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Abstract

Diffuse parenchymal lung diseases (DPLDs) are characterized by widespread pathological changes within the pulmonary
tissue that impair the elasticity and gas exchange properties of the lungs. Clinical-radiological diagnosis of these diseases
remains challenging and their clinical course is characterized by variable disease progression. These challenges have
hindered the introduction of robust objective biomarkers for patient-specific prediction based on specific phenotypes in
clinical practice for patients with DPLD. Therefore, strategies facilitating individualized clinical management, staging and
identification of specific phenotypes linked to clinical disease outcomes or therapeutic responses are urgently needed. A
classification schema consistently reflecting the radiological, clinical (lung function and clinical outcomes) and pathological
features of a disease represents a critical need in modern pulmonary medicine. Herein, we report a quantitative stratification
paradigm to identify subsets of DPLD patients with characteristic radiologic patterns in an unsupervised manner and
demonstrate significant correlation of these self-organized disease groups with clinically accepted surrogate endpoints. The
proposed consistent and reproducible technique could potentially transform diagnostic staging, clinical management and
prognostication of DPLD patients as well as facilitate patient selection for clinical trials beyond the ability of current
radiological tools. In addition, the sequential quantitative stratification of the type and extent of parenchymal process may
allow standardized and objective monitoring of disease, early assessment of treatment response and mortality prediction
for DPLD patients.
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Introduction

Diffuse parenchymal lung diseases (DPLDs) encompass a set of

diseases characterized by widespread abnormalities of the lung

parenchyma. Patients with DPLD represent a substantial health-

care burden due to high disease prevalence, chronic nature of such

processes and lack of curative therapy with associated morbidity

and premature mortality [1,2]. Despite advances in modern

medicine, including medical imaging, pathology and genomics,

diagnosis and treatment of DPLD remain difficult. The American

Thoracic Society / European Respiratory Society [3,4] strongly

recommends a multidisciplinary approach to diagnosis in DPLDs

based on consensus of radiologists, clinicians and pathologists.

Unfortunately, a successful classification scheme that allows

recognition of disease groups or even consensus diagnosis of

specific diseases identically across radiology, pulmonary and

pathology disciplines remains ambiguous [5].

Individualized treatment strategies based on patient-specific

disease manifestations are the ultimate goal of modern pulmonary

medicine. In reality, this lofty goal is unachievable with our

current medical knowledge. Obstacles include lack of established

diagnostic, prognostic and predictive patient-specific biomarkers.

Nevertheless, with present day technologies and innovative

strategies the practice of stratified medicine is becoming more

feasible. Patient populations can be stratified based on quantifiable

characteristics that define the disease and characterize key

physiologic, pathologic, anatomic or patient-reported factors that

impact quality of life, morbidity and mortality. The goal of

stratified medicine entails the ability to guide individualized

patient care based on recognized disease characteristics and

established prognostic features of matched group [6]. However,

the definitions of disease phenotypes and prognostic and predictive

biomarkers to guide patient management remain elusive for

DPLD [7].

High-resolution computed tomography (HRCT) is the preferred

radiologic imaging modality for evaluating lungs. In current

clinical practice, HRCT adds tremendous value in its ability to

diagnose and manage patients with DPLDs and may often obviate

or direct specific targets for surgical lung biopsies [8–14]. It can be

both diagnostic and prognostic for some pathological processes.

PLOS ONE | www.plosone.org 1 March 2014 | Volume 9 | Issue 3 | e93229

http://creativecommons.org/licenses/by/4.0/


Several CT-based automated quantitative methods (quantitative

CT - QCT) have been proposed to quantify and characterize

parenchymal abnormalities [15–19]. QCT has demonstrated

correlation of quantified parenchymal patterns with well-accepted

clinical endpoints – physiologic indices, visual radiology scores, as

well as prognostic outcomes for subsets of diseases [16,19–21].

Furthermore, correlation of quantified parenchymal abnormalities

with pathologic features has resulted in confident interpretation

and diagnosis of certain diseases (e.g., usual interstitial pneumonia)

obviating the need for surgical lung biopsy [3]. The quantitative

nature of radiological image-based biomarkers [22] enables

development of an automated and consistent image-based

methodology to achieve objective population stratification.

We stratified a population based on the hypothesis that the

radiological distribution and extent of quantified parenchymal

abnormalities, as quantified by QCT analytic tools, is character-

istic of disease severity and subtype and successfully evaluated with

the clinically accepted physiologic measurements, visual radiology

scores and survival indices.

Materials and Methods

Data
The population data for this study was obtained from Lung

Tissue Research Consortium (LTRC) database. LTRC is a NIH/

NHLBI-sponsored, multi-site initiative with repository of clinical

data, pathologic specimens, CT scans and QCT characterizations

of ILD and COPD patients enrolled in the study. Radiology

department at Mayo Clinic serves as the LTRC radiology core

and consequently, the quantitative analysis of CT scans was

performed using in-house software Computer-Aided Lung Infor-

matics for Pathology Evaluation and Rating (CALIPER) [15,16]

developed at Mayo Clinic. The CT scans, clinical data,

quantitative analysis and diagnosis information used in this study

can be requested online at http://www.ltrcpublic.com/

data_requests.htm.

(a) Population QCT. The input data for this study is the

CALIPER-based quantification of parenchymal CT patterns.

Briefly, CALIPER processes and characterizes the CT dataset by

isolating the lung parenchyma and classifying every parenchymal

voxel into one of the following characteristic CT patterns: normal

(N), reticular (R), honeycomb (HC), ground-glass (GG), mild low

attenuation areas (LAA), moderate LAA and severe LAA. The

reliability of CALIPER-based classification of parenchymal

patterns was evaluated for presence of artifacts or other image

quality deficiencies such as respiratory motion or segmentation

inaccuracies by a thoracic radiologist (BJB) as part of LTRC

protocol. The efficacy of quantitative characterization of paren-

chymal patterns by CALIPER was ascertained and reported

outside this study [15,16].

The candidates for our study were selected retrospectively based

on quality of CT scans. Scans performed at full inspiration at

supine position from Siemens or GE scanners acquired with thin

collimation width (1 mm to 2.5 mm) were our inclusion criteria for

quantitative analysis. Further, candidates with scans performed

with intravenous contrast, with significant artifacts (such as beam

hardening due to metallic hardware, respiratory motion or other

image quality errors) or reconstructed using sharp, edge enhancing

algorithms such as B70 or B80 (Siemens) or Lung (GE) were

excluded. The demographics and final diagnosis for the identified

1322 patients is outlined in Table S1.

(b) Clinical Variables. The clinical data retrieved for the

identified patients included visual semi-quantitative radiology

scores, physiologic measurements, BODE (Body mass , airflow

Obstruction, Dyspnea, Exercise capacity) index [23], GOLD

(Global initiative for chronic Obstructive Lung Disease) classifi-

cation label [24] and St. George’s Respiratory Questionnaire

(SGRQ) patient questionnaire scores [25]. The semi-quantitative

radiology scores of visual abnormalities for each subject with CT

data were coded from 0 to 4 to respectively represent 0% (none),

1% to 25% (mild), 26% to 50% (moderate), 51% to 75% (marked)

and 76% to 100% (severe) of abnormality type in each of the 12

regions: the central and peripheral zones of the left and right

upper, middle and lower lobes (lingual on the left). We combined

the regional abnormality scores to get the score for the whole lung

The physiologic measures extracted from the database included

pulmonary function test (PFT) results comprising of forced

expiratory volume in 1 second (FEV1), forced vital capacity

(FVC), diffusing lung capacity (DLCO and total lung capacity

(TLC). All the above mentioned scores, indices and labels were

used to validate the clinical relevance of the stratified groups.

Dissimilarity metric
Based on the hypothesis that the distribution of the CT patterns

(N, R, HC, GG, mild LAA, moderate LAA and severe LAA) is a

characteristic of the disease subtypes, a pairwise dissimilarity

metric was designed and pairwise comparisons between the 1322

lungs were computed. The dissimilarity (D) between lungs A and B

uses a combination of (i) dissimilarities in the global distribution of

all the seven abnormalities between cases A and B; (ii) regional

dissimilarities between A and B based on (a) an asymmetric weight

- regional volume proportion relative to total volume of case A; (b)

dissimilarities in the proportions of volumes in the corresponding

regions of A and B; and (c) dissimilarity in the proportions of

parenchymal patterns in each corresponding region in A and B.

Equation 1:
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where, abnX
G(or)Rj

i represents the percentage abnormality distri-

bution of ith (of seven) CT pattern in the whole lung (G) (or) in jth (of

six) region of the lung (Rj). volX
G(or)Rj represents the total volume of

the lung (G) (or) in jth region of the lung (Rj). X represents a

patient’s CT lung volume.

Stratification method
Based on the above mentioned dissimilarity metric, 1322 cases

are compared pairwise. The unique clusters representing similar

groups of patients are identified by clustering the 1322x1322

dissimilarity matrix in a unsupervised manner using Affinity

Propagation (AP) [26]. The salient feature of AP is that it does not

require a priori specification of the number of desired clusters,

unlike k-means and hierarchical clustering techniques where the

number of desired clusters is required. AP uses message passing to

identify exemplars and candidates representing naturally unique

clusters. This is critical to identifying the unique radiologically

similar groups of cases in the database in a truly unsupervised

manner. However, AP uses a preference parameter to promote a

set of candidates to be exemplars. To get an unbiased

stratification, we assigned equal preferences to all the candidates.

The preference was set to the median of negative squared values of

dissimilarities. Such an initialization is known to yield many small

clusters with highly similar data grouped together. We followed a

Quantitative Stratification of DPLDs
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two-pass approach to facilitate clinically meaningful clusters. The

median preference AP-based cluster groups were identified in first

pass. The clusters were further evaluated with ANalysis Of

SIMilarities (ANOSIM) [27], a statistical analysis method which

performs iterative permutations to identify the separation between

cluster groups by computing R values for every pair of clusters (R-

value is close to 1 for dissimilar clusters and 0 for similar ones).

The pairwise ANOSIM R values for the clusters from first pass

were clustered using AP to arrive at the final clusters.

Correlation of stratified groups with clinical variables
One-way analysis of variance (ANOVA) was used to assess the

discriminability of the physiologic measures across the quantitatively

stratified groups. FEV1-FVC ratio and percentage predicted values

of DLCO, TLC, FEV1 and FVC were the considered physiologic

measures. Post-ANOVA pairwise t-tests are performed. Bonferroni

correction computed as 0:05=(n � (n{1)=2)(n = number of groups)

was applied to the p-value.

The clusters were identified as fibrotic and obstructive based on

the glyphs within the individual clusters. This identification was

done to perform further disease specific analysis. For populations

within fibrotic clusters, the GAP-based one-year mortality

predictions [28] were computed statistically compared across

groups using student’s t-test. Similar test for performed for

populations in obstructive clusters based on BODE index.

GOLD classifications for patients in obstructive clusters were

retrieved from LTRC database. LTRC uses the older GOLD

classification system wherein for patients with FEV1-FVC ratio

less than 0.7; the FEV1% predicted values are used to stage the

disease 1 through 4 to respectively categorize disease into mild,

marked, severe and very severe forms. We also computed the

GOLD labels using the new GOLD classification [29]. This new

classification based on FEV1% predicted values and modified

Medical Research Council (mMRC) dyspnea score groups patients

as A, B, C and D to define patients with low risk-less symptoms,

low risk-high symptoms, high risk-less symptoms and high risk-

high symptoms, respectively.

Results

Quantitative Characterization and Representation
Figure 1 shows a representative dataset with axial, coronal and

sagittal sections of a CT lung volume where every voxel of the

parenchyma is characterized and color coded into one of the

parenchymal patterns (N, R, H, G, and mild, moderate and severe

LAA). The overall distribution is illustrated using glyph represen-

tation [15,30] and 3D rendering. Briefly, the glyph illustrates the

regional composition of classified lung volume. The origin of the

glyph was fixed at 12 o’clock starting with the left upper lobe. The

individual regions span through angles proportional to their

respective volumes. Within each region, the abnormality distribu-

tion was represented by color-coded sectors proportional to the

percentage of abnormality in the region. The concentric circles

were drawn at 20% intervals for enhanced visualization. Figure 2

Figure 1. Representative CT lung volume characterized into parenchymal patterns by Computer Aided Lung Informatics for
Pathology Evaluation and Rating (CALIPER). It illustrates colored overlay in axial (A), coronal (B) and sagittal (C) sections with glyph (D) and 3D
rendering (E). The color key for the seven patterns is also shown.
doi:10.1371/journal.pone.0093229.g001
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shows glyph representations of all the 1322 patients used in the

study. The radius of the individual glyphs is proportional to the

patient’s lung volumes. The illustration provides a visual summary

of the disease spectrum in the database. Cases of parenchymal

fibrosis and obstructive disease such as emphysema can be visually

differentiated based on the size of each glyph (proportional to lung

volumes) and composition. Opacities characteristic of fibrotic

processes such as G (yellow), R (orange) or H (red) are readily

apparent, as are low attenuation areas characteristic of hyperin-

flation or various severity of parenchymal destruction due to

emphysema or bullae (light green, light blue or dark blue).

Quantitative Stratification
The distribution and location of parenchymal abnormalities in

the lungs are central to CT-based diagnosis as they are indicative

of disease type (diagnosis) and severity [3]. The quantitative

measure of dissimilarities between pairs of patients based on such

distribution is computed using the dissimilarity metric to further

stratify similar patient cohort. The first-pass of stratification based

on unsupervised clustering, AP, yielded 46 groups of patients with

highly similar radiological distribution of the seven classified

patterns. In the second pass, 46 clusters were merged further using

AP of cluster wise ANOSIM R values resulting in the final 10

unique clusters. Figure 3 illustrates the pairwise dissimilarity

matrix representing the first pass (blocks in green) and second pass

(blocks in red) clusters. Figure 4 represents the glyph visualiza-

tions of 1322 patients grouped into the ten identified clusters.

Based on visual inspection of the glyphs within the respective

clusters, the clusters were ordered from most fibrotic (cluster 1) to

most extensive changes from COPD, with low attenuation areas

(cluster 10). Clusters (1, 2, and 3) and clusters (6, 7, 8, 9, and 10) in

Figure 4 were visually identified as fibrotic and obstructive

patient clusters, respectively, for disease-specific analyses described

in the following sections.

Correlation of Quantitative Stratification with Clinical
indices

The stratified groups were obtained solely based on CALIPER-

quantified radiological characteristics blinded to any clinical or

physiologic information. The following subsections show discrim-

inability of the clinical variables across the ten identified clusters of

patient population.

(a) Relationship with semi-quantitative visual radiology

scores. Visual radiology scores are generally used to validate the

efficacy of automated methods. The semi-quantitative visual score

for each patient which is the aggregate of regional scores for

emphysema, reticular infiltrates, ground-glass and honeycomb

parenchymal patterns were retrieved from the LTRC database for

the 1322 patients. The emphysema pattern on CT scans is

evaluated based on lower density regions, which are characterized

by CALIPER as mild, moderate and severe forms of LAA. Figure
5 illustrates the cluster-specific mean scores for each pattern across

Figure 2. 1322 LTRC patients represented as glyphs. The classified parenchymal patterns are represented in the indicated colors. The radius of
the glyphs is proportional to the lung volumes; the COPD cases with extensive low attenuation areas likely due to emphysema are visually larger than
more normal or fibrotic cases with considerable regions of reticular or honeycombing.
doi:10.1371/journal.pone.0093229.g002
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the population in each cluster. The prominent visual radiology

scores for fibrotic patterns (ground-glass, reticular and honey-

combing) in the first three clusters and emphysema patterns in the

last five clusters can be visually validated from the glyphs within

each group (Figure 4). Additionally, visual radiology scores in

cluster 5 revealed mixed fibrotic and emphysematous diseases

which were independently reflected in the glyphs specific to that

cluster as shown in Figure 4.

(b) Relationship with physiologic measures. Physiologic

measures are considered the clinical biomarkers for the functional

status and assessment of disease progression in patients with DPLD

and represent generally accepted endpoints in clinical trials

[31,32]. They include pulmonary function tests (PFTs) which

measure forced vital capacity (FVC), forced expiratory volume in 1

second (FEV1), total lung capacity (TLC) and FEV1/FVC ratio.

The cluster-specific means and standard errors of mean of these

measures are shown in Figure 6A. Statistically significant

differences in the distribution of the physiologic measures were

noted based on one-way ANOVA analysis performed on each

physiologic variable across the clusters (p-value , 0.0001 in each

case). Figure 6B shows the results of post-ANOVA pairwise t-

tests. At least one variable was found statistically significant

(Bonferroni corrected p-value , 0.0011) across multiple compar-

isons except for cluster pairs (1, 2) and (5, 8). Clusters 1 and 2 are

both severe fibrotic groups with different distribution of honey-

comb and reticular patterns and therefore portray similarly

impaired pulmonary function characteristics. Cluster 5 represent-

ed concurrent fibrosis and mild to moderate forms of LAA

representing emphysema. Cluster 8 was composed primarily of

severe LAA with minimal fibrosis in the bases for a portion of

cases, with similar physiologic measures as those in cluster 5. The

highest FEV1/FVC ratio and the lowest TLC in cluster 1 and

least FEV1/FVC ratio and highest TLC in cluster 10 were

reflective of known clinical characteristics of severe fibrotic and

emphysematous disease, respectively [33]. Furthermore, the

sudden drop in DLCO for group 5, with radiologically mixed

fibrosis and obstructive characteristics, is in agreement with

findings commonly seen in combined pulmonary fibrosis and

emphysema (CPFE) disease [34].

(c) Relationship with GAP, GOLD, BODE and SGRQ

scores. GAP based prediction of survival in patients with

idiopathic pulmonary fibrosis (IPF) is a validated index and staging

system proposed to enable differential effect in disease manage-

ment [28]. Based on GAP index, one-year mortality predictions

were computed for patients in fibrotic clusters (1, 2 and 3). Figure
7A shows the statistically significant differences in the mean of the

one-year mortality estimates of the patients across the three

clusters (p-value = 0.03 between clusters 1 and 2; p-value =

0.0001 between clusters 2 and 3 as well as clusters 1 and 3).

GOLD classification guidelines [24] categorize patients into

four stages based on FEV1% predicted values to assess disease

severity and direct disease management. The GOLD criteria for

Figure 3. The permuted dissimilarity matrix (132261322) representing the abnormality based pairwise dissimilarities (brighter the
shade higher the dissimilarity). The green blocks illustrate the first-pass clusters and the red diagonal blocks represent the final ten stratified
clusters.
doi:10.1371/journal.pone.0093229.g003
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Figure 4. The ten stratified groups of 1322 patients represented as glyphs. The groups were the result of quantitative unsupervised
clustering based on dissimilarity metric that captures the distribution of classified parenchymal patterns.
doi:10.1371/journal.pone.0093229.g004

Figure 5. The plot shows the mean population values of the semi-quantitative visual radiology scores (assigned by LTRC
radiologist) for each parenchymal abnormality in each cluster. The error bar is the standard error of mean of scores across the patients in the
cluster.
doi:10.1371/journal.pone.0093229.g005
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the patients in the obstructive clusters (6, 7, 8, 9 and 10) were

retrieved from LTRC database. Figure 7B shows the distribution

of patients with GOLD scoring (1: mild; 2: moderate; 3: severe and

4: very severe). To overcome inefficiencies in the old classification

guideline [29], a new GOLD classification scheme which

incorporates dyspnea score with FEV1% predicted values has

been recently proposed to better assess and predict exacerbations

among COPD patients. The new GOLD classification uses

categories A, B, C and D, respectively for patients with low risk-

low symptom, low risk-high symptom, high risk-low symptom and

high risk-high symptom. Figure 7C shows the composition of the

new GOLD classifications across the five quantitatively derived

obstructive clusters. For cluster 10 all patients in GOLD stages 3

and 4 (according to the old classification) fell into the new GOLD

category D with expected higher severity of disease burden and

incidence of exacerbations. Quantitatively stratified groups with

emphysematous parenchyma appear to correlate with disease

severity as measured by radiology and clinical GOLD classifica-

tions.

Figure 7D shows the trend in BODE index for obstructive

clusters with significantly different range of BODE scores across all

the cluster pairs except (6, 7) and (8, 9). Figure 7E shows the

trend of SGRQ scores respectively across the clusters. For both

BODE and SGRQ scores, higher scores reflect worse health

condition. Although, BODE is generally used to assess COPD

patients, the distribution across all ten clusters showed similar

trend as SGRQ scores (Figure S1). Similarly, trend in GAP-based

one-year mortality predictions are similar to BODE and SGRQ

for the first three clusters (Figure 7 and Figure S1). It is

interesting to note that cluster 5, representing the mixed

obstructive and restrictive abnormality, has considerably high

scores of BODE and SGRQ compared to the neighbor clusters,

although physiologic measures (in Figure 6, except DLCO) were

in a continuum.

Discussion

We have developed an automated and unsupervised method to

quantitatively stratify the patient populations from the LTRC

database. The ten groups exhibit unique clinically relevant

distributions of lung function measurements. Furthermore, the

obstructive and fibrotic groups show correlation with GOLD

criteria and survival predictions based on GAP, respectively. The

BODE scores, generally adopted biomarker index for COPD

patients, show significant differences across obstructive groups.

The efficacy of the stratification is visually captured through a

succinct glyph-based representation of the multi-variable image

data. Figure 4 represents about 200 gigabytes of image data from

1322 cases organized into subpopulation groups of similar

radiological features where each patient lung is further character-

ized into six regions and seven characteristic parenchymal pattern

proportions. Glyph-based visualization offers visual interpretation

of the analytic process and representation of results, which would

otherwise be impossible by comparing 600,000 image slices or

numerical representation of regional characteristics across 1322

cases.

A fundamental problem in the diagnosis, severity assessment,

individualized management and outcome analysis for DPLD is the

lack of a robust and objective biomarker [35]. Although HRCT is

integral to clinical diagnosis and management of DPLDs, its use in

clinical trials is sparse [36]. The opportunities of QCT as a viable

biomarker is being explored [35] and several techniques for

Figure 6. The cluster-specific mean physiologic measures (FEV1/FVC ratio, percentage predicted values of DLCO, TLC, FEV1, and
FVC) for the ten stratified groups. The error bars indicate the standard errors of mean. The numbers within parenthesis in the horizontal axis
represent the number of cluster-specific cases used in the mean, standard error computation. The post-ANOVA pairwise t-test for the indicated five
variables is shown as the staircase diagram with green fill for significant differences after Bonferroni correction. At least one variable is statistically
significant across the clusters except for between groups (1, 2) and (5, 8).
doi:10.1371/journal.pone.0093229.g006

Quantitative Stratification of DPLDs
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characterization of lung parenchymal disease with validated

correlations of classified parenchymal patterns with physiology,

visual radiology scores and patient survival have been proposed

[16,19,37,38]. However, a recent editorial summarizes the present

situation, ‘‘it is technically challenging to efficiently extract information on

these patterns from CT scans … and there still seems to be a long way to go

before computer software can automatically detect distinct and intuitively

meaningful phenotypes’’ [39]. Additionally, the challenges involved in

optimization and standardization of acquisition and reconstruction

protocols has limited the use of CT / QCT in multi-center clinical

trials [35,36]. The LTRC CT scans were acquired in four different

centers and therefore involved use of a range of acquisition and

reconstruction kernels. The CALIPER characterization of lung

parenchyma and quantitative stratification reported in this paper

was ascertained to be consistent and reproducible across several

reconstruction protocols. Figure S2 shows glyph illustrations of

different data reconstructions for two representative LTRC cases.

Cases (A) and (B) represent respectively fibrotic and obstructive

parenchymal abnormalities. The variations in the glyphs across

the reconstruction settings are minimal. The proposed method

consistently categorized all the reconstructions of cases (A) and (B)

into cluster 3 and cluster 10, respectively (detailed description is

provided in File S1).

The study reported in this paper could be strengthened using an

independent, even smaller DPLD population. LTRC study does

not have patient follow-up and consequently, the efficacy of

quantitative stratification could not be assessed with survival

outcome. The methodology could also be investigated to

investigate the stratification effects in response to an intervention

or longitudinal disease progression. Notwithstanding the afore-

mentioned limitations, the proposed stratification methodology

can be extended to sub-stratify and identify radiological hetero-

geneity within the grouped population. This could be useful to

assess the radiological phenotypes and possibly different prognostic

and therapeutic implications in patients. There is a need for

reliable and sensitive measures to evaluate clinical significance and

track efficacy of treatments in clinical trial cohorts [32]. The CT-

based quantitative stratification could be an objective step to

address this unmet need. We believe that, with further validation,

meaningful information can be objectively interpreted based on

the proposed quantitative stratification tool, just-in-time automated

quantification software such as CALIPER and efficient glyph-

based visualization. This can enable futuristic objective of physician-

in-the-loop interpretation and evaluation of lung parenchymal

disease that can reduce technical burden to the end user and

facilitate clinical translation.

Supporting Information

Figure S1 The mean distribution of the BODE indices across

the ten clusters. The error bars represent standard error of mean.

The BODE is generally defined for obstructive cluster and Figure

7D illustrates the distribution for clusters 6 through 10. The trend

in BODE distribution across clusters resemble the SGRQ (Figure

7E).

(TIF)

Figure S2 Glyph representations of multiple recon-
structions of two LTRC patients. All the data reconstructions

Figure 7. The correspondence of fibrotic and obstructive clusters with established indices and disease classification. The Gender, Age
and Physiology (GAP) based one-year mortality predictions for clusters 1, 2 and 3 in Figure 3 (A). The distribution of the old GOLD category (B) and
new GOLD category (C) distribution across the obstructive clusters: 6, 7, 8, 9 and 10. The mean distribution of BODE indices across the obstructive
clusters (D) and, the mean score distribution of SGRQ patient questionnaire scores of patients across all the clusters (E). The number of samples
available in each cluster is noted in the horizontal axis. The error bars indicate the standard error of mean.
doi:10.1371/journal.pone.0093229.g007
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for both cases, (A) and (B) were consistently categorized into cluster

3 and cluster 10, respectively.

(TIF)

Table S1 Patient demographics and major diagnosis of
LTRC cohort.
(DOCX)
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