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Abstract

Circadian clocks, present in almost all cells of the body, are entrained to rhythmic changes

in the environment (e.g. light/dark cycles). Genes responsible for this timekeeping are

named core-clock genes, which through transcriptional feedback interactions mediated by

transcription factor binding to Ebox/RRE/Dbox elements can generate oscillatory activity of

their expression. By regulating the transcription of other clock-controlled genes (CCGs) cir-

cadian information is transmitted to tissue and organ levels. Recent studies have indicated

that there is a considerable variability of clock-controlled gene expression between tissues

both with respect to the circadian genes that are regulated and to their phase lags. In this

work, a mathematical model was adapted to explore the dynamics of core-clock and clock-

controlled genes measured in four tissues of the rat namely liver, muscle, adipose, and lung.

The model efficiently described the synchronous rhythmicity of core-clock genes and further

predicted that their phases are mainly regulated by Per2 and Cry1 transcriptional delays

and Rev-Erba and Cry1 degradation rates. Similarly, after mining databases for potential

Ebox/RRE/Dbox elements in the promoter region of clock-controlled genes, the phase vari-

abilities of the same genes between different tissues were described. The analysis suggests

that inter-tissue circadian variability of the same clock-controlled genes is an inherent com-

ponent of homeostatic function and may arise due to different transcription factor activities

on Ebox/RRE/Dbox elements.

Introduction

To adapt to daily environmental changes and optimize energy utilization, organisms have

evolved to maintain circadian rhythmicity in numerous biological processes such as sleep/

wake cycles, rest/activity rhythms, and fasting/feedings cycles [1]. The mammalian circadian

timing system retains a hierarchical organization where at the top of the hierarchy are pace-

makers that are entrained by environmental cues such as light/dark cycles and subsequently

orchestrate molecular clocks in most peripheral cell types through hormonal, neuronal or

indirect cues [2]. The robust functioning of this circadian system as well as its efficient
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synchronization with the environmental rhythms is critical for the organism’s well-being. Its

disruption has been linked with depression [3], obesity [4], diabetes [5], and cancer [6–10].

The molecular basis for generation of a circadian rhythm includes a group of genes called

core-clock genes that, through transcriptional feedback interactions, can maintain rhythmic

activity of their mRNA and protein levels [11]. In particular, CLOCK and BMAL proteins after

heterodimerizing and translocating to the nucleus, regulate transcription of target genes con-

taining Ebox sequences in their regulatory element including Period (Per1, Per2, Per3) and

Cryptochrome (Cry1 and Cry2). The PER and CRY proteins eventually translocate into the

nucleus as a heterocomplex and inhibit their own transcription by preventing CLOCK:BMAL

binding to Ebox elements. In the positive feedback loop, the Ebox-driven protein REV-ERBα
inhibits transcription of Bmal1 via ROR-elements (RREs) while DBP induces expression of

genes by binding to Dbox elements in their regulatory region. Overall, this group of intercon-

nected feedback loops shape a robust cellular oscillator that regulates these core-clock genes to

express rhythmic activity [12–15]. One of the main current assumptions is that the phases of

this small group of core-clock genes are entrained to environmental cycles through systemic

signals such as circadian rhythmicity of cortisol and ultimately transmit this information at the

tissue level through regulation of clock-controlled genes phases mainly by Ebox/RRE/and

Dbox mediated transcription [16].

Numerous studies have found that circadian regulation is highly tissue specific [17–19].

Since circadian gene expression in tissues is affected by multiple systemic and tissue-specific

signals, this tissue specificity can result from various factors. For instance, tissue entrainment

by circadian changes of hormones such as melatonin and cortisol, rhythmic autonomic con-

trol, and indirect cues such as body temperature or feeding/fasting cycles may differentially

regulate the expression of different genes [20–22]. Overall, by employing tissue-specific tran-

scription factors, systemic signals can differentially influence gene expression in different body

tissues [11]. Inter-tissue circadian variablity can be manifested in two ways. Either the genes

maintaining circadian rhythmicity are significantly different in various tissues, or there are

genes that are commonly oscillating in different tissues but retain different phases and ampli-

tudes. This variability appears to be an essential characteristic of homeostasis and well-being

[23]. Interestingly, recent reports have raised the hypothesis that circadian rhythmicity in each

tissue is optimized in anticipation of the needs of the forthcoming light or dark phase [24].

Consequently, elucidating the mechanism that gives rise to the observed variabilities is of

importance both to understand the underlying physiology and also indicates optimal ways of

intervention and treatment.

Several mathematical models have been used to describe the network of core-clock and

clock-controlled genes, shedding light on specific characteristics of the circadian network [12,

20, 25–29]. Recently, the interrelated system of negative and positive feedback loops among

core-clock genes was described by a system of delay differential equations (DDEs) merging

poorly characterized steps such as complex formation and localization into explicit delays [13].

Importantly, related efforts have considered regulation of clock-controlled genes by core-clock

proteins binding to Ebox/RRE/and Dbox elements in the promoter region of target genes [14].

These modeling efforts provide a valuable mathematical test-bed allowing for further investi-

gation of whether Ebox/RRE/Dbox interactions can explain inter-tissue variability of circadian

genes, as well as the relative differences of these interactions in different tissues.

In this work, the mechanistic underpinnings resulting in the inter-tissue circadian variabil-

ity observed in our studies involving Affymetrix gene array data from liver, muscle, adipose,

and lung of Wistar rats was explored [19, 30–33]. In particular, by utilizing the model of [14]

we were able to describe the synchronous rhythms of core-clock genes in the four rat tissues.

Local sensitivity analysis of the core-clock gene network further showed that Per2 and Cry1
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transcription delays together with Cry1and Rev-Erba degradation rates most strongly impact

the phases of all genes involved in the network. After incorporating online database knowledge

regarding the existence of Ebox/RRE/Dbox elements in the promoter regions of clock-con-

trolled genes, the model well described the experimentally observed inter-tissue phase variabil-

ities suggesting that these result from different post-translational regulations affecting Ebox/

RRE/Dbox mediated transcription.

Materials and methods

Mathematical model

Core-clock genes. The model of core-clock genes describes the expression of 5 main

genes namely Bmal1, Rev-Erba, Per2, Cry1 and Dbp (Eqs 1–5). Each gene expression is modu-

lated by transcription factors that bind to a specific regulatory element such as Ebox, RRE and

Dbox. In particular, BMAL1 protein after heterodimerizing with CLOCK and translocating to

the nucleus, induces the expression of core-clock genes retaining an Ebox element in their pro-

moter region such as Rev-Erba (Eq 2), Per2 (Eq 3), Cry1 (Eq 4), and Dbp (Eq 5). PER and CRY

proteins further repress Ebox mediated transcription not only of their own genes (Eqs 3 and 4)

but also of Rev-Erba (Eq 2) and Dbp (Eq 5). Regarding Ebox-mediated transcription, recent

efforts have indicated that both BMAL1-mediated activation as well as the two distinct inhibi-

tion mechanisms by PER2 and CRY1 are important for forward regulation [34, 35]. Next,

REV-ERBα proteins repress the expression of genes that retain ROR/REV-ERB binding ele-

ments (RRE) in their promoter region such as Bmal1 (Eq 1) and Cry1 (Eq 4). Finally, DBP

binds to Dbox elements, affecting expression of Rev-Erba (Eq 2), Per2 (Eq 3), and Cry1 (Eq 4).

Entrainment by light/dark cycles is not explicitly taken into consideration in the model as it is

implicitly incorporated in the fitted model parameters.
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dt
¼
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The coefficients and rate constants describing the system are listed in Table 1. In Eqs 1–5,

the mathematical form representing the induction or inhibition by a certain transcription fac-

tor is based on statistical mechanics and denotes the probability that RNA polymerase will

bind to the promoter of interest in presence of an activator or repressor respectively [36]. Fur-

thermore, the exponents in each induction or inhibition term represent the number of func-

tional Ebox, RRE, or DBP elements in the regulatory region of each gene.

In order to account for intermediate steps between a certain gene expression and its for-

ward regulatory action in the promoter of a target gene (e.g. complex formation, nuclear locali-

zation), the equations were solved by considering constant delays based on literature values.

As such, each gene "i" influences other gene transcriptions after a certain time delay τi that rep-

resents the translation, translocation into the nucleus, complex formation, and DNA binding

of the gene. In accordance with [14], an underlying assumption is that these delays can be rep-

resented by literature values for the times between the gene "i" mRNA peak and the peak of its

protein expression.

Clock-controlled genes (CCGs). Clock-controlled genes are regulated by core-clock tran-

scription factors binding to Ebox, RRE, and Dbox elements in their promoter region. The

mathematical formulation follows the same framework as the core-clock genes and its general

form is:
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dt

¼
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Depending on the gene of interest and the number of Ebox, RRE, or Dbox elements in its

promoter region, the respective exponents of Eq 6 are fixed to this value. If there are no Ebox,

RRE, or Dbox elements the exponent is set to zero with the term equaling one. The investiga-

tion of each gene promoter region for potential Ebox, RRE, or Dbox elements is described in

the section “In-silico promoter analysis”. All simulations were performed using Matlab R2016b

dde23 solver for delay differential equations with constant delays. A schematic framework of

the model is shown in Fig 1.

In order to evaluate the overall transcriptional regulation of a certain CCG via Ebox, RRE,

and Dbox regulatory elements at a certain tissue Ti, the following variables within one cycle

were calculated:

BMAL1RegFac;Ti ¼
1þ b �
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Table 1. Parameter values used for the simulation of the different rat tissue core-clock gene array data (Eqs 1–5). Transcriptional delays (τi) and degradation rates

(di) were varied using literature-based values in order to simulate the observed data. Other parameters were set constant to their original values [14]. The All-Tissues

parameters were calculated when gene array data from all tissues (liver, muscle, adipose, lung) were used in parameter estimation.

Liver Muscle Adipose Lung All-tissues Units Description

τBmal1 4.89 [2.74,

7.05]

4.03 [3.64,

4.42]

7.41 [5.07,

9.75]

7.63 [7.61,

7.65]

6.28 [4.82,

7.75]

hr Transcriptional delay of Bmal1

τRev-

Erba

0.66 [0.32,

1.01]

1.79 [1.57,

2]

0.55 [0.53,

0.57]

0.51 [0.51,

0.51]

0.56 [0.47,

0.64]

hr Transcriptional delay of Rev-Erba

τPer2 4.00 [3.08,

4.92]

3.89 [3.68,

4.11]

3.83 [2.91,

4.75]

3.98 [3.98,

3.98]

3.95 [3.35,

4.56]

hr Transcriptional delay of Per2

τCry1 4.00 [3.64,

4.36]

3.08 [2.76,

3.41]

3.48 [2.92,

4.03]

3.16 [3.11,

3.2]

3.84 [3.46,

4.22]

hr Transcriptional delay of Cry1

τDbp 3.00 [1.94,

4.06]

2.35 [2.16,

2.53]

2.20 [0.7,

3.69]

2.46 [2.44,

2.47]

3.00 [2.28,

3.72]

hr Transcriptional delay of Dbp

dBmal1 0.58 [0.21,

0.94]

0.37 [0.31,

0.43]

0.35 [0.26,

0.44]

0.37 [0.35,

0.39]

0.39 [0.3,

0.49]

hr-1 Degradation rate of Bmal1

dRev-

Erba

0.61 [0.32,

0.9]

0.69 [0.67,

0.7]

0.62 [0.39,

0.85]

0.55 [0.54,

0.56]

0.58 [0.46,

0.7]

hr-1 Degradation rate of Rev-Erba

dPer2 0.24 [0.19,

0.3]

0.35 [0.33,

0.38]

0.32 [0.28,

0.36]

0.29 [0.29,

0.3]

0.27 [0.24,

0.3]

hr-1 Degradation rate of Per2

dCry1 0.18 [0.12,

0.24]

0.21 [0.18,

0.23]

0.19 [0.14,

0.25]

0.20 [0.2,

0.2]

0.22 [0.17,

0.27]

hr-1 Degradation rate of Cry1

dDbp 0.63 [0.454,

0.81]

0.49 [0.39,

0.59]

0.38 [0.32,

0.44]

0.48 [0.47,

0.49]

0.42 [0.38,

0.46]

hr-1 Degradation rate of Dbp

ar1 4.05 Concentration Dissociation constant of REV-ERBa and its operator sequence on

Bmal1 promoter

ar4 1.1 Concentration Dissociation constant of REV-ERBa and its operator sequence on

Cry1 promoter

cr2 1.83 Concentration Dissociation constant of PER and its operator sequence on Rev-

Erba promoter

cr3 33.5 Concentration Dissociation constant of PER and its operator sequence on Per2

promoter

cr4 6.63 Concentration Dissociation constant of PER and its operator sequence on Cry1

promoter

cr5 0.99 Concentration Dissociation constant of PER and its operator sequence on Dbp

promoter

gr2 80.2 Concentration Dissociation constant of CRY and its operator sequence on Rev-

Erba promoter

gr3 0.37 Concentration Dissociation constant of CRY and its operator sequence on Per2

promoter

gr4 0.51 Concentration Dissociation constant of CRY and its operator sequence on Cry1

promoter

gr5 1.02 Concentration Dissociation constant of CRY and its operator sequence on Dbp

promoter

b2 3.26 Fold change of Rev-Erba transcription by binding of BMAL1 to

Ebox

ba2 0.51 Concentration Dissociation constant of BMAL and its operator sequence on Rev-

Erba promoter

b3 3.69 Fold change of Per2 transcription by binding of BMAL1 to Ebox

ba3 14.78 Concentration Dissociation constant of BMAL and its operator sequence on Per2

promoter

b4 1.35 Fold change of Cry1 transcription by binding of BMAL1 to Ebox

ba4 1.06 Concentration Dissociation constant of BMAL and its operator sequence on Cry1

promoter

b5 12.87 Fold change of Dbp transcription by binding of BMAL1 to Ebox

(Continued)
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CRY1RegFac;Ti ¼
1

1þ
Cry1t� tCry1

gr

0

@

1

A

n1

ð9Þ

REVERBARegFac;Ti ¼
1

1þ
Rev� Erbat� tRev� Erba

ar

 !n2

ð10Þ

Table 1. (Continued)

Liver Muscle Adipose Lung All-tissues Units Description

ba5 0.01 Concentration Dissociation constant of BMAL and its operator sequence on Dbp

promoter

fa2 0.19 Concentration Dissociation constant of DBP and its operator sequence on Rev-

Erba promoter

f2 1.23 Fold change of Rev-Erba transcription by binding of DBP to Dbox

fa3 0.58 Concentration Effective equilibrium dissociation constant of DBP and its

operator sequence on Per2 promoter

f3 11.69 Fold change of Per2 transcription by binding of DBP to Dbox

fa4 1.61 Concentration Dissociation constant of DBP and its operator sequence on Cry1

promoter

f4 32.2 Fold change of Cry1 transcription by binding of DBP to Dbox

Values in square brackets indicate 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0197534.t001

Fig 1. Schematic of the model. After heterodimerizing and translocating to the nucleus, CLOCK/BMAL1 induces the expression of

target genes retaining an Ebox at their promoter (e.g. Rev-Erba, Per2, Cry1, Dbp). The PER/CRY heterocomplexes further inhibit

this CLOCK/BMAL1 driven transcription. The REV-ERBa and DBP conclude the core-clock gene network by inhibiting or

inducing genes that retain either an RRE or a DBP complex in their promoter regions. Clock-controlled genes (CCGs) are further

regulated by core-clock transcription factors through binding to the respective Ebox, RRE, or Dbox elements at the promoter of the

target gene.

https://doi.org/10.1371/journal.pone.0197534.g001
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DBPRegFac;Ti ¼
1þ f �

Dbpt� tDbp
fa

1þ
Dbpt� tDbp

fa

0

@

1

A

n3

ð11Þ

where BMAL1,PER2,CRY1,REVERBA,DBPRegFac,Ti are variables (Regulation Factors) intro-

duced to quantify the extent of transcription regulation via BMAL1, PER2, CRY1, REVERBA

elements at a certain tissue Ti. To evaluate the regulation factors that determine the expression

of a certain clock-controlled gene, the coefficient of variation (CV) of regulation factors (Eqs

7–11) was then calculated. Lastly, in order to evaluate whether there is a certain correlation

between the phase lag of a certain gene in two tissues and BMAL1, PER2, CRY1, REVERBA,

and DBP regulation factor variation in its promoter, the % change of the CV of regulation fac-

tors were calculated:

DCVðBMAL1RegFac;Ti� Tj
Þ %

¼
maxðCVðBMAL1RegFac;Ti� TjÞÞ � minðCVðBMAL1RegFac;Ti� TjÞ

maxðCVðBMAL1RegFac;Ti� TjÞÞ
� 100 ð12Þ

DCVðPER2RegFac;Ti� Tj
Þ % ¼

maxðCVðPER2RegFac;Ti� TjÞÞ � minðCVðPER2RegFac;Ti� TjÞÞ

maxðCVðPER2RegFac;Ti� TjÞÞ
� 100 ð13Þ

DCVðCRY1RegFac;Ti� Tj
Þ % ¼

maxðCVðCRY1RegFac;Ti� TjÞÞ � minðCVðCRY1RegFac;Ti� TjÞÞ

maxðCVðCRY1RegFac;Ti� TjÞÞ
� 100 ð14Þ

DCVðREVERBARegFac;Ti� Tj
Þ %

¼
maxðCVðREVERBARegFac;Ti� TjÞÞ � minðCVðREVERBARegFac;Ti� TjÞÞ

maxðCVðREVERBARegFac;Ti� TjÞÞ
� 100 ð15Þ

DCVðDBPRegFac;Ti� Tj
Þ % ¼

maxðCVðDBPRegFac;Ti� TjÞÞ � minðCVðDBPRegFac;Ti� TjÞÞ

maxðCVðDBPRegFac;Ti� TjÞÞ
� 100 ð16Þ

where max (CV(BMAL1, PER2, CRY1, REVERBA,DBP RegFac, Ti-Tj)) is the maximum coeffi-

cient of variation of BMAL1, PER2, CRY1, REVERBA, DBP regulation factor (Eqs 7–11)

among tissues Ti, Tj and min (CV(BMAL1, PER2, CRY1, DBPRegFac, Ti-Tj)) is the minimum.

These variables were introduced in order to investigate whether the different oscillatory char-

acteristics of a certain CCGs in two tissues (e.g. different phase of a certain gene in two tissues),

can be traced back to the different transcription regulation via Ebox, RRE, or Dbox elements.

Parameter estimation and calculation of confidence intervals

To explain core-clock genes expression in different rat tissues, transcriptional delays (τi) and

degradation rates (di) (Eqs 1–5) were optimized based on the available microarray data.

Parameter optimization was performed in Matlab R2016b1
, using non-linear least square

solver “lsqnonlin” and setting the upper and lower bounds for each parameter equal to the

ranges indicated by experiments of mRNA decay [37–39] for degradation rates, and protein

measurements [40–43] for transcriptional delays. For 95% confidence interval calculations,

Matlab R2016b1 function “nlparci” was employed that utilizes the best estimates, residuals,
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and the Jacobian matrix of “lsqnonlin” least squares, in order to estimate the Wald (or normal)

confidence intervals. The 95% confidence interval of a parameter p is given by:

p̂ � tinvð0:975; df Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðvÞ

p
ð17Þ

where p̂ is the optimal parameter value resulting from least squares, t(0.975,df) the student’s t

inverse cumulative distribution function for 95% probability, df degrees of freedom (number

of data–number of parameters), and diag(v) is the diagonal of the coefficient variance matrix

calculated as:

v ¼ ðJTJÞ� 1
� s2 ð18Þ

where J is the Jacobian matrix resulting from least squares, exponent T represents the trans-

pose matrix, and σ2 the variance of the residuals. The variance of the residual σ2 is calculated

as:

s2 ¼
normðrÞ

df
ð19Þ

where norm() the Euclidean norm, and r the residuals. The model parameters are listed in

Table 1. For transcriptional delays and degradation rates, five values are shown that represent

the values maintained for fitting the data from four different tissues as well as fitting all-tissues

data together. The remaining parameters utilized values reported previously [14].

In-silico promoter analysis

Binding of transcription factors to transcription factor binding sites (TFBSs) is key to

transcriptional regulation [44, 45]. In this work, an in-silico search for Ebox, RRE, and

Dbox elements was performed for regions 10 kb upstream and 5 kb downstream of the tran-

scription start site (TSS) of the studied genes similar to the work of [46]. The transcription

factors used for the identification of binding regions were BMAL1 (ARNTL) for Ebox, ROR

for RRE, and DBP for Dbox. The corresponding position weight matrices (PWMs) for each

transcription factor were mined from JASPAR2014 [47] and JASPAR2016 [48] databases and

are shown in S2–S4 Figs. Regarding the genes of interest, their promoter sequence and gene

annotations were adopted from UCSC Genome Browser [49, 50], and rat version (rn5) was

used. In order to evaluate positive hits, an 85% profile score threshold was used. Data mining

and forward computations of promoter analysis were performed in R using the Bioconductor

package environment [51]. Output of our computations are shown in detail in Tables A-F in

S1 Appendix.

Sensitivity analysis

To evaluate the sensitivity of the core-clock gene phases, a local sensitivity analysis was per-

formed. At each sensitivity analysis step, a transcriptional delay or degradation rate was varied

by 10% of its nominal value while the other parameters were kept constant. Next, the sensitiv-

ity coefficients (si,j) for the phases of the respective core-clock genes were calculated as:

si;j ¼
@�i

@pj
ð20Þ

where @ϕi is the phase difference of core-clock gene i, resulting from simulation with typical

parameter values and simulation with 10% variation to parameter pj and @pj is the difference

between varied and nominal parameter values.
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Experimental data

The mathematical model for the core-clock and clock-controlled genes (Eqs 1–6) was validated

and tested for its prediction power based on experiments performed in our lab. Detailed

descriptions of the animal experiments are published [30–33]. Our research protocol adhered

to the “Principles of Laboratory Animal Care” (National Institutes of Health Publication 85–

23, revised 1985) and were approved by the State University of New York at Buffalo Institu-

tional Animal Care and Use Committee. In brief, our studies involved 54 normal male Wistar

rats from Harlan Laboratories (Indianapolis, IN) that were allowed to acclimatize in a constant

22˚C environment equipped with a 12:12-h light-dark cycle with free access to standard rat

chow and drinking water. Animals were sacrificed by exsanguination through the abdominal

aorta on three successive days at 0.25, 1, 2, 4, 6, 8, 10, 11, and 11.75 h after lights on for the

light period time points, and at 12.25, 13, 14, 16, 18, 20, 22, 23, and 23.75 h after lights on for

time points in the dark period. Animals sacrificed at the same time on the three successive

days were treated as triplicate measurements. Livers, gastrocnemius muscles, abdominal fat

pads, and lungs were excised and frozen in liquid nitrogen immediately after sacrifice and

stored at -80˚C until RNA preparation. The biotinylated cRNAs from the tissue samples were

hybridized to 54 individual Affymetrix GeneChips Rat Genome 230A for liver and muscle and

230A_2 for adipose and lung (Affymetrix, Santa Clara, CA). The data were submitted to Gene

Expression Omnibus (GEO) (GSE8988 for liver, GSE8989 for muscle, GSE20635 for adipose,

and GSE25612 for lung).

Affymetrix Microarray Suite 5.0 (Affymetrix) was used for initial data acquisition and anal-

ysis. The signal intensities were normalized for each chip with a distribution of all genes

around the 50th-percentile for that chip. Using GeneSpring, the value of each probe set on each

chip was normalized to the average of that probe set on all chips in that tissue set such that the

expression pattern of all probe sets oscillated approximately around 1. In order to identify

genes retaining circadian rhythmicity, the JTK_CYCLE non-parametric algorithm was

employed [52]. Only the genes that retained a false discovery rate (FDR) lower than 0.1% were

considered for mathematical analysis.

All core-clock genes of the model namely Bmal1, Rev-Erba, Per2, Cry1 and Dbp were found

to retain robust circadian oscillations in the four tissues. However, a Cry1 probe set was not

present in liver and muscle GeneChips (Affymetrix GeneChips Rat Genome 230A). For this

reason, and due to the strong similarity of Cry1 expression in adipose and lung with Zhang’s

microarray data for the same tissues (GEO database GSE54650 [24]), Cry1 expressions for

liver and muscle were adopted from Zhang et al. after further considering phase and amplitude

variabilities observed between the two experiments in liver and muscle (see S1 Fig).

Results

The first assessment was whether the expression of core-clock genes from different tissues

could be described by the proposed mathematical model (Eqs 1–5). Fig 2 shows the model

results for the core-clock genes Bmal1, Rev-Erba, Per2, Cry1 in addition to the Affymetrix data

from the different tissues. The model well characterizes the dynamics of the core-clock genes

in the different rat tissues. Overall, they present high synchronicity in the different tissues.

Bmal1 maintains maximum expression in early morning, while Rev-Erba and Dbp peak at the

transition of light/dark period. Rev-Erba expression for the case of muscle presents an earlier

peak. Per2 at all tissues peaks at the dark period followed by Cry1 that peaks similar to Bmal1
at late dark/early morning time.

Fig 3 and Table 1 show the transcriptional delay and degradation rate parameters estimated

in order to describe the core-clock gene expression in the four tissues. For most cases,
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transcriptional delays and degradation rates are similar among the different tissues as shown

by the overlapping 95% confidence intervals of the different parameters (i.e. overlapping error

bars). An exception is the transcriptional delay of Rev-Erba that for muscle retains a signifi-

cantly higher value. However, due to the overall overlapping values of the delays and degrada-

tion rates, core-clock gene data from all tissues were fitted jointly (consensus model). The

estimated delays and degradation rates of the consensus model are shown in Fig 3 as the All-

tissue ordinate and in Table 1. Apart from the transcriptional delays and degradation rates, the

remaining parameters of the model (Eqs 1–5) were set constant to the original values from

[14].

Since microarray data of core clock-genes in the different tissues present high synchronic-

ity, Fig 4 shows the responses of a consensus model in which transcriptional delays and degra-

dation rates were optimized based on data from all four tissues. The consensus model jointly

Fig 2. Model fittings (curves) of core-clock gene expression (mRNA—circles) in different rat’s tissues. Time of light/dark cycles

are denoted by white/grey shading.

https://doi.org/10.1371/journal.pone.0197534.g002

Fig 3. Transcriptional delay and degradation rate parameters estimated to describe the expression of core-clock

genes for the different tissues. Error bars represent the 95% confidence interval. The y-axis provides the parameter

values with definitions and units listed in Table 1. All-tissue depicts the parameter values resulting from fitting the data

of all tissues concurrently (consensus model).

https://doi.org/10.1371/journal.pone.0197534.g003
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describes the totality of the data very well capturing the amplitudes and the phases of core-

clock genes in all tissues.

The core-clock gene network retains a high level of interconnected negative and positive

feedback loops that result in a strongly non-linear system. In order to explore how the varia-

tion of the different delays and degradation rates affect the phases of the core-clock genes, Fig

5 shows the results of a local sensitivity analysis. A gene phase is defined as the time of peak

expression relative to 0 hr (time when lights are on) multiplied by 2π and divided by its period

(expressed in radians). Among the transcriptional delays, the most sensitivite parameters were

Per2 and Cry1 delays for regulating the phase of all core-clock genes. Regarding degradation

rates, Rev-Erba and Cry1 degradations highly affect the phase of Bmal1, Rev-Erba, Cry1 and

Dbp whereas degradation of Per2 phase is also regulated by Dbp degradation.

Based on the consensus model, the expression of clock-controlled genes that oscillate in

combinations of two tissues were explored (Adipose/Lung, Liver/Adipose, Liver/Lung, Liver/

Muscle, Muscle/Adipose, Muscle/Lung). Fig 6 shows model predictions relative to all experi-

mental data over one cycle for all the common oscillating genes between each tissue pair. The

Fig 4. Responses of the consensus model describing the overall data from four tissues. Bold lines represent the joint

model responses (sim) and thin lines the experimental data of core-clock genes in the different tissues. Light/dark

periods are denoted by white/grey shading.

https://doi.org/10.1371/journal.pone.0197534.g004

Fig 5. Local sensitivity analysis of the phases of core-clock genes upon changing transcriptional delays and degradation rates.

Different subplots represent different sensitivity outputs that are the phases of the various core-clock genes (Bmal1, Rev-Erba, Per2,

Cry1, Dbp). Bars indicate the sensitivity indices resulting by varying different parameters (transcriptional delays, degradation rates).

The y-axis represents the absolute values of the normalized sensitivity coefficients (Eq 20).

https://doi.org/10.1371/journal.pone.0197534.g005
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available experimental data are well characterized as can be seen by the close proximity of sim-

ulations/data to the identity line. Detailed simulation profiles in addition to the microarray

data are shown in S5–S10 Figs. For the case of common genes in adipose and lung, the

dynamic of 1368247_at (S5 Fig) was not adequately described by the model resulting in a

slightly larger deviation of prediction versus the data plot of Fig 6. In order to fit the experi-

mental data, the dissociation constants (ba, cr, gr, ar, fa), fold transcription changes (b, f) and

degradation rates (d) were estimated between the tissues.

In order to evaluate the underlying mechanism through which core-clock genes regulate

clock-controlled genes phases, the clock-controlled genes with the largest phase lag among the

different combination of tissues together with the Ebox/RRE/Dbox regulation factor dynamics

are shown in Fig 7. The gene that shows the highest phase lag among liver and muscle was

pyruvate dehydrogenase lipoamide kinase isozyme 4 (Pdk4). Regulation of Pdk4 in liver is

mainly regulated by CRY1- and REVERBA-mediated inhibition, whereas muscle Pdk4 is

mainly regulated by BMAL1- and DBP-mediated induction. Between liver and muscle the

majority of clock-controlled genes oscillated in relative synchrony. Stress induced phospho-

protein 1 (Sip1) rhythmicity is mainly regulated by BMAL1 induction both in liver and muscle.

For liver and lung, oxidative stress induced growth inhibitor 1 (Osgin1) had the largest phase

lags; for liver its phase is mainly regulated by BMAL1 induction and lung by CRY1 inhibition.

The FK506 binding protein 5 both in adipose and muscle is mainly regulated by CRY1 inhibi-

tion. Aquaporin 1 (Aqp1) phase is regulated mainly by CRY1 inhibition in muscle and

REVERBA inhibition in lung. Lastly, Parvin a (Parva) phase in adipose is regulated by

REVERBA inhibition whereas in lung by CRY1 inhibition.

Lastly, in order to investigate whether there is a trend between phase difference and regula-

tion factor activity, the relative differences of BMAL1, PER2, CRY1, REVERBA, DBP mediated

transcription as quantified by Eqs 12–16 were compared between the same genes in two differ-

ent tissues. Fig 8 shows the phase-difference of the same gene in two tissues versus the %

change observed in BMAL1, PER2, CRY1, REVERBA, DBP regulation factors None of the

investigated variations are correlated with the phase differences observed in gene oscillations.

Among the five response elements, the one that shows the most consistent changes with

respect to phase-lag appears to be REVERBA.

Fig 6. Model predictions relative to experimental data for clock-controlled genes oscillating jointly in pairs of rat tissues.

The solid line depicts identity (y = x).

https://doi.org/10.1371/journal.pone.0197534.g006
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Discussion

From genes to tissues, homeostasis reflects a temporal organization that allows for appropriate

timing of physiological processes. Circadian rhythms represent an important indication of

homeostasis and their dysfunction is often linked with multiple physiological disorders and

ageing [53, 54]. Interestingly, recent experiments [19, 24] indicated that circadian variability,

as exemplified by phase lags of individual genes between tissues, is an integral part of

Fig 7. Ebox/RRE/Dbox regulation factor (RegFac) dynamics for the genes maintaining the highest phase difference among two tissues. Upper panel

shows model simulations together with the experimental data for the genes that maintain the largest phase differences. For each subplot of the upper panel,

the two lower panels indicate the regulation factor dynamics (BMAL1, PER2, CRY1, REVERBA, DBP) for the tissues shown in upper panel and indicated in

the title. Regulation factors dynamics are normalized based on the mean values in order to better represent the factor that most clearly influences the clock-

controlled gene expression.

https://doi.org/10.1371/journal.pone.0197534.g007

Fig 8. Relation between phase difference of the same gene in two tissues, and the variation of transcription

regulation via BMAL1, PER2, CRY1, REVERBA, DBP mediated transcription (Eqs 12–16).

https://doi.org/10.1371/journal.pone.0197534.g008
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homeostasis. Our studies employed a mathematical model of core-clock and clock-controlled

genes in order to investigate the potential mechanistic underpinnings that produce the

observed circadian variability.

Two steps were followed. Initially, a model for core-clock genes (Eqs 1–5) was used to

investigate the dynamics present in the liver, muscle, adipose and lung core-clock network.

The model (Eqs 1–5) successfully fitted the core-clock gene expression data (Fig 2) efficiently

capturing the phases, amplitudes, and periods. In order to describe inter-tissue variability,

transcriptional delays (τi) and degradation rates (di) were optimized based on literature value

boundaries [39–43]. The remaining parameters of Eqs 1–5 were set constant using values

reported in [14]. The reason that only delays and degradation rates were varied was that there

is prior knowledge regarding the physiological boundaries of these parameters. The rest of the

parameters were found by global optimization techniques, as there is no evidence for their

experimental values.

Based on protein measurements [40–43], transcriptional delays of core-clock genes could

range up to 8 hours (e.g. Bmal1 delay τBmal1 could range from 0 hours [40] to 8 hours [41]).

Along the same lines, degradation rates have a considerable range of variation (e.g. degrada-

tion rate of Per2 mRNA is among 0.24 and 0.8 h-1[37, 39]). In order to investigate how varia-

tions of transcriptional delays or degradation rates around their optimal value could impact

the oscillatory characteristics of the core-clock genes and most importantly their phases, a

local sensitivity analysis was enacted. Transcriptional delays and degradation rates were varied

one at a time by 10% while the remaining parameters were kept constant. The phase changes

were then evaluated and the absolute value of the sensitivity coefficients were plotted in Fig 5.

Among the various transcriptional delays, sensitivity analysis indicated that Per and Cry delays

most significantly affect the phase of all core-clock genes expression. PER and CRY proteins

together with BMAL1 regulate transcription through Ebox elements. Given that Ebox is exten-

sively present at the promoter region of almost all core-clock genes (Rev-Erba, Per2, Cry1, and

Dbp), Per and Cry transcriptional delays high sensitivities are rather expected. Furthermore,

sensitivity analysis indicates high sensitivities on certain degradation rates. In particular, Rev-
Erba and Cry1 degradation rates largely affect the phases of Bmal1, Rev-Erba, Cry1, and Dbp
whereas degradation rate of Dbp affects phase of Per2. Overall, due to the high non-linearities

of the core-clock gene network, parameter variations mediate their effects in an indirect way.

Recent experiments in mice and rats have shown that the genes maintaining circadian

activity are significantly different among various tissues with a very small overlap [17–19, 24].

This suggests a highly tissue-specific clock that functions in order to optimize tissue-specific

processes. Interestingly, in these studies, many of the genes that appear to oscillate in common

are members of the core-clock gene network and present a relatively high synchronicity. Our

analysis further confirms these observations, since core-clock genes in different tissues could

be largely explained without statistically different transcriptional delays and degradation rates

(Fig 3, overlapping 95% confidence intervals). Since our experiments also indicate a significant

synchronicity of core-clock genes among tissues, a consensus fitting was applied in order to

explain the totality of the core-clock gene data in the four tissues. The consensus model well

characterized the core-clock gene data from all tissues (Fig 4). For each core-clock gene, the

estimated transcriptional delays and degradation rates are similar to the averages when each

tissue was fitted alone (Fig 3). In order to investigate the dynamics of clock-controlled genes

(Eq 6), the transcriptional delays and degradation rates of the consensus model were used

further.

Our measurements in rats showed that the majority of genes oscillating in combination of

two or more tissues retain a relatively high synchronicity as measured by the phase difference

of their peak mRNA expression [19]. Alongside, there are a considerable number of genes that

Modeling circadian variability of core-clock and clock-controlled genes in four tissues of the rat

PLOS ONE | https://doi.org/10.1371/journal.pone.0197534 June 12, 2018 14 / 20

https://doi.org/10.1371/journal.pone.0197534


maintain up to a 12-hour phase difference between their expressions from tissue to tissue. For

example, neural epidermal growth factor-like 1 (Nell1) that plays a role in cell differentiation,

peaks in lung at the light/dark transition whereas in adipose it peaks at the middle of the dark

period 9 hours preceding lung’s peak. Similar to our work, Zhang et al [24] found that among

12 mice tissues examined, 1400 genes were phase-shifted with respect to themselves by at least

6 hours between two organs, with 131 genes completely antiphased. Although this circadian

variability appears to be an integral part of homeostasis, currently there is no evidence of what

mechanism can give rise to these dynamics. We assessed whether Ebox/RRE/Dbox mediated

transcription of clock-controlled genes could result in the physiological variabilities observed

in our prior experiments. The focus was only on those genes commonly oscillating in combi-

nation of two tissues. The underlying assumption is that the expression of the same gene in

two tissues is regulated by the same systemic signals. Our analysis sheds light whether Ebox/

RRE/Dbox mediated transcription can account for the observed inter-tissue circadian variabil-

ity, assuming all other systemic signals are the same between tissues.

A critical step in investigating inter-tissue variabilities of clock-controlled gene expression

is identifying the number of Ebox/RRE/Dbox elements in the promoter regions of the clock-

controlled genes (Eq 6). Although there are many in vitro and in vivo experimental approaches

to identify transcription factor binding sites (reviewed in [55]), similar to [46] such binding

sites were recognized by scanning the position weight matrix (PWM) of the transcription fac-

tor (BMAL1, ROR, DBP) against the DNA of the promoter region of the corresponding clock-

controlled gene (results are shown in Tables A-F in S1 Appendix as the n1,n2,n3 values). The

absolute numbers of Ebox, RRE or Dbox elements that were found, were used as the n1, n2 and

n3 exponents of Eq 6. Next, in order to describe the available experimental data, the respective

parameters (i.e. b, ba, cr, f, fa, etc.) were optimized based on the data. Fig 6 shows the overall

performance of our model in explaining clock-controlled gene expressions that oscillate in

common in various tissue pairs. The totality of clock-controlled gene expression data were

well explained. Since the number of Ebox, RRE and Dbox elements (n1, n2, n3 of Eq 6) in the

promoter region of each clock-controlled gene were fixed based on mining of public databases,

and the expression of core-clock genes (Eqs 1–5) were set constant to describe the all-tissue

data (consensus model, Fig 4), the effective description of core-clock genes expression is not

totally intuitive. This further indicates that inter-tissue variations of transcription factors disso-

ciation constants may well account for the inter-tissue variabilities of clock-controlled gene

phases. An example can be the ratio of reduced to oxidized NAD cofactors that strongly influ-

ence the CLOCK/BMAL1 binding activity and are often considered to be readouts of the cellu-

lar metabolic state [56].

By incorporating a bioinformatic approach to investigate Ebox/RRE/Dbox elements at the

promoter region of the genes of interest, current work extends the model of Korencic et al [14]

and enables its use so to investigate phase variabilities at the tissue level. In particular, using

this model and our genome data for four tissues of rats [19, 30–33], we determined whether

core-clock gene expression can efficiently account for the phases of clock-controlled genes and

phase variabilities observed among the same genes in different tissues. Fig 7 shows the expres-

sion of genes that retain the highest phase lag among the different combination of tissue pairs

along with the dynamics of the various regulation factors on their promoter region. Oxidative

stress induced growth inhibitor 1 (Osigi1) is a gene that plays a role to the differentiation and

proliferation of normal cells. In liver, Osigi1 peaks at early light period (~5 hr) whereas in lung

it peaks after 12 hr. For liver, Osigi1 phase is regulated mainly by BMAL1 induction that occurs

around 6 hours (τBmal1) and REVERBA inhibition that starts after 0.5 hour (τRev-ERba). On the

other hand, Osigi1 in lung is mainly driven by CRY1 inhibition. Similarly, aquaporin 1 (Aqp1)

that translates for a water channel protein, maintains peak expression after 12 hr in muscle,
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when in lung retains a nadir. Again, regulation factor dynamics indicate the differential con-

trol of this gene expression that for muscle is mainly regulated by CRY1 inhibition whereas for

lung by REVERBA inhibition. Overall, this analysis indicates that inter-tissue phase differences

in gene expression are accompanied by different regulation in Ebox/RRE/Dbox elements. For

the last step, we explored whether there is any specific correlation between phase lag of genes

between two tissues, and the according % change of the coefficient of variation of Ebox, RRE,

or Dbox mediated transcription. The results shown in Fig 8 do not point towards such a rela-

tionship. In particular, neither Ebox, RRE nor Dbox mediated transcription by itself can

account for the phase lags observed. Based on the nonlinearities present in the clock gene net-

work, as well as the overlap of interactions that can lead to the same phase (e.g. increase of

RRE or decrease of Ebox binding), such as a result is expected.

In summary, this model of the clock network describes the dynamics of core-clock genes in

four tissues of rats. Sensitivity analysis further indicates the major role of Per2 and Cry1 tran-

scriptional delays as well as Cry1, Rev-Erba and Dbp degradation rates. The high synchronicity

of core-clock genes in the four tissues, enabled the use of a consensus model that was expanded

to account for Ebox/RRE/Dbox regulation of clock-controlled genes. The expression of all

clock-controlled genes in the tissues tested as well as the incorporated variabilities were well

described. This further indicates that phase differences of the same gene in two tissues are an

integral part of homeostatic stability and can be sourced back to varying affinities of transcrip-

tion factors in Ebox/RRE/Dbox transcription elements.

Supporting information

S1 Fig. Cry 1 rhythms from Zhang et al. and Sukumaran et al. works. In our model for the

case of liver and muscle (lower panel), data from the work of Zhang et al. were used [24] and

further corrected based on the amplitude and phase differences found between our data [30–

33] and these of [5] for the cases of adipose and lung (upper panel).

(TIF)

S2 Fig. Position weight matrix of BMAL1.

(TIF)

S3 Fig. Position weight matrix of ROR.

(TIF)

S4 Fig. Position weight matrix of DBP.

(TIF)

S5 Fig. Simulated profiles of common probe sets oscillating in adipose and lung along with

their respective data.

(TIF)

S6 Fig. Simulated profiles of common probe sets oscillating in liver and adipose along with

their respective data.

(TIF)

S7 Fig. Simulated profiles of common probe sets oscillating in liver and lung along with

their respective data.

(TIF)

S8 Fig. Simulated profiles of common probe sets oscillating in liver and muscle along with

their respective data.

(TIF)
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S9 Fig. Simulated profiles of common probe sets oscillating in muscle and adipose along

with their respective data.

(TIF)

S10 Fig. Simulated profiles of common probe sets oscillating in muscle and lung along

with their respective data.

(TIF)

S1 Appendix. Transcription factor analysis and data fitting result tables.
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