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The potential of artificial intelligence to improve patient safety:
a scoping review
David W. Bates 1,2,3✉, David Levine1,2, Ania Syrowatka 1,2, Masha Kuznetsova4, Kelly Jean Thomas Craig 5, Angela Rui1,
Gretchen Purcell Jackson 5,6 and Kyu Rhee5

Artificial intelligence (AI) represents a valuable tool that could be used to improve the safety of care. Major adverse events in
healthcare include: healthcare-associated infections, adverse drug events, venous thromboembolism, surgical complications,
pressure ulcers, falls, decompensation, and diagnostic errors. The objective of this scoping review was to summarize the relevant
literature and evaluate the potential of AI to improve patient safety in these eight harm domains. A structured search was used to
query MEDLINE for relevant articles. The scoping review identified studies that described the application of AI for prediction,
prevention, or early detection of adverse events in each of the harm domains. The AI literature was narratively synthesized for each
domain, and findings were considered in the context of incidence, cost, and preventability to make projections about the likelihood
of AI improving safety. Three-hundred and ninety-two studies were included in the scoping review. The literature provided
numerous examples of how AI has been applied within each of the eight harm domains using various techniques. The most
common novel data were collected using different types of sensing technologies: vital sign monitoring, wearables, pressure
sensors, and computer vision. There are significant opportunities to leverage AI and novel data sources to reduce the frequency of
harm across all domains. We expect AI to have the greatest impact in areas where current strategies are not effective, and
integration and complex analysis of novel, unstructured data are necessary to make accurate predictions; this applies specifically to
adverse drug events, decompensation, and diagnostic errors.
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INTRODUCTION
Adverse events related to unsafe care represent one of the top ten
causes of death and disability worldwide, and a third to a half
appear preventable1. Investments in reducing harm can lead to
substantial savings, and more importantly improve patient
outcomes.
Twenty years after the Institute of Medicine’s “To Err Is Human”

report, problems with safety remain all too common2 despite
patient-centered strategies to create a culture of safety; for
example, implementation of inpatient checklists, and computer-
ization of prescribing and bar-coding3–6. However, safety issues
outside the hospital have received much less attention than
hospital safety, yet care is increasingly being shifted outside the
hospital.
The application of artificial intelligence (AI) has tremendous

potential as a tool for improving safety, both inside and outside of
the hospital, by providing solutions to predict harms, collect a
variety of data including both new and already-available data, and
as part of quality improvement initiatives. For instance, AI can
provide decision support by identifying patients at high risk of
hospital harm to guide prevention and early intervention
strategies. Similarly, AI can be applied in outpatient, community,
and home settings. When coupled with digital approaches, these
technologies can improve communication between patients and
healthcare providers to reduce the frequency of preventable
harms. While existing data will be helpful, new data will be
available through technologies like sensors which should improve
predictions.

AI techniques, such as machine learning (ML), can be leveraged
to provide clinical risk prediction to improve patient safety. Data-
driven ML algorithms have advantages over rule-based
approaches for risk prediction, as they allow simultaneous
consideration of multiple data sources to identify predictors and
outcomes. Healthcare organizations are increasingly implement-
ing ML and other forms of AI to improve patient care and
outcomes. However, substantial impacts to safety and reduction of
associated costs related to safety issues will require further
acceptance of these technologies across the larger ecosystem
including regulatory agencies and the marketplace.
Evidence suggests that the majority of healthcare harms fall

into the following domains: healthcare-associated infections
(HAIs), adverse drug events (ADEs), venous thromboembolism
(VTE), surgical complications, pressure ulcers, falls, insufficient
decompensation detection, and diagnostic errors—including
missed and delayed diagnoses7,8. These domains are centered
around hospital harm, and other issues undoubtedly play a role,
but these adverse events account for the bulk of harm in hospitals.
The goal of this paper was to conduct a scoping review to
evaluate if AI has the potential to improve healthcare safety by
reducing the frequency of adverse events within these eight major
domains of harm.

METHODS
This scoping review is reported in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews (PRISMA-ScR)9.
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Search strategy
A structured search was used to query MEDLINE (Ovid) for relevant
articles published on or before October 25, 2019. Two main
concepts of AI and patient safety, including the eight harm
domains, were mapped to the most relevant controlled vocabu-
lary using Medical Subject Headings (MeSH), and free-text terms
were added where necessary. The full search strategy is provided
in Supplementary Note 1.

Inclusion and exclusion criteria
The scoping review included studies that focused on the
application of AI for prediction, prevention, and/or early detection
of events in each of the harm domains in hospital, outpatient,
community, and home settings. No comparisons were required,
and all study designs were considered for inclusion. Articles were
excluded if they were not published in the English language or
reported on the use of AI to measure the frequency of harm
events (e.g., post-marketing surveillance of drugs). Applications in
robotics were also excluded. Detailed inclusion and exclusion
criteria are provided in Supplementary Table 1.

Screening and data abstraction
Articles were screened in two stages using Covidence (Australia), a
web-based review management tool. Titles and abstracts were
screened for relevance, and eligible records were evaluated based
on full-text articles by a single reviewer. Additional articles were
identified through handsearching. For each article included in the
scoping review, citation information was exported from Covidence
into an Excel spreadsheet and harm domains were manually
abstracted by a single reviewer.

Scoping review
The characteristics of studies that reported on the use of AI to
improve patient safety were summarized. The literature was
narratively synthesized for each harm domain highlighting key
examples of how AI can be leveraged for prediction, prevention,
and/or early detection of patient harms. Selected examples of
traditional and novel data sources that could be used to develop
AI algorithms to improve patient safety were summarized in
tabular form.

Evaluation of the potential for AI to improve patient safety
The findings of the scoping review were considered in the context
of incidence, cost, and preventability of events to evaluate the
potential of AI for improving safety. Current literature reporting on
incidence, cost, and preventability was summarized for the eight
harm domains in tabular form. Cost estimates were adjusted to
United States dollars (USD, 2019) using the Producer Price Index to
facilitate comparisons across the domains10. Projections around
the likelihood of AI to improve safety in each of the harm domains
were made and attractive early targets were identified as part of
the Discussion.

RESULTS
Characteristics of included studies
From 2677 unique records, 392 articles met the inclusion criteria
for the scoping review and are presented in Supplementary Table
2. A modified Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) flow diagram is provided in Fig. 1.
The majority of studies were pre-clinical and relied on retro-
spective analyses of data. Most algorithms were not externally
validated or tested prospectively. The incidence, cost, and
preventability of events for each harm domain are presented in

Table 1. Traditional and novel data sources that can be used to
develop AI algorithms are presented in Table 2.

Healthcare-associated infections
Approximately 3.2% of inpatients experienced HAIs in 2015
(ref. 11). The estimated annual cost for five significant HAIs is
10.7 billion (USD, 2019)12. Up to 70% of specific HAIs are
considered preventable using existing evidence-based strate-
gies13. The scoping review identified 54 articles (see Supplemen-
tary Table 2) describing the use of AI for prediction or early
detection of HAIs.
ML and fuzzy logic (i.e., logical reasoning models based on

incomplete or ambiguous data) have been applied for early
detection of HAIs. Most algorithms were developed using claims-
based data and information captured in electronic health records
(EHRs) including laboratory test results and diagnostic imaging.
With the integration of novel complex data, AI-based analytics
could expedite detection and further improve diagnostic accuracy.
For example, data from eNoses (i.e., chemical vapor sensors) have
been analyzed using ML methods to rapidly detect ventilator-
associated pneumonia (area under the curve (AUC)= 0.98),
differentiate between six common wound pathogens (accuracy
= 78%), and classify various strains of Clostridium difficile
(sensitivities >80%; specificities >73%)14–16.
AI can also contribute to infection control by providing real-

time, accurate predictions of HAI risk to guide patient-specific
interventions before an infection occurs. For example, a random
forest classification algorithm can predict onset of central line-
associated bloodstream infections with an AUC of 0.82 (ref. 17).
AI can also play a role in improving adherence to existing safety

protocols; for instance, computer vision using a convolutional
network classifier has been applied to monitor hand hygiene
compliance in the hospital setting (accuracy= 75%). Similarly, an
ML algorithm was developed to provide real-time hand hygiene

Fig. 1 PRISMA flow diagram showing disposition of articles. The
asterisk denotes that some studies addressed multiple harm
domains.
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alerts in the outpatient setting based on data from multiple types
of sensors, improving compliance from 54% to 100%18,19. These
technologies are increasingly being applied to complex problems
and could be used to improve other aspects of infection control,
including sanitation or adherence to condition-specific safety
protocols20,21.

Adverse drug events
In 2014, ADEs were associated with 1.6 million hospitalizations in
the U.S., totaling an estimated 30.0 billion (USD, 2019), with ~½
million ADEs occurring during hospital stays (2.1% of inpatients)
and ~1 million present on admission (5.1% of admissions)22. About
one in four ADEs are considered preventable given what is known
today23. The review located 52 papers (see Supplementary Table
2) about leveraging AI to reduce the frequency of ADEs.
AI-based analytics can be applied to predict previously

unreported ADEs based on drug similarities including chemical
structure, mechanism of action, and polypharmacy side
effects24,25. Deep learning methods using neural fingerprints have
been shown to not only predict adverse drug reactions with an
AUC of ~0.85, but also identify the associated molecular sub-
structures26. These algorithms can inform the evidence-based
development of safer medications. Similar techniques can be
applied to predict drug–drug interactions for untested combina-
tions of drugs24.
At the point of care, ML can be applied to analyze multiple

datasets, including traditional patient data documented in EHRs
(e.g., medical history, laboratory test results) with novel data (e.g.,
bioactivity of single nucleotide polymorphisms (SNPs)), to provide
personalized ADE risk estimates and treatment recommendations
to support decision making. Using genomic sequencing data, an
artificial neural network (ANN) algorithm was developed to guide
safer and more effective dosing of warfarin, predicting therapeutic
dose with an accuracy of 83% in patients with international
normalized ratios (INRs) >3.5 (ref. 27).

Venous thromboembolism
Approximately 3.3% of inpatients develop VTEs, including deep
venous thromboses (DVT) and pulmonary emboli (PE), with an

estimated cost of 15.1–30.4 billion (USD, 2019) annually7,28.
Adherence to current evidence-based strategies could reduce up
to 70% of healthcare-associated VTEs29.
AI techniques can be used to identify patients at high risk for

VTEs. The review located 26 articles (see Supplementary Table 2)
about AI algorithms to prevent or safely rule out VTE. One study
applied a super learner ensemble approach to identify inpatients at
higher risk of future VTEs with an AUC of 0.69 (ref. 30). Prediction
can also be applied to manage at-risk populations in the outpatient
setting; for example, a multiple kernel learning algorithm was
developed to predict VTE risk among patients undergoing
chemotherapy with a sensitivity of 89%, markedly outperforming
the recommended Khorana score (sensitivity= 11%)31.
AI methods could also recommend optimal patient-specific

treatments. As described above, ML leveraging genomic sequen-
cing data was used to guide safer warfarin dosing resulting in a
reduced time to achieving a therapeutic INR (OR= 6.7) compared
with standard clinical dosing27.
To date, AI has mostly contributed to VTE detection through the

analysis of diagnostic imaging or radiologic reports. ML methods
can also be applied to guide appropriate use of diagnostic
imaging. For example, an ANN was applied to safely rule out DVT
without ultrasonography in 38% of patients with a false-negative
rate of only 0.2%32. Similarly, an ANN model was developed to
guide computed tomography use for diagnosis of PE33. The
algorithm achieved an AUC of 0.90 using an internal validation
sample and 0.71 using external data, reiterating the importance of
external validation for all AI or ML models.

Surgical complications
Surgical complications are common; 16.0% of patients receiving
invasive procedures experience a post-operative complication
within 30 days34. Annual U.S. costs associated with complications
following emergency general surgery are 7.5 billion (USD, 2019)35.
It is estimated that 42.1% of complications following emergency
non-trauma surgery are preventable36.
ML use cases include predicting adverse events in both the

operative and post-operative setting. Eighty-one papers that
leveraged AI to reduce surgical complications were located
through the scoping review (see Supplementary Table 2).

Table 1. Incidence, cost, and preventability of events in the eight harm domains from the peer-reviewed literature.

Patient safety domain Population (years): incidence Annual total cost adjusted to
U.S. (2019) dollarsa

Population: % preventable

Healthcare-associated
infections

Inpatients (2015 data): 3.2%11 $10.7 billion12

[five significant HAIs]
Inpatients: 65% to 70%13

[CABSI or CAUTI];
55%13 [VAP or SSI]

Adverse drug events Inpatients (2014 data): 2.1%22

Present on admission (2014 data): 5.1%22
$30.0 billion22 Inpatients: 28%23

Venous thromboembolism Inpatients (2013 review): 3.3%7 $15.1 to $30.4 billion28 Inpatient to 90 days after discharge:
70%29

Surgical complications Inpatients (2014–2017 data): 16.0% within
30 days34 [invasive surgery]

$7.5 billion35

[emergency general surgery]
Inpatients: 42.1%36 [emergency non-
trauma surgery]

Pressure ulcers Inpatients (2009–2010 data): 2.7%44 $28.2 billion45 Inpatients: 97%46

Falls Inpatients (2013 review): 1.1%7 $53.4 billion51 Inpatients: 87.5%46

Decompensation Inpatients (2013 data): 3.6%57 [septicemia]
Inpatients (2005–2015 data): 13.2%58

[failure-to-rescue after complications of
trauma surgery]

$25.7 billion57

[septicemia]
Inpatients: 24.2%58 [failure-to-rescue
after complications of trauma surgery]

Diagnostic errors Outpatients (2014 review): at least 5.1%72 Exceeding $100 billionb (ref. 71) Unknown

CABSI catheter-associated bloodstream infection, CAUTI catheter-associated urinary tract infection, HAI healthcare-associated infection, SSI surgical site
infection, U.S. United States, VAP ventilator-associated pneumonia.
aEstimates adjusted to U.S. (2019) dollars using the Producer Price Index10.
bEstimate not adjusted to U.S. (2019) dollars.
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Predicting blood loss, need for prolonged post-operative
intubation, post-operative mortality, pain, nausea, and vomiting
all represent areas with demonstrated improvements to current
risk tools37–40. For example, an ANN-based model achieved an
accuracy of 92% at stratifying post-operative bleeding risk in
patients undergoing cardiac pulmonary bypass37. Another ANN
algorithm was developed to predict the need for prolonged
ventilation after coronary bypass grafting (AUC= 0.71–0.73)38.
Early intervention in these situations could translate into
substantial improvements in patient safety.
An area of active research is the use of ML to recognize critical

procedural steps in intra-operative videos. ANNs have been
trained to identify the steps of laparoscopic sleeve gastrectomy
procedures with an accuracy of 82%, and to determine whether
the critical view of safety had been achieved in laparoscopic
cholecystectomy videos, yielding an accuracy of 95%41,42. ML
algorithms that can identify key operative components might be
used in the future during procedures to warn surgeons of
deviations from an expected sequence of steps or omission of
critical elements. Other ML approaches in surgery on the horizon
include computer precision pre-operative evaluation, augmented
reality in the operating room, technical skills augmentation such
as suturing, and ultimately autonomous robotic surgery43.

Pressure ulcers
Approximately 2.7% of hospitalized patients in the U.S. develop a
pressure ulcer44. The annual financial burden associated with
treatment is estimated to be 28.2 billion (USD, 2019)45. Up to 97%
of hospital-acquired pressure ulcers are preventable46.
The scoping review identified 18 articles (see Supplementary

Table 2) that used AI for management of pressure ulcers. To date,
most AI research in this area has focused on using sensor data for
early detection; as such, using AI to predict future risk remains an
area of opportunity. A recent study developed a random forest
model, using EHR data to classify critical care patients based on
their risk of developing pressure ulcers (AUC= 0.79 vs. 0.68 for the
Braden Scale)47. Earlier studies tested the feasibility of using smart
beds and wheelchair cushions for pressure ulcer detection using
fuzzy logic and ML models, respectively48,49. Tracking data from
embedded sensors, these algorithms detected a lack of move-
ment and identified specific areas of skin that were at risk of
developing an ulcer. Although the models were able to produce
detection accuracy of up to 90% in experimental settings, their
application and utility in notifying care providers and promoting
early intervention remain uncertain.

Falls
In 2014, 7.0 million fall-related injuries occurred among adults
aged 65 and older50. These falls are estimated to account for 53.4
billion (USD, 2019)51. In the hospital, ~1.1% of inpatients
experience a fall and 87.5% of these falls are considered
preventable7,46. Forty-seven articles (see Supplementary Table 2)
identified through the scoping review described the use of AI for
prediction or early detection of falls.
AI approaches could be used to predict fall risk at the point of

care using existing data from EHRs. For example, a support vector
machine model was able to predict inpatient falls based on data
documented from the previous day52. However, the model
showed a sensitivity of 65% and a specificity of 70%, which are
comparable to existing clinical risk assessments.
Many studies have applied ML methods for the early detection

of falls. Classification models using data from wearable sensors in
a laboratory setting showed relatively high levels of accuracy
(54–84%) at stratifying subjects based on their risk of falls53,54.
Using data from cameras, smart carpets, and wearable sensors
intended for use in the home environment, support vector
machine classifiers have been developed to detect falls, as well asTa
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to identify deviating gait patterns as predictors of future falls55,56.
These models achieved accuracies of up to 100% in fall detection
based on experimental and training datasets; however, their
usability and applicability in real-world settings needs further
testing.

Decompensation
Clinical deterioration in the hospital remains common. For
example, 3.6% of inpatients develop sepsis, costing an estimated
25.7 billion (USD, 2019) annually57. The failure-to-rescue rate
following complications of trauma surgery, such as sepsis, is
estimated at 13.2%, and one in four of these deaths are
considered preventable58. However, prediction and early detec-
tion of decompensation remain a challenge in all areas of
medicine.
The review located 84 papers (see Supplementary Table 2) that

used AI to predict or detect the early signs of decompensation.
Most research has focused on sepsis detection, which has seen
improvements compared to traditional methods although, as with
most ML algorithms, its generalizability may be poor59–63. It is
likely that the detection of decompensation will improve by
adding new categories of data, including biometric sensors such
as continuous telemetry, motion activity sensors such as time
spent in the bathroom or bedroom, novel biomarkers, and
relevant patient-reported measures64–69. For example, ML has
been used for early detection of sepsis using novel gene

expression biomarkers with AUCs ranging from 0.86 to 0.92
(ref. 68). An AI tool has also been developed using a random forest
model to predict nocturnal hypoglycemia from midnight to 6 am
with an AUC of 0.84 based on continuous glucose monitoring to
provide real-time feedback to inform optimal diabetes manage-
ment before going to sleep70.

Diagnostic errors
Diagnostic errors—both missed and delayed diagnoses—are
relatively common in both inpatient and outpatient settings and
estimated to occur in at least 5.1% of the U.S. population each
year, with associated costs exceeding 100 billion (USD, 2016)
annually71,72.
The scoping review identified 73 articles (see Supplementary

Table 2) that leveraged AI to reduce diagnostic error. ML has
widely demonstrated reduced errors in interpretation of ima-
ging73. It has also proven beneficial for early diagnosis of lung
cancer by analyzing exhaled breath using an eNose sensor; the
support vector machine was able to classify cancer patients vs.
non-cancer controls with a sensitivity of 87% and a specificity of
71%74. AI techniques are also being applied to reduce delays for
critical diagnoses; for example, a clinical decision support system
based on fuzzy logic was able to appropriately triage patients
presenting to an emergency department with an accuracy of
>99%—a 13% increase compared with traditional methods75.

Table 3. Evaluation of the potential of artificial intelligence to improve patient safety in the eight harm domains.

Patient safety domain Likelihood of impact

Healthcare-associated infections AI may have a moderate impact on the reduction of HAIs given that current evidence-based practices are already
effective when applied well.

Adverse drug events AI can play a major role in ADE prevention. As more patients at risk of ADEs are accurately identified before a
medication is administered or prescribed, a greater proportion of these events will become preventable. However,
a key challenge lies in the lack of integrated high-quality datasets in which ADEs have been accurately captured. A
variety of automated approaches have been effective at identifying patients likely to have experienced an ADE, but
typically clinician adjudication is still required. ML could also help identify patients who may benefit from
additional testing for specific single nucleotide polymorphisms to guide optimal drug therapy. These methods may
also help to identify signals from the remainder of the genome beyond single nucleotide polymorphisms which
may have prognostic impact.

Venous thromboembolism We believe that AI will have a moderate effect on the reduction of VTE, as current evidence-based preventive
strategies are already effective. AI solutions could provide further insights by identifying patients who could benefit
from diagnostic testing for inherited thrombotic disorders to inform management of their condition.

Surgical complications AI can be expected to have a moderate impact on the prediction and prevention of surgical complications both in
the operating room and during recovery. Most complications felt to be preventable today are related to delayed
diagnoses or intervention, technical issues, and infections. Given the overlap with other harm domains, focusing on
advances in these other areas will likely also improve surgical safety.

Pressure ulcers Pressure ulcers represent an attractive target with moderate to high potential for AI to prevent harm. Novel data
sources such as motion and fluid sensors are now available, and large numbers of traditional clinical variables can
be combined with the sensing data to predict who is at risk to guide evidence-based prevention.

Falls AI is anticipated to have a moderate impact on fall prevention, given that this area has already received substantial
attention and current risk mitigation strategies are effective. As with pressure ulcers, clinical data combined with
sensing data can be used to predict when falls may occur, and which ones are likely to be associated with the
most harm.

Decompensation Leveraging novel data sources and AI has high potential to improve the prediction of decompensation to guide
preventive strategies as well as early intervention to mitigate the impacts including premature death, given that
current approaches are not effective. Given the serious nature of these events, preventing decompensation is a
particularly attractive target. ML can deeply analyze data, beyond the standard values of heart rate or heart rate
variability and will be critical to improving detection of decompensation and subsequent intervention.

Diagnostic errors Diagnostic error is the most complex of the eight harm domains with vast opportunities for improvement using
novel data sources and AI. ML could help to reduce the frequency of diagnostic errors by leveraging pattern
recognition, bias minimization, and infinite capacity, areas where diagnosticians often falter. Although this area has
garnered a lot of attention, many outstanding challenges remain, and current solutions only address a small
fraction of what is possible. Most crucial to constructing valuable ML algorithms that help to reduce diagnostic
error is the availability of large databases that accurately report errors.

ADE adverse drug event, AI artificial intelligence, HAI healthcare-associated infection, ML machine learning, VTE venous thromboembolism.
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A recent issue of the journal Diagnostics was devoted to this
area76, and articles addressed diagnosis of a number of conditions.
Another recent review summarized the main classes of problems
that they believed AI systems are well suited to solve77.

DISCUSSION
Based on epidemiologic evidence and our scoping review, we
believe that there are major opportunities to improve safety using
data and AI across the eight domains to reduce the frequency of
harm (Table 3). We expect AI to have the greatest impact in areas
where current strategies are not effective, and integration and
complex analysis of novel, unstructured data are necessary to
make accurate predictions, which applies specifically to ADEs,
decompensation, and diagnostic errors.
However, the application of AI and ML to improve patient safety

is an emerging field and most of these algorithms have not yet
been externally validated or tested prospectively. Promising
performance based on development or internal validation
samples may not translate into improvements in real-world
practice. Algorithms may be limited in generalizability, and
performance may be affected by the clinical context where the
solution is implemented. Although the level of evidence is modest
for all domains, we are highlighting what we believe to be the
most promising areas.
Future research must focus on careful evaluation of clinical

decision support systems based on AI analytics prior to wide-
spread implementation to ensure safety and accuracy. From a
technical perspective, candidate algorithms and tools should be
validated at other sites, account for differential performance in
subgroups, and explicitly report the uncertainty around any
estimates or recommendations78. Furthermore, papers describing
model development and performance assessments should adhere
to reporting standards for transparency and provide important
information about validity, biases, and generalizability to other
settings79. Once high-quality AI solutions are developed, addi-
tional factors beyond performance must be considered to increase
the likelihood of successful implementation and adoption by
individual providers. There is an active area of research focused on
identifying key barriers and facilitators to implementation of AI-
based tools in healthcare78,80,81.
With data available today, especially laboratory information,

imaging and continuous vital sign data, it should be possible to
reduce the frequency of many types of harm. However, when the
data are available, they are often unstructured, simply not in any
documented form, or disputed. High-quality, large annotated
databases will prove quite fruitful in minimizing patient harm in
the future. New types of data, especially from the huge array of
sensing technologies becoming available, but also including data
from various other sources like information supplied directly by

patients, genomic sequencing, and social media, offer new
opportunities to improve predictions as the first step toward
development of preventive interventions to improve safety. These
types of data are becoming available and more accessible over
time for research and to drive innovation82–84.
In addition, automated detection of safety issues of all types,

but especially harm outside the hospital (e.g., post-marketing
surveillance of drugs), will make routine measurement of the
frequency of harm possible. While some of this will be rule-based,
data-driven AI will also undoubtedly play a role.
This study has several limitations. The search query extracted

evidence from a single database to identify published articles
focused on the eight harm domains, and other literature may be
available. Screening and data abstraction were completed by a
single reviewer. The projections were informed by the incidence,
cost, and preventability of harm as well as effectiveness of current
strategies and promise of AI solutions.

CONCLUSIONS
Overall, AI has great potential to improve the safety of care (Fig. 2).
In our view, harm domains including ADEs, decompensation, and
diagnostic errors represent particularly attractive early targets.
Transparent population-based datasets, which include diverse
traditional (e.g., EHR, claims) and novel data (e.g., sensors,
wearables, broader determinants of health), will be essential to
build robust and equitable models. For AI to be effective,
implementation of data-driven analytics will require organizations
to develop, support, and iterate clinician, team, and system
workflows for continued patient safety improvements.
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