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Abstract. Tuberculosis (TB) is a globally prevalent infectious 
disease. The mechanisms of latent TB infection (LTBI) remain 
to be fully elucidated and may provide novel approaches for 
diagnosis. As therapeutic targets and molecular diagnostic 
markers, microRNAs (miRs) have been studied and utilized 
in various diseases. In the present study, the differentially 
expressed miRs (DEMs) in LTBI were screened and analyzed 
to determine the underlying mechanisms and identify 
potential biomarkers, thereby contributing to the diagnosis 
of LTBI. The GSE25435 and GSE29190 datasets from Gene 
Expression Omnibus were selected for analysis. The 2 datasets 
were analyzed individually using the Bioconductor package 
to screen the DEMs with specific cut‑off criteria [P<0.01 and 
|log (fold change)|≥1]. Target gene prediction and interaction 
network construction were performed using Targetscan, the 
Search Tool for the Retrieval of Interacting Genes and Proteins 
and Cytoscape individually, and were merged using the latter 
tool. The hub genes were finally selected based on their degree 
of connectivity (DC). Gene Ontology and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analyses were 
performed using the KEGG and GENCLIP. A total of 144 DEMs 
were identified from the 2 datasets. By exploring the overlap-
ping miRs in the two datasets, Homo sapiens (hsa)-miR-29a 
and hsa-miR-15b were identified to be decreased, while 
hsa-miR-576-5p, hsa-miR-500 and hsa-miR-155 were identi-
fied to be upregulated. hsa‑miR‑500a‑3p and hsa‑miR‑29a‑3p, 

as well as 4 genes, namely cell division cycle (CDC)42, actin 
α1, skeletal muscle (ACTA1), phosphatase and tensin homolog 
(PTEN) and fos proto-oncogene (FOS), were selected as the 
key factors in this regulatory network. A total of 9 signaling 
pathways, including phosphoinositide-3 kinase (PI3K)/AKT 
and 11 biological processes, were identified to be associated 
with LTBI. In conclusion, the present analysis identified 
hsa-miR-500a-3p and hsa-miR-29a-3p, as well as CDC42, 
ACTA1, PTEN and FOS, as the most promising biomarkers 
and therapeutic candidates for LTBI. The PI3K/AKT signaling 
pathway is the key signaling pathway implicated in LTBI, 
and an in‑depth investigation of the efficiency of PI3K/AKT 
signaling inhibitors may be used to prevent a chronic state of 
infection in LTBI.

Introduction

Tuberculosis (TB) is a global infectious disease caused by infec-
tion with the pathogen Mycobacterium tuberculosis (MTB) and 
poses a serious risk to human health. It is a contagious disease 
that spreads by inhalation of bacteria contained in the breath of 
an infected individual. China ranks second out of the countries 
with a high TB burden. According to the 2017 World Health 
Organization (WHO) global TB report (1), TB is the ninth most 
lethal disease in the world and ranks first among infectious 
diseases, with a mortality rate much higher than that of acquired 
immune deficiency syndrome. Latent TB infection (LTBI) is 
defined as a state of persistent immune response to stimulation 
by MTB antigens with no evidence of any clinical manifesta-
tions of active TB (2). Within the population of individuals with 
LTBI, most cases remain asymptomatic and are not contagious; 
however, 5-10% of those who are infected progress to active 
TB disease and become contagious (2,3). LTBI is a continuum 
between self-healed and asymptomatic (4). At present, there 
are no unified diagnostic criteria for LTBI. The current method 
used is the tuberculin skin test (TST) and interferon-γ release 
assay (IGRA), however both have certain limitations, which 
include poor specificity and high cost of diagnosis, as well as 
being complex techniques (5-8). At present, the WHO recom-
mends the use of the IGRA to detect LTBI in middle- and 
high-income countries with greater resources (9), while the TST 
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is recommended in countries with limited resources. Therefore, 
it is necessary to develop a rapid, low-cost, non-invasive and 
efficient diagnostic method for the prevention and control of TB.

MicroRNAs (miRs) are a class of non-coding RNAs 
composed of 21-23 nucleotides, which are not translated 
into proteins. They are cut from precursor miRs with 6,070 
nucleotides and a hairpin structure. The major function of 
miRs is to regulate gene expression at the post-transcriptional 
level, primarily by binding to the 3'-untranslated region of 
the mRNAs of their target genes to degrade the mRNA or 
inhibit its translation, thus inhibiting the expression of the 
target genes (10). When disease occurs, the specific miRs of 
the lesion organs may be released into the blood. In numerous 
diseases, the miR content in the blood is significantly different 
from that of healthy individuals (11). To date, miRs as 
molecular diagnostic markers have been studied and applied 
in cancer, diabetes, psychiatric disorders, heart disease and 
various infectious diseases (12-16). More recent evidence 
suggests the use of miRs as biomarkers for LTBI. However, 
compared with the well-known role of certain miRs in cancer, 
the biological functions and diagnostic utility of miRs in LTBI 
remain largely elusive. Wu et al (17) identified that the expres-
sion of Homo sapiens (hsa)-miR-142-3p and hsa-miR-21-5p 
was enhanced in the peripheral blood samples from patients 
with LTBI compared with patients with TB. Meng et al (18) 
indicated that miR-93-3p is a potential diagnostic marker for 
distinguishing LTBI from active TB. Using bioinformatics 
to further analyze gene expression data, the present study 
unveiled certain characteristics and mechanisms involved in 
TB latency, which may provide a theoretical basis for the early 
diagnosis and treatment of, and experimental research into 
TB (19), and may serve as a reference for further investigation 
of molecular events indicative of LTBI.

In previous decades, microarray analysis has been 
frequently used to identify candidate biomarkers and thera-
peutic targets by studying changes in non-coding RNA and 
gene expression profiles at a genome-wide scale (20). A 
previous study on diagnosing latent TB infection identified 
dysregulated miRs and associated pathways of LTBI (21). 
However, only a small number of miRs have been identified 
to be significantly differentially expressed between patients 
with and without LTBI. Due to these discordant results, the 
reliability of these data for further development into useful 
clinical diagnostic biomarkers and therapeutic targets for TB 
is limited. It has been well recognized that small sample sizes, 
different microarray platforms and different statistical methods 
are among the limiting factors contributing to the discordant 
results. To overcome this limitation, meta-analysis represents a 
powerful approach to combine datasets from different studies 
to improve the reliability and generalizability of the results 
by increasing the statistical power. Meta-analysis of gene 
expression data or non‑coding RNA profiles has yielded novel 
biological insight, and has identified more robust and reliable 
candidate biomarkers and therapeutic targets.

In the present study, to increase the understanding of 
latent TB infection, the GSE25435 and GSE29190 datasets 
were downloaded from the GEO database and analyzed 
using R tools for differentially expressed miRs (DEMs). The 
regulatory network of these DEMs and their target genes was 
constructed to explore the potential regulatory interactions 

involved in LTBI. Enrichment analysis of these target genes in 
Gene Ontology (GO) terms in the category biological process 
(BP), molecular function (MF), cellular component (CC) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 
was performed for further identification of LTBI‑associated 
pathways and molecular mechanisms.

Materials and methods

Selection of microarray datasets. To retrieve suitable 
LTBI‑associated miR profiling data for the meta‑analysis, a 
web-based search in the Gene Expression Omnibus database 
(GEO; http://www.ncbi.nlm.nih.gov/geo) and ArrayExpress 
(http://www.ebi.ac.uk/arrayexpress) database was performed 
using the key words ‘latent TB infection’ and ‘microRNA’. 
In total, 5 array datasets were identified in the GEO and 
ArrayExpress databases. The datasets were manually reviewed 
and only those fulfilling the following criteria were included 
for further analysis: i) miR expression profiling by array; and 
ii) paired samples from patients with and without LTBI. Finally, 
a total of 2 datasets, GSE25435 and GSE29190, were selected for 
analysis. miR expression data of peripheral blood mononuclear 
cells (PBMCs) from 6 donors with LTBI and 3 healthy controls 
are included in GSE29190. GSE25435 contains miR expression 
data from PBMCs of 3 donors with LTBI and 3 healthy controls.

Screening of DEMs. The 2 datasets were analyzed individu-
ally by using the Bioconductor package to screen the DEMs 
with specific cut‑off criteria [P<0.01 and |log fold change 
(FC)|≥1] (22). Paired samples t‑tests and the FC method were 
used to obtain DEMs. The DEMs of the 2 datasets were then 
uploaded to the online VENN tool (http://bioinformatics.psb.
ugent.be/webtools/Venn/) to identify the overlapping miRs (23).

Target gene prediction and network construction. The predic-
tion of target genes of different miRs was performed by using 
TargetScan (http://www.targetscan.org/vert_71) (24). A cumu-
lative weighted context++ score online >-0.5 was set as the 
standard for screening target genes, as previously described (24). 
The target genes were then uploaded to the online database 
Search Tool for the Retrieval of Interacting Genes and Proteins 
(STRING; string-db.org) (25) to obtain the interaction informa-
tion for these target genes. The miR targeting data and target 
gene interaction data were imported to Cytoscape, which was 
used to visualize and merge networks. The key factors were 
finally selected based on their DC (26,27).

GO and KEGG pathway analysis. Pathway enrichment 
analysis was performed using KEGG, a collection of data-
bases on genomes, biological pathways, diseases, drugs and 
chemical substances (28). Target genes identified in the above-
mentioned analysis were uploaded to GENCLIP (ci.smu.edu.
cn/GenCLiP2/analysis.php) to perform the GO enrichment 
analysis in the categories BP, CC and MF, and P<0.01 was set 
as the cut-off criterion (29).

Results

Individual microarray data analysis of DEMs. To identify 
DEMs in patients with LTBI vs. healthy individuals, P<0.01 
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and |logFC|≥1 were set as cut‑off criteria when screening 
the miR array profiles. A total of 107 miRs, including 44 
downregulated and 63 upregulated miRs, were identified to be 
dysregulated in the GSE25435 dataset (Table I). The GSE29190 
dataset was also analyzed, revealing only 37 DEMs, including 
24 downregulated and 13 upregulated miRs (Table II). The 
clustering heatmap analysis of these two datasets indicated 
a highly significant difference between LTBI and normal 
patients, meriting further analysis (Fig. 1).

Meta‑analysis of the dysregulated miRs provides 5 hub 
miRs. Due to the limitations of the analyses of the individual 
datasets, the overlapping miRs between the two datasets 
were selected for the analysis of hub miRs. By Venn diagram 
analysis, hsa-miR-29a and hsa-miR-15b were identified as 
being downregulated in the two datasets (Fig. 2A), while 
hsa-miR-576-5p, hsa-miR-500 and hsa-miR-155 were identi-
fied as being upregulated (Fig. 2B).

Construction of the molecular network provides complex regula‑
tory interactions. The target genes of the abovementioned miRs 
were assessed using the online tool Targetscan with a pre‑defined 
standard. A total of 216 potential target genes were identified in 
the present analysis and they are listed in Table III. To illustrated 
the direct regulatory associations between the hub miRs and 
their target genes, as well as interactions of these target genes, 

the network of these factors was constructed using Cytoscape. 
A complex regulatory network was obtained, suggesting that 
dysregulation of miRs during LTBI may cause a widespread 
dysregulation in gene expression. In addition, dysregulation of 
miRs during LTBI may lead to functional disorders via signaling 
pathways or BPs. By exploring the regulatory network, the key 
miRs and genes may be selected based on the DC in the network. 
A total of 2 miRs, namely hsa-miR-500a-3p (degree, 54) and 
hsa-miR-29a-3p (degree, 77), as well as 4 genes, namely cell 
division cycle (CDC)42 (degree, 21), actin α1, skeletal muscle 
(ACTA1; degree, 21), phosphatase and tensin homolog (PTEN; 
degree, 21) and FOS (degree, 21), were selected as the core 
factors that may have principal roles in LTBI (Fig. 3).

Functional and pathway analysis. To investigate the signaling 
pathways that are potential associated with LTBI, the target 
genes were subjected to KEGG pathway enrichment analysis. 
A total of 9 pathways were enriched by the target genes 
(Fig. 4), including ‘protein digestion and absorption’, ‘extra-
cellular matrix-receptor interaction’ and ‘phosphoinositide-3 
kinase (PI3K)/AKT signaling pathway’. In addition, inclusion 
of small cell lung cancer pathways in the present analysis indi-
cated that LTBI may be associated with the development of 
small cell lung cancer. The 185 target genes were subsequently 
subjected to GO term enrichment analysis which revealed 
that 90 target genes were enriched in the following pathways: 

Figure 1. Hierarchical clustering of the DEMs from patients with and without LTBI. The color scale at the top illustrates the relative expression level of an 
mRNA. Red represents a high relative expression and blue represents a low relative expression. (A) DEMs of GSE25435. (B) DEMs of GSE29190. DEM, 
differentially expressed miR; LTB, latent tuberculosis; miR, microRNA; hsa, Homo sapiens.
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Table I. Differentially expressed miRs in the GSE25435 dataset.

miR logFC AveExpr t P-value

hsa-miR-32 -4.83703 2.490441 -32.8327 2.86 x10-6

hsa-let-7d 1.605658 8.870986 25.95471 7.72 x10-6

hsa-miR-1260 -3.67093 6.940923 -21.9504 1.56 x10-5

hsa-miR-181d -2.24959 1.176625 -21.3805 1.75 x10-5

NC1_00000197 3.79419 1.948923 21.37752 1.75 x10-5

hsa-miR-1288 4.12176 2.112708 20.71065 2.00 x10-5

hur_6 2.153942 13.10695 19.77886 2.43 x10-5

NC2_00079215 3.222861 1.663258 15.16582 7.39 x10-5

hsa-miR-17* -3.75792 1.930786 -14.9806 7.78 x10-5

NC2_00106057 3.685307 1.894481 14.56989 8.74 x10-5

hsa-miR-142-5p -3.15876 8.353603 -14.0788 0.000101
hsa-let-7i 1.002891 9.400425 13.92367 0.000106
hsa-miR-30e -2.12857 6.050006 -13.8563 0.000108
hsa-miR-30b -1.24457 7.124084 -13.295 0.000128
hsa-miR-454* 2.311672 1.207664 12.96173 0.000142
hsa-miR-1274b -3.22595 9.539236 -12.8303 0.000148
hsa-miR-20a* -3.09852 1.688503 -12.5566 0.000162
hsa-miR-564 3.682902 1.893279 11.84041 0.000207
hsa-miR-30c -1.47533 6.141081 -11.4563 0.000237
hsa-miR-518d-3p 1.098449 0.601052 11.36622 0.000245
hsa-miR-142-3p -4.08985 11.79739 -11.1118 0.000269
hsa-miR-215 -2.79467 2.085103 -10.6335 0.000323
hsa-miR-320c 2.710049 6.808952 10.40018 0.000353
hsa-miR-29b -2.6684 7.916884 -10.2334 0.000378
hsa-miR-193b 1.481897 0.792776 10.23095 0.000378
hsa-miR-505* 2.825782 2.002488 10.08595 0.000401
hsa-miR-1274a -3.96165 5.117785 -10.0041 0.000415
hsa-miR-320d 2.530531 7.386848 9.966743 0.000421
hsa-miR-194 -2.9415 1.573092 -9.87762 0.000437
mr_1 4.009616 10.57346 9.598379 0.000491
hsa-miR-197 1.865861 5.328528 9.377518 0.00054
hsa-miR-33a -3.71272 1.90819 -8.53538 0.000792
hsa-miR-374a -1.05367 5.99272 -8.48323 0.000812
hsa-miR-320b 2.595755 6.879281 8.346227 0.000867
hsa-miR-211 2.928911 1.516283 8.276387 0.000897
NC2_00122731 3.230483 1.667069 8.074902 0.000990
hsa-miR-29c -1.60822 8.001147 -7.87047 0.001098
hsa-miR-195 -1.58473 3.691033 -7.80122 0.001138
hsa-let-7b 2.253171 9.216569 7.57616 0.001279
hsa-miR-563 -1.93468 1.56909 -7.14915 0.001612
hsa-miR-140-5p -1.35331 5.635543 -7.11292 0.001645
hsa-miR-423-5p 2.546925 5.162408 7.075481 0.001679
hsa-miR-892b 2.908221 1.505938 6.779481 0.001988
hsa-let-7c 1.591322 7.493733 6.714825 0.002065
hsa-miR-181c -2.61189 1.740467 -6.71423 0.002066
hsa-miR-31 -2.69031 1.538948 -6.55738 0.002267
hur_4 2.724996 11.79659 6.333833 0.002596
hsa-miR-155 1.135612 6.034357 6.210813 0.002802
hsa-miR-720 -1.17258 11.34608 -5.89947 0.003420
hsa-miR-222 -1.33272 3.65274 -5.83189 0.003575
hsa-miR-186 -4.09024 3.67533 -5.76641 0.003734
hsa-miR-101 -2.5019 6.584804 -5.69109 0.003927
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Table I. Continued.

miR logFC AveExpr t P-value

hsa-miR-204 2.505782 1.304719 5.150187 0.005734
hsa-miR-134 2.026807 1.755041 4.931725 0.006741
hsa-miR-1290 -1.70206 0.902855 -4.8857 0.006979
hsa-miR-575 3.799179 2.716106 4.762392 0.007670
hsa-miR-937 1.689168 0.896412 4.735594 0.007830
hsa-miR-320a 1.789151 6.023945 4.670974 0.008235
hsa-miR-590-5p -1.58344 4.687364 -4.6666 0.008263
hsa-miR-1275 2.152322 4.508394 4.391423 0.010302
NC2_00092197 2.244662 1.174159 4.37517 0.010440
hsa-miR-500* 1.085714 0.806853 4.324164 0.010888
hur_5 1.581846 5.898678 4.300761 0.011102
hsa-miR-766 1.2936 4.933253 4.282655 0.011270
hsa-miR-1305 3.51088 3.923818 4.184017 0.012244
hsa-miR-485-3p 2.264246 1.974846 4.137144 0.012742
hsa-miR-29c* -1.41527 2.134653 -4.08565 0.013317
hsa-miR-328 1.533516 3.063469 4.035669 0.013904
hsa-miR-1826 2.542979 2.772236 4.009905 0.014219
hsa-miR-923 2.864446 9.516405 3.979143 0.014606
hsa-miR-92a 1.491981 8.018584 3.940985 0.015104
hsa-miR-1267 -2.09638 1.132907 -3.91896 0.015401
hsa-miR-885-5p 2.463596 1.283626 3.881055 0.015927
hsa-miR-144 -7.93309 5.22873 -3.85587 0.016289
hsa-miR-660 -1.32829 2.555425 -3.75816 0.017787
hsa-let-7d* 1.904947 1.863162 3.758015 0.017790
hsa-miR-647 1.663436 0.883546 3.748012 0.017952
hsa-miR-342-3p 1.119628 8.920874 3.645006 0.019731
hsa-miR-15b* -1.18389 0.868758 -3.5706 0.021146
hsa-miR-144* -4.64489 2.712225 -3.53154 0.021937
kshv-miR-K12-9* -1.76769 1.026389 -3.48719 0.022877
hsa-miR-15b 1.65062 10.49454 3.437951 0.023976
hsa-miR-638 1.600023 4.980986 3.434029 0.024066
hsa-miR-744* 1.677503 0.890579 3.371348 0.025564
hsa-miR-346 1.392836 0.748246 3.330718 0.026593
hsa-miR-324-5p -2.61219 2.446374 -3.28872 0.027707
hsa-miR-498 1.277597 0.690626 3.285391 0.027798
hsa-miR-329 1.335942 0.719799 3.261694 0.028454
hsa-miR-125a-3p 1.424537 1.12041 3.210039 0.029946
hsa-miR-192 -1.44406 3.520292 -3.20944 0.029964
hsa-miR-18b -1.96872 2.472096 -3.1976 0.030319
hsa-miR-27a -1.44475 8.246285 -3.19705 0.030335
hsa-miR-92b -1.58151 2.150902 -3.18198 0.030795
hsa-miR-150 1.084065 11.60013 3.12891 0.032478
hsa-miR-342-5p 1.584302 6.234256 3.120644 0.032750
hsa-miR-29a* -1.22069 0.662175 -3.08183 0.034061
hsa-miR-576-5p 1.233511 0.668583 3.056434 0.034952
ebv-miR-BART10* 1.833523 0.968589 3.013552 0.036519
hsa-miR-1914* 2.359262 4.149506 2.986318 0.037556
hsa-miR-330-3p 1.331046 1.394026 2.970476 0.038175
hsa-miR-494 2.245492 5.43426 2.961052 0.038548
hsa-miR-361-5p 1.350614 4.881747 2.92993 0.039813
hsa-miR-125b 2.025984 2.170862 2.884837 0.041731
hsa-miR-338-3p -1.63845 4.620754 -2.78552 0.046342



LU et al:  miRNAs ASSOCIATED WITH LTBI3982

‘Structural molecule activity’, ‘cardiovascular system develop-
ment’, ‘organ morphogenesis’, ‘negative regulation of nitrogen 
compound metabolic process’ with ≥15 target genes enriched 

in several of these functional pathways, the most relevant of 
which were the ‘cardiovascular system development’ and 
‘circulatory system development’ (Fig. 5).

Table I. Continued.

miR logFC AveExpr t P-value

hsa-miR-146b-5p -1.29146 6.920841 -2.75528 0.047860

logFC, log fold change; AveExpr, average expression; miR, microRNA; hsa, Homo sapiens, *complementary strand of the microRNA.

Table II. Differentially expressed miRs in the dataset GSE29190.

miR logFC AveExpr t P-value

hsa-miR-18a* -2.51535 0.9441 -15.4559 6.85x10-7

hsa-miR-758 -1.24903 0.487935 -10.0342 1.46x10-5

hsa-miR-185* -2.498 1.185303 -5.30749 0.000938
hsa-miR-199b-5p 2.216376 2.08776 4.343231 0.002984
hsa-miR-16-2* 1.558178 1.935857 4.180525 0.003676
hsa-miR-1202 2.150841 3.293889 4.041271 0.004408
hsa-miR-7 1.917814 3.758687 3.950336 0.004971
hsa-miR-660 1.536002 2.837873 3.529016 0.008814
hsa-miR-7-1* 1.79193 2.285376 3.46859 0.009588
hsa-miR-487b -2.48633 1.308742 -3.28236 0.012470
hsa-miR-409-5p -1.5458 0.669419 -3.22662 0.013503
hsa-miR-200c* -1.80803 0.674268 -3.12735 0.015573
hsa-miR-613 -1.11381 0.442862 -3.11342 0.015889
hsa-miR-431 -2.10028 0.771685 -3.09273 0.016372
hsa-miR-19a* -1.48092 0.565233 -3.06806 0.016968
hsa-miR-186* -2.5773 0.930693 -3.04035 0.017664
ebv-miR-BART8 -1.86635 0.693708 -2.98042 0.019276
hsa-miR-585 -1.52776 0.594644 -2.97825 0.019337
ebv-miR-BHRF1-1 2.864032 2.647555 2.977097 0.019370
hsa-miR-576-5p 1.428135 1.023683 2.942374 0.020379
hsa-miR-942 -1.45888 1.013753 -2.92631 0.020864
hsa-miR-449b -1.03809 0.422371 -2.90996 0.021370
hsa-miR-29a* -2.36068 0.96128 -2.89317 0.021904
hsa-miR-769-3p -1.81466 0.676479 -2.87074 0.022639
hsa-miR-362-3p 1.258509 0.984151 2.859353 0.023021
hsa-miR-500* 1.483617 1.126051 2.787552 0.025596
hiv1-miR-N367 -1.63534 0.967286 -2.70054 0.029123
ebv-miR-BART18-5p -1.43074 0.748889 -2.57279 0.035240
hsa-miR-148b* -1.72537 0.646717 -2.55501 0.036190
hsa-miR-532-5p 1.417317 1.319251 2.552325 0.036336
hsa-miR-15b* -2.3785 1.211755 -2.54192 0.036907
hsa-miR-1537 -1.0943 0.436358 -2.5317 0.037477
hsa-miR-215 1.887456 1.812279 2.514436 0.038460
hsa-miR-662 -1.57886 0.59788 -2.4756 0.040769
hsa-miR-29b 1.103322 8.302687 2.406804 0.045214
hsa-miR-520d-3p -1.23035 0.943423 -2.34466 0.049651

logFC, log fold change; AveExpr, average expression; miR, microRNA; hsa, Homo sapiens; ebv, Epstein-Barr.
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Discussion

The incomplete understanding of the underlying mechanisms 
and deficiencies in the diagnosis and treatment make it difficult 

to prevent and cure LTBI. Various host factors are included 
in this complex process. In the present study, miRs, a type of 
non-coding RNAs, were the focus, as they have been applied 
in multiple fields of life science and medicine. Microarray 

Figure 2. Venn diagram of (A) downregulated microRNAs and (B) upregulated microRNAs from the 2 datasets.

Figure 3. Regulatory and interaction networks of the differentially expressed miRs and their target genes. The upward arrow indicates the upregulation of the 
miRs and the downward arrow indicates the downregulation of the miRs. The color scale presented at the bottom illustrates the cumulative weighted context++ 
scores of the target genes. miR, microRNA; hsa, Homo sapiens.
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analysis has been widely used to investigate DEMs, dysregu-
lated genes and pathways associated with LTBI (21,30,31). In 
previous decades, a large amount of research investigating 
this matter has emerged (18,32-34); however, identifying 
novel miRs can be used to investigate further the underlying 
mechanism of LTBI. Thus, in the present study, expression data 
obtained from patients with and without LTBI were subjected 
to a bioinformatics analysis to provide more reliable data.

In the analysis of the present study, 2 datasets were included. 
A total of 144 DEMs were identified from these 2 datasets. By 
exploring the overlapping miRs in the two datasets, hsa-miR-29a 
and hsa-miR-15b were identified as being decreased, while 
hsa‑miR‑576‑5p, hsa‑miR‑500 and hsa‑miR‑155 were identified 
to be upregulated. Of note, miR-29a was previously reported 
to be significantly decreased in patients with LTBI (35,36). 
miRs encoded by the miR-15b/16-2 cluster may act as tumor 
suppressors. Aberrant regulation of miR-15b in human cancers 
reportedly has an important role in cancer development, 
contributing to reduced proliferation, cell death, angiogenesis 
and metabolic reprogramming and metastasis resistance, as well 
as tumor‑associated inflammation and genomic instability (37). 
miR-576 is directly targeted by hepatitis B virus-encoded X 

protein (38). miR-155 and miR-500 were reported as poten-
tial markers of aflatoxin exposure (39), which suggests that 
miRs may be used as potential biomarkers for the diagnosis 
of LTBI. However, the possible association of hsa-miR-15b, 
hsa-miR-576-5p, hsa-miR-500 and hsa-miR-155 with LTBI 
identified in the present analysis remains to be verified.

To gain a broad understanding of the effects of miRs in 
LTBI, the target genes of the 5 abovementioned DEMs were 
predicted. By merging the miR regulatory network and 
protein-protein interaction network, a degree of crosstalk 
among these miRs via cancer-associated genes, including 
FOS, ACTA1, CDC42 and PTEN, was identified (40‑43). In 
the current study, pathways associated with small cell lung 
cancer also appeared in the KEGG pathway analysis, which 
suggests that LTBI may participate in the development of small 
cell lung cancer. By exploring the topological structure of the 
interaction network, it was revealed that hsa-miR-500a-3p and 
hsa-miR-29a-3p, as well as the 4 genes CDC42, ACTA1, PTEN 
and FOS, have essential roles in this regulatory network. These 
miRs and genes may be core factors in the diagnosis of LTBI.

To determine the molecular mechanisms underlying 
the LTBI process, GO term and KEGG pathway analysis 

Figure 4. Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment of target genes. Red indicates the-log P of the enriched pathway and blue 
indicates the counts of genes enriched in each pathway. PI3K, phosphoinositide-3 kinase; ECM, extracellular matrix; hsa, Homo sapiens.

Figure 5. Gene Ontology analysis of the target genes. The color scale illustrates the corresponding gene-term associations. Green indicates the presence of a 
corresponding gene-term association and black indicates the absence of a corresponding gene-term association in the database.
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Table III. Target gene prediction of miRs by TargetScan.

 Cumulative weighted
miR/gene symbol context++ score 

hsa-miR-29a-3p
  COL1A1 -2.72
  TET3 -2.16
  TET1 -1.78
  TET2 -1.17
  ATAD2B -1.12
  HRK -1.07
  TRIB2 -0.96
  SUV420H2 -0.95
  COL1A2 -0.91
  NFIA -0.89
  EIF4E2 -0.86
  TIMM8B -0.85
  TDG -0.84
  IFI30 -0.81
  COL11A1 -0.80
  C7orf73 -0.75
  LYSMD1 -0.73
  COL5A3 -0.73
  SMIM17 -0.72
  IREB2 -0.71
  YPEL2 -0.71
  NASP -0.71
  SPARC -0.67
  ZKSCAN4 -0.67
  SLC30A3 -0.67
  PMP22 -0.66
  SYPL2 -0.66
  SMTNL2 -0.65
  DTWD2 -0.63
  TMEM236 -0.63
  TMEM236 -0.63
  ZBTB34 -0.63
  GPR37 -0.63
  ENHO -0.63
  ICOS -0.62
  HIF3A -0.61
  ADAMTS17 -0.61
  SFTA3 -0.61
  REV3L -0.61
  COL5A2 -0.61
  COL4A4 -0.60
  COL21A1 -0.59
  COL9A1 -0.59
  CCSAP -0.59
  ARRDC3 -0.58
  FBN1 -0.58
  CDC42 -0.58
  PGAP2 -0.57
  TSPAN14 -0.57
  SESTD1 -0.57

Table III. Continued.

 Cumulative weighted
miR/gene symbol context++ score 

  LOXL2 -0.57
  TMEM183A -0.56
  TPM1 -0.56
  HAPLN3 -0.56
  MLIP -0.55
  GSTA4 -0.55
  MEX3B -0.55
  ZNF282 -0.55
  COL19A1 -0.55
  YBX3 -0.55
  ISG20L2 -0.55
  TRAF4 -0.54
  SH3BP5L -0.54
  PTEN -0.53
  RNF39 -0.53
  KDELC1 -0.53
  KIAA1024 -0.53
  ELOVL4 -0.53
  RAET1L -0.53
  PXDN -0.53
  GRIP1 -0.52
  FEM1B -0.52
  WDFY1 -0.52
  TBC1D7 -0.52
  AGPAT4 -0.52
  KCTD5 -0.52
  ADAMTS10 -0.52
  FAM167A -0.51
hsa-miR-15b-3p
  PGR -1
  PRB1 -0.89
  OR2J3 -0.86
  PRB2 -0.77
  PRB3 -0.74
  NPY2R -0.71
  C1QL3 -0.68
  CYP7A1 -0.66
  DYNLT1 -0.65
  GLRX5 -0.64
  SPRR1B -0.62
  C5orf30 -0.61
  TUBB6 -0.59
  NSMCE4A -0.58
  COQ4 -0.58
  RP11-422N16.3 -0.56
  CSTA -0.56
  TAS2R1 -0.54
  COA5 -0.54
  OR4C13 -0.52
  HDDC2 -0.52
  C12orf60 -0.51
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were included in the present study to perform a comprehen-
sive analysis of the roles of the key miRs and genes. In the 
KEGG pathway enrichment analysis, ‘PI3K/AKT signaling 
pathway’ appeared to be the most enriched pathway with the 
largest number of enriched genes. The PI3K/AKT signaling 
pathway, including its downstream pathway, mammalian 
target of rapamycin (mTOR), is well known to be involved in 
a variety of BPs, and it has been reported that hyperactivation 
of mTOR has a pathogenetic role in human immunodeficiency 
virus infection (44-46). Due to the important role of the AKT 

Table III. Continued.

 Cumulative weighted
miR/gene symbol context++ score 

  C6ORF50 -0.51
  PARPBP -0.51
  COMMD10 -0.51
hsa-miR-576-5p
  HNRNPU -1
  HIST1H2AG -0.80
  C4orf22 -0.66
  C8orf22 -0.63
  CCDC148 -0.61
  CCDC39 -0.60
  AC069547.1 -0.59
  LIPT1 -0.59
  MS4A12 -0.55
  RPL31 -0.54
  ENY2 -0.54
  GJE1 -0.53
  RBAK-RBAKDN -0.51
hsa-miR-500a-3p
  PRX -0.95
  RP11-455G16.1 -0.84
  PRAMEF2 -0.77
  TSSK2 -0.77
  SLC2A14 -0.73
  NKX2-3 -0.72
  DHRS4 -0.70
  C3orf55 -0.68
  RP11-934B9.3 -0.67
  DHRS4L2 -0.66
  BX088651.1 -0.66
  NRG4 -0.65
  NEIL1 -0.65
  SMIM5 -0.64
  TVP23B -0.64
  RP2 -0.64
  C17orf58 -0.64
  PPP4R1 -0.63
  KLHL34 -0.63
  CAMK4 -0.63
  CLIC4 -0.63
  CDK6 -0.63
  IL2RA -0.62
  BTF3L4 -0.61
  PRAMEF14 -0.61
  HPCAL4 -0.61
  ZNF98 -0.61
  SOCS2 -0.60
  PRAMEF13 -0.60
  XIRP2 -0.60
  ZNF711 -0.60
  PLSCR5 -0.59
  SLC2A3 -0.58

Table III. Continued.

 Cumulative weighted
miR/gene symbol context++ score 

  AC006372.1 -0.58
  AP3B2 -0.56
  MRPL43 -0.56
  NGDN -0.56
  MRFAP1L1 -0.56
  CCDC6 -0.55
  CDH19 -0.55
  PMAIP1 -0.55
  ZNF224 -0.54
  ANKRD10 -0.54
  AKR1CL1 -0.54
  ADI1 -0.53
  ING1 -0.53
  NIPAL3 -0.52
  KCNJ1 -0.52
  GPM6A -0.52
  NXT2 -0.52
  ANO2 -0.52
  RP11-366L20.2 -0.51
  MEOX2 -0.51
  CCNI2 -0.51
hsa-miR-155-5p
  ZNF385D -0.80
  TMPRSS11BNL -0.68
  VAV3 -0.64
  ACTA1 -0.59
  ARID2 -0.58
  H3F3A -0.58
  ETS1 -0.57
  ZNF652 -0.57
  VMA21 -0.54
  ACTL7A -0.53
  TM6SF1 -0.53
  CEBPB -0.52
  FOS -0.52
  WWC1 -0.52
  TAOK1 -0.51

miR, microRNA; hsa, Homo sapiens.
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pathway in cellular metabolism, growth and division, apop-
tosis suppression and angiogenesis, the regulation of the AKT 
signaling may represent a valuable therapeutic strategy. For this 
reason, AKT inhibitors have become the hotspots of research 
in a number of clinical diseases (47), and dual PI3K/mTOR 
inhibitors, including PF-04691502 and NVP-BEZ235, may 
have important therapeutic applications in cancer (48,49). 
Anti-retroviral protease inhibitors have been re-purposed as 
inhibitors of the PI3K/AKT/mTOR pathway, and such drugs 
that are also available as a generic and cheap formulation may 
be immediately available for testing in patients with LTBI (50). 
Studies have also indicated on upregulated activation of the 
PI3K/AKT/mTOR pathway in autoimmune diseases, including 
multiple sclerosis and liver fibrosis (51,52). It has been demon-
strated that the PI3K/AKT signaling pathway is inhibited in 
patients with active TB (53,54). However, there is no direct 
evidence indicating PI3K/AKT signaling pathway alterations 
in patients with LTBI. ‘Protein digestion and absorption’ was 
the most significant pathway. These signaling pathways consti-
tute important potential mechanisms underlying the processes 
of LTBI and merit further validation.

In conclusion, the present analysis ident i f ied 
hsa-miR-500a-3p and hsa-miR-29a-3p, as well as 4 target 
genes CDC42, ACTA1, PTEN and FOS, which may be used 
as potential biomarkers of LTBI. The PI3K/AKT signaling 
pathway is the key genetic event implicated in LTBI, and an 
in‑depth investigation of the efficiency of PI3K/AKT signaling 
inhibitors in the prevention of LTBI is warranted. The novel 
key factors and molecular pathways provided in the present 
study may contribute to the current understanding of LTBI 
and may facilitate the development of a molecular diagnostic 
platform for its detection.
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