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Abstract

Motivation: The detection of subtle genomic allelic imbalance events has many potential applica-

tions. For example, identifying cancer-associated allelic imbalanced regions in low tumor-

cellularity samples or in low-proportion tumor subclones can be used for early cancer detection,

prognostic assessment and therapeutic selection in cancer patients. We developed hapLOHseq for

the detection of subtle allelic imbalance events from next-generation sequencing data.

Results: Our method identified events of 10 megabases or greater occurring in as little as 16% of

the sample in exome sequencing data (at 80�) and 4% in whole genome sequencing data (at 30�),

far exceeding the capabilities of existing software. We also found hapLOHseq to be superior at de-

tecting large chromosomal changes across a series of pancreatic samples from TCGA.

Availability and Implementation: hapLOHseq is available at scheet.org/software, distributed under

an open source MIT license.

Contact: pscheet@alum.wustl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A critical mechanism by which cancer cells operate is through acti-

vation of oncogenes or inactivation of tumor suppressor genes. This

may happen via acquired chromosomal alterations, such as amplifi-

cation, deletion or copy-neutral loss-of-heterozygosity (cn-LOH),

that result in allelic imbalance (AI). Because AI provides insights

into the progression towards malignancy and metastasis, AI detec-

tion can be applied to help in cancer prognosis and therapeutic

decision-making (Diep et al., 2006).

In the last decade, array comparative genomic hybridization

(aCGH) and single-nucleotide polymorphism (SNP) array based

approaches have become popular technologies for AI detection

(Carter, 2007). More recently, the advent of next-generation

sequencing (NGS) technologies for studies of cancer genomic vari-

ation (Zhao et al., 2013) has brought the potential for finer reso-

lution (detection and boundary refinement) due to a denser marker

set and arbitrarily high coverage. However, costs limit depth of

coverage through whole-genome sequencing (WGS) and therefore

whole-exome sequencing (WES) is often preferred for genomic stud-

ies. WES presents a particular challenge for inferring AI, since cover-

age is variable across regions and the target is limited to �3% of the

genome.

Several tools model expected coverage based on summaries from

a WES reference panel to account for technical variability in
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coverage and then infer copy number changes or AI. However, these

approaches fail to detect subtle chromosomal AI events in NGS

data—i.e. aberrations such as amplifications, deletions and cn-LOH

occurring in a small fraction (<30% for WES, <10% for WGS) of

the DNA in a heterogeneous sample, scenarios highly relevant to

comprehensive tumor profiling and diagnostics. For example, the

median tumor cellularity for TCGA pancreatic adenocarcinoma

(PDAC) samples is 53% (n¼186). Of these, 57 samples (31%) have

tumor fractions of 30% or less, which is below AI detection levels of

currently available tools (Supplementary Fig. S1). This gap is there-

fore significant, especially since tissue samples are often limited and

additional surveys with complementary technologies such as aCGH

may not be possible.

2 Methods

hapLOHseq is an application for detecting AI events in NGS data,

motivated by the logic underlying a method for AI detection in SNP

array data (Vattathil and Scheet, 2013). Inputs to hapLOHseq con-

sist of a variant call format (VCF) file with an allelic depth (AD)

field containing the read depths of the reference and alternate alleles,

generated from either WGS or WES, and a set of haplotype esti-

mates. The output from hapLOHseq is a list of putative AI regions

of the genome built from a detailed report of probabilities for each

heterozygous genotype residing in a region of AI.

When assessing high-purity tumor samples for which paired nor-

mal samples are available for inferring germline genotypes, one can

directly compare genotypes of the tumor and normal samples and

clearly characterize copy number changes. However, when the sam-

ple contains a high proportion of normal cells (low tumor cellular-

ity), the genotypes called from the tumor sample will reflect the

germline rather than the tumor. To extract maximal information

from the data, hapLOHseq leverages a lower-level data source: the

allele-specific read counts. hapLOHseq achieves its power by cap-

turing signals among multiple sites jointly (haplotype level) rather

than relying on imbalances observed marginally at heterozygous

sites. First, a user statistically estimates germline haplotypes from

variant sites called in a paired normal sample, or the tumor sample

itself when cellularity is low. (For convenience, the hapLOHseq

download contains a companion phasing utility, allowing direct ap-

plication to a single VCF.) The AI detection method then: (i) assesses

similarity between the observed reference allele frequencies (RAFs)

from the NGS data and the haplotypes; and (ii) identifies regions

where this similarity achieves statistical significance, indicating

haplotype, or allelic, imbalance.

Similarity between the alleles in relative abundance and one of

the germline haplotypes suggests an imbalance of a segment of an in-

herited chromosome due to, perhaps, acquired alterations. To assess

the correlation, we first determine a putative ‘excess haplotype’ by

applying a threshold to the RAFs at each marker independently in a

‘frequency-based phasing algorithm’. By default, the threshold is

defined as the median variant allele frequency across the genome

(but should be close to 0.5). The alleles with frequencies above the

threshold constitute one putative haplotype. Where no imbalance

exists, the RAF-based haplotype estimate reflects noise. Otherwise,

where AI does exist, the RAF-based haplotypes should bear some re-

semblance to the statistically estimated haplotypes. This resem-

blance is quantified with phase concordance, a measure of similarity

that accommodates errors in the statistical haplotype estimates. A

hidden Markov model (HMM) is then applied to assess the spatial

aggregation of markers with evidence for haplotype-RAF

consistency and to compute a probability of regions of the genome

being in AI (Vattathil and Scheet, 2013).

3 Results

We obtained the WGS and WES reads for the tumor and paired nor-

mal sample of a glioblastoma patient (TCGA-19-2620) from The

Cancer Genome Atlas (TCGA) in addition to the SNP-array-based

copy number and LOH calls published by the TCGA consortium

(Brennan et al., 2013). To assess the sensitivity of hapLOHseq, we

created in silico mixtures of the reads from the tumor and normal

BAM files at multiple ratios, mimicking varying tumor purities. The

published purity estimate for the original tumor sample was 80%,

which we accounted for in our simulations. We created in silico mix-

tures of 4, 8, 12, 16, 20, 28, 40, 56 and 80% tumor.

We then applied hapLOHseq with default settings to the VCFs

created from processing the mixed BAM files, first phasing haplo-

types with MACH (Li et al., 2010). Results are depicted in Figure 1.

In WES data, hapLOHseq is able to detect large regions of AI at

tumor purities of 16% and virtually all events at 40%. The sensitiv-

ity of hapLOHseq is greater on WGS data, with all events dis-

covered at 8% purity and some events at a mere 4%. For

comparison, we assessed performance of the following exome AI de-

tection tools: ADTEx, FREEC and ExomeDepth (Amarasinghe

et al., 2014; Boeva et al., 2012; Plagnol et al., 2012). hapLOHseq

outperformed these methods (Supplementary Fig. S1). ADTex, the

best among the other methods, was able to detect events at 28%

tumor purity, in-line with its published detectable limit of 30%

(Amarasinghe et al., 2014).

We also downloaded and analyzed the exome sequences of 12

tumor-normal pairs of TCGA PDAC samples using hapLOHseq

and the other tools (Supplementary Fig. S2). hapLOHseq consist-

ently outperformed these methods in its ability to efficiently identify

chromosomal AI regions of the genome (Supplementary Figs S2 and

S3).

Finally, we applied hapLOHseq to WES experiments on two ad-

enomas from a patient with familial adenomatous polyposis (FAP),

a cancer syndrome resulting from a germline mutation in APC (5q),

where the acquired second somatic mutation (or ‘hit’; Knudson,

1971) may be an LOH event (Galiatsatos and Foulkes, 2006).

Figure 1 shows discovery of AI in both adenomas, where in the se-

cond sample there is no visual perturbation of the RAFs.

In summary, hapLOHseq is able to detect AI in WES and WGS

data at low cell fractions. Further, it does not require a paired nor-

mal sample (whereas ADTEx, for example, does). Interestingly, we

observe sufficiently strong dependency among alleles (linkage

Fig. 1. hapLOHseq discovers subtle AI in NGS. (A) Top panel shows AI events

from a TCGA SNP array. Red lines show hapLOHseq evidence for AI in WES

(16, 40%) and WGS (4, 8%) mixtures. (B) WES of two adenomas from an FAP

patient; hapLOHseq detects AI on chr. 5q
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disequilibrium) in WES data for our approach to excel. hapLOHseq

should be useful for the detection and profiling of AI in tumor sam-

ples that are either heavily diluted with normal tissue cells or in het-

erogeneous tumors or premalignant lesions.
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