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Abstract: Epithelial-mesenchymal plasticity (EMP) underlies embryonic development, wound heal-
ing, and cancer metastasis and fibrosis. Cancer cells exhibiting EMP often have more aggressive
behavior, characterized by drug resistance, and tumor-initiating and immuno-evasive traits. Thus,
the EMP status of cancer cells can be a critical indicator of patient prognosis. Here, we compare three
distinct transcriptomic-based metrics—each derived using a different gene list and algorithm—that
quantify the EMP spectrum. Our results for over 80 cancer-related RNA-seq datasets reveal a high
degree of concordance among these metrics in quantifying the extent of EMP. Moreover, each metric,
despite being trained on cancer expression profiles, recapitulates the expected changes in EMP scores
for non-cancer contexts such as lung fibrosis and cellular reprogramming into induced pluripotent
stem cells. Thus, we offer a scoring platform to quantify the extent of EMP in vitro and in vivo for
diverse biological applications including cancer.

Keywords: EMT scoring; hybrid epithelial/mesenchymal; single-cell RNA-seq; cellular reprogramming

1. Introduction

Epithelial-Mesenchymal Plasticity (EMP) is an important feature of cancer metasta-
sis and therapy resistance, the two major clinical challenges that claim the majority of
cancer-related deaths [1]. EMP involves dynamic and reversible switching among multiple
phenotypes along the epithelial-hybrid-mesenchymal spectrum. It encompasses both EMT
(Epithelial-to-Mesenchymal Transition) and MET (Mesenchymal-to-Epithelial Transition).
Originally considered to be binary transitions, EMT and MET are both now understood as
multi-step processes, and cells can execute these programs to varying degrees, enabling
one or more hybrid epithelial/mesenchymal (E/M) phenotypes [2–4]. EMP usually entails
changes in cell–cell adhesion, migration, and invasion; while EMT is often involved with
cells escaping the primary tumor and initiating metastasis, MET is thought to be important
for colonization, the last step of metastasis. Besides these features, EMP is also implicated in
conferring tumor-initiation potential [5,6], immune evasion [7–9], and resistance to various
chemotherapeutic drugs and targeted therapies [10–12]. Thus, EMP can be considered as
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the “motor of cellular plasticity” [13], which enhances cancer cell fitness in a variety of
biological contexts.

Recent preclinical and clinical observations have suggested the high metastatic poten-
tial of hybrid E/M phenotypes, and their association with worse patient survival across
cancer types [14–21]. Hybrid E/M phenotypes have also been observed in circulating
tumor cells (CTCs); their higher frequency is often concomitant with worse clinicopatho-
logical features [22–25]. The ability of hybrid E/M cells to form clusters of CTCs can also
escalate their metastatic fitness, given the disproportionately high metastatic burden of
CTC clusters [26–28]. Given the context-specific diversity of hybrid E/M phenotypes [29],
it is imperative that EMP be quantified as a continuum or spectrum, through integrating
various experimental and/or computational methods.

At the transcriptomic level, various computational methods have been proposed to
quantify the EMP spectrum by calculating the extent to which a given sample has undergone
EMT/MET (hereafter, referred to as the “EMT score”). First, using gene expression from
non-small cell lung cancer (NSCLC) cell lines and patients, a 76-gene EMT signature was
identified and then used to derive a score (hereafter, referred to as the “76GS score”) based
on the relative enrichment of expression levels of epithelial-associated genes. The 76GS
score is a weighted sum of the expression levels of these 76 genes, with the weight being
the correlation coefficient of the corresponding gene with that of E-cadherin (CDH1) levels
in the given dataset. Thus, the higher the 76GS score is, the more epithelial a given sample
is [30,31]. Second, a two-sample Kolmogorov–Smirnov method was used to calculate a
score (hereafter, referred to as the “KS score”) on the interval [-1, +1] to depict the EMP
status of cell lines and tumors using a set of around 300 genes containing epithelial and
mesenchymal associated ones. The higher the KS score is, the more mesenchymal a sample
is [32]. Third, a multinomial logistic regression method implemented on NCI-60 expression
data quantified the extent of EMT on the interval [0,2] (hereafter, referred to as the “MLR
score”) by calculating the probabilities for a given sample to belong to E, M, or hybrid E/M
states [33]. Three predictor genes, together with a few normalizers, are used to predict
the EMT status using the MLR metric. Higher MLR scores depict a relatively enriched
mesenchymal phenotype. Notably, all these scoring metrics have been originally trained
on microarray datasets.

A previous study compared these three methods—each of which utilizes a distinct
gene list and algorithm—and observed that these methods were largely well-correlated
with one another in terms of quantifying EMP across multiple microarray datasets [34].
This analysis suggested that the EMT scores were concordant among one another, i.e., the
76GS scores correlated negatively with their MLR and KS counterparts, both of which
positively correlated with one another (as the higher the 76GS scores are, the more epithelial
the samples are, whereas in the case of KS and MLR, it is the opposite, the higher the scores
are, the more mesenchymal the samples are). However, the following two key questions
remain unanswered: (a) can all three of these scoring metrics quantify the EMP spectrum
for bulk and single-cell RNA-seq data with the same level of consistency? (b) can these
scores, all constructed on cancer-related datasets, be helpful in estimating the extent of
EMP in non-cancer scenarios as well?

Here, we have addressed these limitations by analyzing multiple bulk and single-cell
RNA-seq datasets, as well as investigating both microarray and RNA-seq datasets for the
following two non-cancer cases where EMP has been reported: (a) lung diseases—chronic
obstructive pulmonary disease (COPD) and fibrosis [35,36] and (b) reprogramming induced
pluripotent stem cells (iPSCs) [37]. We demonstrate consistency amongst the EMT scoring
metrics in quantifying the EMP spectrum across these biological contexts, as well as the
heterogeneity of EMP phenotypes in single-cell RNA-seq datasets. Finally, through a
pan-cancer analysis of RNA-seq data available via The Cancer Genome Atlas (TCGA), we
show that the association of EMP with patient survival is context-specific. Despite using
diverse gene-sets and methodology to quantify EMP, a convergence of these three methods
suggests commonalities in the different trajectories that cells undergoing EMT/MET can
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take in a high-dimensional landscape. Moreover, our results offer proof-of-principle that
these metrics, all of which were derived based on cancer, can successfully quantify EMP in
other useful non-cancer biological contexts too.

2. Materials and Methods
2.1. Software and Datasets

We downloaded high-throughput transcriptomics data (bulk and single cell) from
GEO and EMBL-EBI databases. Microarray datasets were downloaded using GEOquery R
Bioconductor package [38]. TCGA expression and survival data were obtained from the
UCSC Xena browser (https://xena.ucsc.edu/) (accessed on 18 November 2020). Statistical
analysis, survival analysis and plots were all conducted in R version 4.0.3. Function ggplot
was used for plots.A list of all softwares used and their URL is given in Table S9.

2.2. Preprocessing of Datasets

After downloading the HTS datasets, a quality check was performed using FASTQC [39]
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on 18 November
2020). Bulk and single-cell RNA seq data were aligned to reference genome (hg38/mm10,
appropriately) using STAR- aligner [40]. Samtools [41] was used to modify alignment files
(SAM/BAM), and htseq-count [42] was used to calculated the read counts. Using these read
counts, TPM expression was calculated using custom scripts and log2 normalized TPM
values were used for calculating the EMT scores. In the case of microarray datasets, they
were preprocessed to obtain the gene-wise expression for each sample from probe-wise
expression matrix. If there were multiple probes mapping to one gene, then the mean
expression of all mapped probes was considered for that gene.

2.3. T-Test

Two-tailed Student’s t-test with unequal variance was performed to compare be-
tween samples in many bar plots. Error bars denoted the standard deviation (statistical
significance at p < 0.05).

2.4. Calculation of EMT Scores

EMT scores were calculated using all three methods—76GS, KS, and MLR—as pre-
viously conducted for microarray datasets [34]. MLR method, which was designed for
microarray datasets [33], was adjusted to work for HTS transcriptomics data as well. The
KS method has two gene lists—one for cell line, one for tumor. The corresponding gene
list was applied, depending on the dataset. A list of genes common among the different
scoring metrics is given in Table S8.

2.5. MLR Model Applied to RNA-Seq

We adapted a previously developed method of quantifying EMT spectrum trained on
and designed to predict microarray samples [33]. Briefly, VIM, CDH1, and CLDN7 tran-
scripts were identified to maximally predict NCI-60 holdout samples in a leave-one-out as-
sessment utilizing two-dimensional multinomial logistic regression (MLR). These, together
with a list of 20 normalizers, enable the assignment of each input (CLDN7, VIM/CDH1) to
an ordered triple (PE, PE/M, PM) that characterizes the probability that a signature belongs
either to the Epithelial (E), Mesenchymal (M), or hybrid (E/M) group. This ordered triplet
is then projected onto the interval [0,2] with 0 designating a fully epithelial signature,
1 maximally hybrid signature, and 2 fully mesenchymal signature.

To apply the microarray based MLR model to RNA-seq data, we utilized transcrip-
tomic data available in both formats on biological replicates [43]. Using the data available
in Figure 2 (2 biological replicates for each of 6 time points), we restricted our analysis to
the intersection of microarray and RNA-seq transcripts for genes represented in positive
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abundance for both datasets. Linear regression to the average of each biological replicate,
producing a total of 6 slope-intercept pairs:

yFPKM→µArray = [xFPKM 1]
[

1.17 1.19 1.21 1.22 1.22 1.20
−6.82 −7.04 −7.26 −7.31 −7.10 −6.93

]
(1)

yTPM→µArray = [xTPM 1]
[

1.16 1.19 1.21 1.23 1.24 1.20
−6.83 −7.04 −7.26 −7.31 −7.10 −6.93

]
(2)

which were then averaged to be used as the fit parameters for cross-platform assessment:

yFPKM =
[
xµArray 1

][ 1.21
−7.08

]
=

[
xµArray 1

][ mFPKM
bFPKM

]
(3)

yTPM =
[
xµArray 1

][ 1.21
−7.08

]
=

[
xµArray 1

][ mTPM
bTPM

]
(4)

From these, unique microarray values, xµArray, representative of RNA-seq values, may
be calculated by the following inversion:

xµArray =
(
yRNASeq − bRNAseq

)
/mRNASeq. (5)

2.6. Survival Analysis

Different metrics of survival data were obtained from TCGA cohort. All samples were
divided into 76GShigh and 76GSlow, MLRhigh and MLRlow, KShigh and KSlow groups based
on the mean (or median) of the respective scores of the samples. Kaplan–Meier analysis
was performed using R package “survival” and plotted using R package “ggfortify”. A log
rank test was used to calculate the p-values. The reported hazard ratio (HR) and confidence
interval (95% CI) were estimated using cox regression.

2.7. ssGSEA

Single-sample GSEA (ssGSEA), an extension of Gene Set Enrichment Analysis (GSEA),
calculates separate enrichment scores for each pairing of a sample and gene set. Each
ssGSEA enrichment score represents the degree to which the genes in a particular gene set
are coordinately up- or down-regulated within a sample. We used “HALLMARK_EMT”
gene set from The Molecular Signatures Database (MSigDB) database and the scores were
calculated using R package “ssgsea”.

3. Results
3.1. EMT Scoring Methods Show Concordant Trends across Bulk RNA-Seq Datasets

We used the three different EMT scoring methods—76GS, KS, and MLR—to quan-
tify the extent of EMP in multiple RNA-seq datasets, as was previously conducted for
microarray datasets [34]. Each method utilizes a distinct gene signature and underlying
algorithm to compute an EMT score. The 76GS score is a weighted sum of the expression
of 76 genes, where the weight factor is the correlation coefficient of that gene with the
expression levels of CDH1 (E-cadherin), a canonical epithelial marker. Thus, a higher 76GS
score corresponds to a more epithelial sample [30,31]. The KS scoring method compares the
empirical distribution function to the cumulative distribution function for epithelial and
mesenchymal signatures identified in cell lines and tumors. The KS score is constructed
by taking the maximal difference in these distributions for each predictor, followed by
normalization by the number of predictors, thus taking values between −1 and +1. Pos-
itive (resp. negative) KS scores correspond to a relative enrichment of the mesenchymal
(resp. epithelial) signature [32]. The Multinomial Logistic Regression-based (MLR) method
quantifies the extent of EMT on a scale of 0–2. MLR scores are calculated based on the
probability of a given sample being assigned to the E, E/M, and M phenotypes. Thus,
the higher the score is, the more mesenchymal the sample is [33]. While KS and 76GS
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methods operate on gene lists and can therefore be directly applied to both microarray and
RNA-seq data, the MLR method utilizes the NCI-60 microarray data as a training set for
regression. Therefore, applying these methods for analyzing RNA-seq data needs further
customization, especially the MLR method.

We extended the previous MLR framework trained on the microarray-based tran-
scriptomics of NCI-60 series to impute log2-normalized FPKM (Fragments Per Kilobase
of transcript per million Mapped reads) or TPM (Transcripts Per Million) RNA-seq data.
To achieve this, the log2 RNA-seq values for three predictors (CLDN7 (claudin 7), VIM
(Vimentin), CDH1 (E-cadherin)) and 20 normalizers were linearly mapped to their cor-
responding microarray values (Figure 1A). This mapping was estimated for both FPKM-
and TPM-normalized data by averaging over 24 previously published samples [43] where
log2 microarray and log2 RNA-seq expression signatures were simultaneously available
(Figures S1 and S2). The output of the updated MLR approach assigns a numerical EMT
score, S, on the scale of [0,2] based on the probability of a sample’s categorization into one
of the following three groups: E, E/M and M.

To check the concordance of these three EMT scoring metrics, we calculated the 76GS,
KS, and MLR scores for 77 bulk high-throughput transcriptomics datasets. As expected,
we found the 76GS scores to be negatively correlated (r < −0.3; p < 0.05) with the MLR
and KS scores and found a positive correlation (r > 0.3; p < 0.05) between the MLR and KS
scores across most datasets that contain cell lines and primary tumors across cancer types
(Figure 1B–D; Table S1). A total of 44 out of the 77 (57.14%) datasets showed all three trends
significantly (KS vs. MLR, MLR vs. 76GS, and 76GS vs. KS). Additionally, 52 (67.53%) cases
exhibit the expected trends for 76GS vs. KS, similar to those seen for MLR vs. 76GS-56
(72.72%), and for MLR vs. KS-57 (74.02%) (Figure 1E). Furthermore, 72 datasets (93.5%)
show concordance in the calculated EMT status/score in at least two of the three metrics.
Thus, the MLR, 76GS, and KS scoring metrics show strong concordance among themselves
for these 77 datasets.

Next, among these 77 datasets, we investigated several individual datasets where
the EMT/MET phenomenon was induced in different tissues and cell lines. We found
that the Py2T murine epithelial tumor cells that exhibit reversible EMT upon treatment
with TGF-β in vitro had lower KS and MLR scores but higher 76GS scores as compared to
the MT∆Ecad cells that represent irreversible EMT murine mammary gland tumor cells
(Figure 2A; GSE118612) [44]. Thus, all three EMT scores captured the expected trend
of Py2T cells being more epithelial relative to MT∆Ecad (murine breast cancer cells with
ablated E-cadherin). Further, in mammary epithelial cells (MCF10A), the depletion of Runx1
results in striking morphological changes consistent with EMT [45]. Consistently, Runx1
depleted MCF10A cells had higher KS and MLR scores, but lower 76GS scores (Figure 2B;
GSE85857). Similarly, TGF-β-treated primary airway epithelial cells as well as TGF-β- and
EGF-treated HeLa cells had a more mesenchymal profile as assessed by 76GS, KS and
MLR scores, consistent with their reported experimental trends (Figure 2C,D; GSE72419,
GSE61220) [46,47]. These scores were also able to recapitulate in vitro observations that,
while TGF-β treatment was able to induce EMT in MCF10A cells, the extent of EMT
induced was decreased upon the knockdown of ZEB1 (Figure 2E, GSE1248423) [48], a
key EMT-inducing transcription factor in many cancers [49]. ZEB1 forms a mutually
inhibitory feedback loop with GRHL2, a crucial MET-inducing factor, and the knockdown
of GRHL2 is known to push epithelial or hybrid E/M cells into a more mesenchymal
phenotype [50–53]. Therefore, the OVCA429 cells with GRHL2 knockdown had higher
MLR and KS scores, but reduced 76GS scores, as compared to the control, reflective of
their more mesenchymal status (Figure 2F, GSE118407) [54]. Similarly, Grhl2-null embryos
had reduced levels of other gatekeepers of the epithelial phenotype (Ovol1, Ovol2, and
miR-200 family [52,55,56]) and elevated levels of Zeb1, commensurate with their altered
KS, 76GS, and MLR scores (Figure 2G, GSE106130) [57]. ZEB1 is directly activated by
Twist [58], another well-characterized EMT inducer [59]. Thus, the activation of Twist
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in HMLE (human mammary gland epithelial cells) corresponded to higher KS and MLR
scores and reduced 76GS scores (Figure 2I; GSE139074) [60].
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Figure 1. Schematic of the interconversion of MLR microarray and MLR RNA-seq scores and pairwise
correlation plots of the three EMT scoring metrics. (A) Adaptation of microarray-based MLR approach
to predict RNA-seq-based input. Predictors (resp. normalizers) in the NCI-60 microarray training
set were selected as performed previously, based on their ability (resp. inability) to resolve the EMT
status of the training set. Poor candidates (red X) in each case were omitted from inclusion in the
proctor and normalizer set. Histograms (teal bars) and corresponding spline interpolate density
function estimates (black curves). Linear regression between RNA-seq and microarray data given in
Zhao et al. 2014 was used to relate a unique value of RNA-seq signal to the microarray-based model,
conducted for both FPKM and TPM values. (B–D) Plots showing the pairwise correlation of EMT
scoring metrics across 77 bulk RNA-Seq datasets, and for each sample –log10 (p-value) is plotted
as a function of Pearson’s correlation coefficient. Thresholds considered for correlation (R < −0.3
(green points) or R > 0.3 (red points); vertical dashed grey lines) and p-values (p < 0.05; horizontal
dashed grey lines) are denoted. Cyan points represent cases for which R > −0.3 and R < 0.3. (E) Venn
diagram depicting the overlap of pairwise and full concordance for datasets that are significantly
correlated in the expected direction.
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Figure 2. KS, 76GS, and MLR scores for different EMT associated datasets. (A) Py2T long term
cells and mesenchymal breast cancer cells (MT∆ECad) treated with different inhibitors (GSE118612).
(B) MCF10A cells with or without depletion of Runx1 (GSE85857). (C) EMT induction in Hela cells
by TGF-β + EGF (GSE72419) treatment. (D) EMT induction in small airway epithelial cells by TGF-β
(GSE61220). (E) MCF10A cells with/without ZEB1 knocked out (KO) untreated or treated with
TGF-β (GSE124843). (F) OVCA4209 cells with/without GRHL2 knockdown (GSE118407). (G) Grhl2
KO and wild type (WT) mice (GSE106130). (H) Primary, pre-malignant immortalized, and Ras-
transformed human mammary epithelial cells (GSE110677). (I) EMT induction in HMLE/Twist-ER
cells by tamoxifen (GSE139074). (J) EMT status in HNF-1β-deficient mIMCD3 cell lines (GSE97770).
*: p <0.05 for Students’ t-test.
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Similarly, these scoring metrics could recapitulate the activation of EMT in pre-
malignant immortalized and Ras-transformed HMECs (human mammary epithelial cells)
as compared to primary HMECs (GSE110677; Figure 2H). Finally, in the context of renal
fibrosis caused by the loss of HNF-1β [61], HNF-1β deficient renal epithelial cells mIMCD3
showed upregulated mesenchymal traits relative to wild-type cells, as again captured
by the KS, 76GS, and MLR scores (Figure 2J; GSE97770) (Table S2). Together, these case
studies demonstrate that each scoring metric can capture the extent of EMT induced upon
various perturbations, consistent with the enrichment of EMT depicted by the Hallmark
EMT geneset in MSigDB (Molecular Signature Database) (Figure S3) portal [62], in various
cancer types as well as in human and mouse cancer cells.

3.2. Single-Cell RNA-Seq Data Analysis Reveals Heterogeneity along the EMP Spectrum

After investigating bulk RNA-seq datasets, we calculated EMT scores for 17 single-cell
RNA-seq datasets using 76GS, KS, and MLR metrics. For example, in a dataset containing
5902 single cells isolated from 18 patients with oral cavity tumors (head and neck squamous
cell carcinoma), we observed a negative correlation between 76GS and KS scores, and
between 76GS and MLR ones, with, however, a positive correlation between the KS and
MLR scores (Figure 3A; GSE103322) [17]. This trend was largely seen across other single-cell
RNA-seq datasets as well, where, similar to our previous results for bulk RNA-seq datasets,
roughly 65% (11/17) of datasets showed a negative correlation for 76GS vs. KS scores, 59%
(10/17) of datasets had a negative correlation for MLR vs. 76GS, and 53% (9/17) exhibited
a positive correlation for MLR vs. KS (Figures 3B,C and S4A). Thus, the concordant trends
observed for these metrics using bulk transcriptomics were found to be conserved for
single-cell RNA-seq datasets as well (Table S3).

Next, we plotted the histograms for the EMT scores of various single-cell RNA-seq
datasets to decipher the heterogeneity seen along the EMP spectrum across a variety of
biological contexts: 1. human embryonic stem-cell-derived progenitor cells differentiating
to endoderm (GSE75748) [63]; 2. human fetal pituitary gland development including
progenitors of many endocrine cell types and subtypes (GSE142653) [64]; 3. cells from
different tissues and organs of E9.5 to E11.5 mouse embryos (GSE87038) [65]; 4. MCF10A
cells treated with TGF-β for varying durations and exhibiting a gradual change in their
EMT status (PRJNA698642) [66]; 5. murine pancreatic duct cells with variations along the
EMP spectrum (GSE159343) [67]; 6. EpCAM+ and EpCAM- squamous skin carcinoma
cells with varied epithelial and/or mesenchymal features (GSE110357) [68]; 7. cells from
oral cavity tumors/head and neck squamous cell carcinoma (GSE103322) [17]; 8. human
colorectal cancer cell lines and tumors (GSE81861) [69], and 9. mouse hair follicle stem
cells and transit-amplifying cells (GSE90848) [70]. Across these cases, we observed two
distinct peaks in KS scoring metrics (Figure 3C), suggesting the presence of at least two
major subpopulations with varied EMT status.

Of note, several plots for the 76GS and MLR metrics appeared saturated, which we
hypothesized related to the relative sparsity of the predictor signal in the single cell datasets.
For the MLR approach, we then restricted our analysis to datasets with at least 90% of all
single-cell samples containing nonzero entries for each predictor, indicating the presence
of measurable signal. In these cases, MLR and 76GS metrics were able to recapitulate the
trends observed in KS for many such datasets (Figure S5A,B).
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Figure 3. Concordance across EMT scoring methods in single cell RNA-Seq datasets. (A) Scatter
plot of pairwise correlation estimated by linear regression (blue) in GSE103322 dataset. (B) (Left)
Plots showing the correlation of MLR vs. KS EMT scoring metrics for different single-cell RNA-Seq
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3.3. Quantifying the EMP Spectrum during Lung Diseases and Cellular Reprogramming

All of the three EMT metrics (76GS, KS, MLR) have been designed and/or trained
for quantifying the EMT status in cancer samples [30,32,33], but our single-cell RNA-seq
data analysis suggests their applicability in various developmental contexts. Thus, we
investigated if they can be broadly applied to quantifying the EMT status in biological
processes other than cancer. For non-cancer biological contexts, we had not previously
looked at EMT score calculations in either microarray or RNA-Seq datasets; thus, for both
microarray and RNA-seq datasets (Table S4), we used these metrics to calculate the EMT
status for lung diseases including chronic obstructive pulmonary disease (COPD) and
idiopathic pulmonary fibrosis (IPF) where EMT is reported to be involved in initiating
and/or aggravating the disease [35].

As compared to normal lung tissues, the fibrotic lung tissues from IPF patients had
higher KS scores but lower 76GS scores, indicating their enhanced mesenchymal status
(Figure 4A, i; GSE72073); however, the MLR scores show opposite trends than expected.
Fibrotic lung tissues had reduced levels of USP13, a deubiquitylase that stabilizes PTEN,
and in vitro analysis suggested that USP13 deficiency increased the invasive and migratory
capacities of fibroblasts, traits usually associated with EMT [71]. Similarly, relative to
healthy volunteers, COPD patients showed increased EMT in their bronchoalveolar lavage
(BAL) cells (Figure 4A, ii; GSE73395) [72]. Consistently, as compared to normal lung tissue,
patients with any of the three lung pathological situations—IPF, non-specific interstitial
pneumonia (NSIP) and mixed IPF-NSIP—exhibited trends of enhanced EMT (Figure 4A,
iii; GSE110147) [73]. Further, RNA-seq analysis of lung tissues of patients with acute lung
injury (ALI) and IPF had higher MLR and KS scores but reduced 76GS scores (Figure 4A,
iv; GSE134692), consistent with earlier reports [74–76].

After investigating these few examples, we analyzed the trends among the KS, MLR,
and 76GS scores obtained for 46 microarray or RNA-seq datasets associated with lung
injury. Reinforcing the trends seen for cancer-related datasets, 76GS and MLR scores were
negatively correlated in roughly 72% (33/46) of datasets. Similarly, 76GS and KS scores
correlated negatively in ~41% (19/46) of datasets. Further, KS and MLR scores correlated
positively in ~54% (25/46) of datasets (Figures 4B and S4B). Overall, we see a strong
concordance among the three EMT scoring metrics for non-cancerous lung diseases too.
Thus, for patients suffering from IPF, COPD, or lung injury, tracking their EMT status can
help identify the degree of progression of the disease.

Further, we investigated a set of datasets related to the cellular reprogramming of
differentiated cell types to induced pluripotent stem cells (iPSCs), where EMT/MET are
reportedly involved [37] (Table S5). Across the 92 datasets for which we calculated the 76GS,
KS, and MLR EMT scores, roughly 62% (57/92) showed a positive correlation between
MLR and KS, while 67% (62/92) showed a negative correlation between KS and 76GS,
and approximately 74% (68/92) showed a negative correlation between the corresponding
76GS and MLR ones. Overall, 54% (50/92) of datasets demonstrated all three pairwise
correlations to be strong (Figure 4C and S4C), thus endorsing that these EMT scoring
metrics can be quite consistent with one another in terms of identifying the EMP status of
cells en route to cellular reprogramming.
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Figure 4. Concordance across all three EMT scoring methods in COPD/IPF and reprogramming
datasets. (A) Bar plots showing EMT scores of different datasets calculated using three EMT scoring
methods—(i) Lung tissues of healthy cases and IPF patients (GSE72073), (ii) EMT status in BAL cells
of healthy volunteers and COPD patients (GSE73395), (iii) Lung tissues of IPF, NSIP, and Mixed
IPF/NSIP patients, as well as healthy lung tissue (GSE110147), (iv) EMT status in lung tissues of
Normal, ALI, and IPF patients (GSE134692). (B) (Left) Plots of the correlation of MLR vs. KS EMT
scoring metrics across 46 datasets. For each sample, −log10 (p-value) is plotted as a function of
Pearson’s correlation coefficient. Thresholds for correlation (R < −0.3 or R > 0.3; vertical dashed
grey lines) and p-values (p < 0.05; horizontal dashed grey lines) are shown. (Right) Venn diagram
depicting the common datasets across all pairwise comparisons that are significantly correlated in
the expected direction. (C) Same as (B) but for reprogramming associated datasets. *: p < 0.05 for
Students’ t-test.
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3.4. Context-Specific Association of EMP Status with Patient Survival

Next, we quantified the EMT scores in patient samples using TCGA datasets of various
cancer types. Here, also we found the expected trends that the 76GS scores show negative
correlation with the MLR and KS scores and KS and MLR scores are positively correlated to
each other (Figure 5A), reinforcing our observations for a pan-cancer analysis of microarray
datasets (Table S6) [77]. We also calculated Single-set Gene Set Enrichment Analysis
(ssGSEA scores) [78] using the EMT gene set from MSigDB [62]. Each ssGSEA enrichment
score represents the degree to which the genes in a particular gene set are coordinately
regulated within a sample. We find that the ssGSEA scores for EMT show, as expected,
a negative correlation with the 76GS scores and a positive correlation with the MLR and
KS scores.

We also assessed the association between the EMT scores and patient survival using
different survival data types (Overall survival (OS), Disease-Specific Survival (DSS), Pro-
gression free interval (PFI), and Disease-free interval (DFI)) in various TCGA cancer cohorts.
The samples were scored using all three methods and segregated into high and low groups
based on the mean value of each EMT score. The 76GSlow subgroup can be thought of as
comparable to the MLRhigh and KShigh groups, given their relatively strong M signature. In
bladder cancer (BLCA; Figure 5B, top), we see consistent trends in the case of overall sur-
vival (OS) for all three types of EMT scores that the stronger the M phenotype is, the worse
the survival probability is; whereas in the case of Low-Grade Glioma (LGG), we see the
opposite trend, that is, the stronger the M phenotype is, the better the survival probability
is (Figure 5B, middle). Similarly, in Thyroid Cancer (THCA) and Kidney Chromophobe
(KICH), higher MLR scores (a more M phenotype) reflect worse survival outcomes, but
in pancreatic adenocarcinoma (PAAD), they associate with better outcomes (Figure 5B,
bottom), indicating a context-specific association of the extent of EMT with patient survival.
A pan-cancer analysis reveals further evidence for this context-specific behavior; hazard
ratio (HR) > 1 and HR < 1 scenarios were both observed depending on the cancer subtype
in TCGA (Figures 5C and S6). For instance, in breast cancer (BRCA), stomach adenocarci-
noma (STAD), and in uveal melanoma (UVM), similar to BLCA, stronger M phenotypes (as
identified by KShigh or 76GSlow) corresponded to worse overall survival. However, similar
to PAAD, for the cases of kidney renal papillary cell carcinoma (KIRP), thymoma (THYM),
and low-grade glioma (LGG), the stronger the M phenotype is (as identified by 76GSlow),
the better the survival is.

While the concept of EMP may not as be as stringently applicable to non-epithelial
cancers such as LGG, these pan-cancer observations highlight the following two key
aspects: (a) the categorization of patient samples with more vs. less M phenotypes is largely
consistent across the three scoring metrics used, and (b) the often-assumed association
of EMT with worse survival is not a universal feature; instead, it depends on the specific
cancer subtype.

After investigating the OS data, we calculated the survival probabilities through other
metrics as well—DSS, PFI and DFI, wherever available. For DSS, we found that the KIRP
samples with a stronger M phenotype (as identified by MLRhigh or 76GSlow) reflect poorer
survival. This trend held for PFI as well (Figure 6A; columns 1, 2); however, this is in
contrast to the observations for KIRP for OS earlier. On the other hand, consistent with
observations made for OS, for LGG samples, an improved DSS and PFI was associated with
a stronger M phenotype (as identified by MLRhigh or 76GSlow) (Figure 6B; columns 1, 2).
The DFI for Head and Neck Squamous Cancer (HNSC) indicates a worse prognosis as-
sociated with a stronger M phenotype (as identified by MLRhigh or 76GSlow) (Figure 6A;
column 3), opposite to that seen for the case of Uterine Carcinosarcoma (UCS) (Figure 6B;
column 3), indicating that the UCS samples with enriched M phenotypes correspond to
improved disease-free survival. Together, the context-specific association of EMT with
patient outcome in cancer types is visible across many clinical metrics—OS, DSS and PFI,
suggesting caution in categorizing patients based on EMT for any treatment strategies
(Table S7).
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Figure 5. EMT scoring in TCGA datasets and survival analysis using patient samples. (A) Scatter plot
of pairwise correlation estimated using linear regression (blue) in TCGA datasets. (B) Correlation
between EMT score (high vs. low) and overall survival (OS) in various TCGA datasets. Kaplan–
Meier survival analysis is performed to estimate differences in survival for different EMT metrics.
p-values (p) reported are based on log rank test. The values of Hazard ratio (HR) with 95% confidence
interval (CI) values are included. (C) Plot of log2 hazard ratio (HR; mean ± 95% confidence interval)
comparing overall survival (OS) of 76GS (left) and KS (right) EMT scoring metrics on different TCGA
cancers and cohorts. p-values are based on log-rank test, and those with significant differences
(p < 0.05) are marked with a star (*); **: p < 0.01; ***: p < 0.001.
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in survival for different EMT metrics. p-values (p) reported are based on the log rank test. The values
of Hazard ratio (HR) with 95% confidence interval (CI) values are included. (A) Plots for (kidney
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4. Discussion

Quantifying the spectrum of epithelial-hybrid-mesenchymal cell states in cancer has
garnered recent interest due to a surge in the availability of in vitro and in vivo spatial
and/or temporal dynamic and high-throughput data at multiple levels—transcriptomic,
proteomic, epigenetic, metabolic, and morphological [66,79–88]. Phenotypic plasticity and
heterogeneity along the EMP spectrum have been postulated to be a more important criteria
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for defining the survival fitness of a cancer cell population than the predominance of a
specific phenotype [89,90], suggesting possible benefits to a more heterogeneous population
through cooperation among cancer cells with varying EMP phenotypes [91,92]. For single
cells, hybrid E/M phenotypes are believed to be the most plastic relative to their more
“extreme” epithelial and mesenchymal counterparts; such plasticity can amplify the tumor-
initiation ability [18,93]. Therefore, characterizing the EMP as a continuous spectrum
instead of as an “all-or-none” process becomes imperative for an improved understanding
of the emergent dynamics of EMT and MET, and their relevance to patient survival.

Here, we used three different EMT transcriptomic-based scoring metrics, each of which
was developed using cancer cell lines and/or tumor samples and tested on microarray
data previously to quantify the extent of EMT in a continuum—76GS, KS, MLR. Using
these metrics, we calculated EMT scores for over 100 RNA-seq datasets—including at
bulk and single-cell levels—across multiple biological contexts (cancer (Figures 2 and 3),
fibrosis, COPD, and cellular reprogramming to iPSC (Figure 4)). We observed that these
methods show a high degree of concordance among themselves in their ability to identify
the extent of EMT/MET a sample has undergone, despite using different gene lists and
algorithms (Table S8). This concordance suggests an overlap of the core expression patterns
central to EMT in a high-dimensional feature space and indicates that these metrics—
initially developed for cancer samples—can be applied more generally to a broader range
of biological contexts.

Using these metrics in biological contexts where hybrid E/M states have been pro-
posed [35,94,95] may be helpful in mapping the corresponding trajectories of EMT/MET.
The hybrid E/M state has been previously documented at both bulk and single-cell levels
during various stages of development as well [65,96]; here, we have shown proof of the
principle that these scoring metrics can successfully quantify the extent of EMP in mouse
models. We are, however, not suggesting that any one particular method is better than
the others. These scores are calculated using three different gene sets and different algo-
rithms and still shows concordance in various biological contexts. Our results detail the
concordance amongst the three methods on many of the testing examples, and in doing
so, illustrate the context-specific strengths of each method. However, whether they can be
adapted to adequately investigate the role of EMT in applications for other non-human
model organisms remains to be investigated. Another direction of future work includes
that given sufficient patient data, the EMT spectrum quantification within a given cancer
subtype can provide an early forecast for disease aggressiveness based on historically
aggressive EMT signatures.

In our analysis of single-cell RNA-seq data, the resolvability of bimodal distributions
consistent with dual sub-populations was optimally characterized using the KS scoring
metric. Improvements in the MLR and 76GS approaches were observed when restricting
the analysis to datasets with non-zero MLR predictors for a majority (>90%) of the single-
cell samples. These scores, while concentrated in the middle of the EMT interval, were able
to recover features of the distributions observed via the KS method. Together, this suggests
that the development of optimized signal-to-noise criteria, may improve the absolute
placement of samples on the EMT MLR spectrum and is the focus of our ongoing research
effort, building upon various tools used in the analysis presented here (Table S9). Future
efforts should also consider how these metrics can be adapted to investigate different
cell-state transition trajectories, for instance, by defining a two-dimensional (2D) EMT
score that can deconvolute gains in the mesenchymal program vs. losses in the epithelial
one [97]. The three EMT scoring metrics have been helpful in investigating the association
of EMT/MET with other aspects of cellular plasticity such as stemness [98], immune
evasion [99], and sensitivity to anti-cancer agents [100]. However, future work remains to
be conducted on how to connect these data-based metrics with insights from mechanism-
based dynamical models of EMT [101,102]. For instance, these data-based metrics can be
used to validate whether EMT and MET follow similar trajectories in a high-dimensional
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landscape; recent transcriptomic and proteomic experiments suggest hysteresis [87,103], as
has been identified from mechanism-based models [102].

Intriguingly, the EMT status of primary tumors was not found to be universally
correlated with worse patient survival, but instead showed a context-dependent trend
(Figures 5 and 6), consistent with previous reports [32]. EMP is a highly dynamic trait.
Thus, capturing static snapshots of gene expression profiles may not be sufficient for reca-
pitulating the dynamic dependence of cancer cell fitness on EMT and/or MET. Thus, the
EMT status and/or heterogeneity of a primary tumor may not reflect that of circulating
tumor cells (CTCs) and their metastatic potential, leading to such observed context-specific
trends. Moreover, transcriptomic profiles may not be sufficient to indicate phenotypic
variability and incorporate epigenetic and/or metabolic status can elucidate the manifesta-
tions of dynamic adaptation during metastasis. Understanding the interplay among EMT,
metabolic and epigenetic reprogramming [82,84,104–108] will be key for better patient
stratification and therapeutic strategies.
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//www.mdpi.com/article/10.3390/biom12010029/s1, Figure S1: Linear regression on log2 FPKM-
normalized RNA-seq and log2 microarray correlation plots; Figure S2: Linear regression on log2
TPM-normalized RNA-seq and log2 microarray correlation plots; Figure S3: Bar plots showing
ssGSEA scores of different datasets (ref Figure 2) calculated using EMT gene set from MSigDB;
Figure S4: Concordance among KS, 76GS, and MLR metrics in multiple biological contexts; Figure
S5: Heterogeneity in EMP; Figure S6: Kaplan–Meier analysis. Table S1: Details of 77 bulk RNA-seq
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coefficient and p-values); Table S6: Details of datasets included in EMT-ome [77] together with
pairwise correlation coefficient and p-values among EMT scoring metrics; Table S7: Details of survival
analysis of cancer types from TCGA cohort (OS, DFI, DSS and PFI) containing Hazard Ratio (HR),
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