounced and variable above 25˚ C

https://doi.org/10.1371/journal.pone.0219249.t001
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than mosquito lifespan, in agreement with the immediate (zero time lag) response of mini-

mum temperature, which becomes more sensitive around 17˚C. This concurs with recent esti-

mates [9] for P. falciparum, which is better studied than P. vivax, but has a similar dependence

on temperature [54]. On the other hand, increasing temperatures will reduce EIP and increase

the rate of transmission, leading to higher numbers of cases 10 to 50 days later, which is com-

patible with the lag of 5 weeks found for maximum temperature.

At larger time lags, we found that minimum and maximum humidities, with lag of 13

weeks, and minimum temperature, with lag of 22 weeks, were causally connected to number

of malaria cases. The effects were positive for minimum humidity and negative for maximum

humidity, indicating that intermediate values of humidity lead to a higher number of malaria

cases. The lagged effect of minimum temperature was positive and especially strong for low

temperatures, below 15˚ C. In other words, at these temperatures but 22 weeks before reported

cases, an increase in minimum temperature has a strong positive effect on the number of

cases. These long time lags could influence the dynamics of mosquito population, which are a

key component of the malaria transmission. Data obtained from laboratory experiments with

controlled temperatures and humidities show that low humidities are always detrimental to

adult mosquito survival [55]. On the other hand, these same data show survival was maximal

at 100% humidity for temperatures up to 20˚ C, while for temperatures above 25˚ C (inclusive)

it was slightly higher for 80% humidity than 100% (see Fig 6.1 in [55]). It was also found that

low temperature curbs population growth by halting larval reproduction [56]. Moreover, an

observational study in Aguas Blancas and El Oculto, in the same region of Argentina where

the analyzed data was collected, showed that mosquito population usually peaks around Octo-

ber, before the peak of malaria cases [19]. This means that vector abundance does not immedi-

ately incur a high number of cases, hence the actual factor in the transmission dynamics is not

a large mosquito population size per se, but the maintenance of population, and possibly para-

site density, at certain levels—thereby, during the period favorable to the malaria parasite there

will be a mosquito and human population suitable to maintain the transmission cycle. Accord-

ingly, the time lag between climatic factors affecting malaria parasite, mosquito population

dynamics and number of cases can indeed be very long.

Along this line, the mentioned studies [19] show that Anopheles mosquito population drops

almost to zero during winter, except in the last year of the study, when mosquito population

remained low. Therefore, it is expected that transmission goes down abruptly in the winter sea-

son. This fact, together with the long extrinsic incubation period during winter, makes trans-

mission almost halt from June to August. On the other hand, some of the cases reported

during this period might be relapses. Since these are not well documented in Argentina, we

performed an exploratory autocorrelation assessment, using the same methods as [14],

detailed in the S1 Appendix. It provides some evidence that relapse cases are widely distributed

between 4 to 10 months for the time series we analyzed (S1 Fig). This means that relapse cases

should not affect the interpretation of the time lags above.

The importance of weather and climate in malaria outbreaks at the edge of its geographical

distribution has been supported by the good fit and the predictive power of epidemiological

models that incorporate climate variables, e.g. [3, 4, 57]. This statistical modeling approach

gauges the relevance of a candidate causal variable by the likelihood of the models that include

some effect of the variable [58, 59]. Therefore, the criterion to infer a causal link must assume

a function to describe the cause-and-effect relationship. On the other hand, CCM does not

rely on an explicit model, but on reconstructions of the attractor as data-driven descriptions of

the dynamics from which the observed time series come. In this approach causality implies

that the affected variable’s attractor can be mapped onto the causal variable’s attractor. This

cross-mapping does not depend of the specific way one variable affects another, and is not
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affected by changes over time of the interaction between variables, which commonly occur in

non-linear dynamics.

In other words, CCM spots causal links even if the effects of the causal variables are contin-

gent on other (possibly unknown) variables through unknown functions. Statistical models

can also take into account such contingencies by making them explicit in interaction terms of

linear models or with nonlinear functions. Nevertheless, even a modest set of candidate causal

variables ensues a huge number of alternative combinations of variables, lags and functions to

be evaluated. Sorting out causal links from so many alternatives can turn into a “data-dredging

expedition”, and can also end up with over-parametrized models or with an uninformative set

of alternative models [58]. For the sake of elucidating causes of a phenomenon—as was our

goal—CCM avoids these pitfalls because it is model-free. Therefore, besides its value in provid-

ing an alternative criterion to detect causal links, CCM can also be used to select variables to

be included in predictive statistical or dynamical models, as well as to choose the best functions

that describe causal links in these models.

In summary, we have applied CCM to detect and characterize causal links between environ-

mental factors and number of malaria cases using epidemiological and climatic data. The use

of observational data (time series of recorded cases and climate variables) brings together the

dynamics of both vector and parasite transmission cycles, yielding a more comprehensive pic-

ture of the epidemiology of malaria, which is difficult to infer from laboratory studies alone. In

this context, the study of malaria cases in the southernmost region of malaria incidence in the

Americas allowed us to infer the climatic factors, and thereby the processes, that prevent the

re-emergence of the disease beyond the present region.

Additionally, our analyses highlighted some less appreciated consequences of climate

warming and increasing climate fluctuations that future models can take into account. We

have shown that increased maximum temperature not only increases the number of cases of

malaria, but also that this temperature effect accelerates as temperature rises. This non-linear

effect makes warmer areas prone to more severe increases in disease spread with increasing

temperatures, such as the tropical zones where malaria is or has been endemic. Moreover, the

spread of disease would be facilitated by any climatic change that increases the probability of

weeks with minimum temperature above its average (16˚C in Tartagal). Also, anomalous wet

weeks during the dry season or dry weeks in the rainy season cause an increase in the number

of cases in the following weeks. Therefore, an increase of extreme weather events also enhances

the risks of malaria spreading and re-emergence beyond the current geographical distribution.

According to climate model predictions [8], Northwestern Argentina is among the places that

will suffer the highest increase of temperature by the end of the century. The causal links pro-

posed in this paper can contribute to modeling future scenarios of malaria and other vector-

borne diseases re-emergence in this hot spot of climate change.

Supporting information

S1 Appendix. In this appendix we include a brief discussion about P. vivax relapses.

(PDF)

S1 Fig. Malaria cases auto-correlation. Averaged auto-correlation of P. vivax malaria cases

(solid line) and associated error (gray) for each of the transmission months (November-April)

with malaria cases in the subsequent 12 months. It slightly increases between 4 to 10 months

from the primary outbreak, associated with relapses period. The average was done over all

years.

(EPS)
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