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Strategies for Improving Potassium Use Efficiency 
in Plants  
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Potassium is a macronutrient that is crucial for healthy 
plant growth. Potassium availability, however, is often 
limited in agricultural fields and thus crop yields and 
quality are reduced. Therefore, improving the efficiency of 
potassium uptake and transport, as well as its utilization, 
in plants is important for agricultural sustainability. This 
review summarizes the current knowledge on the 
molecular mechanisms involved in potassium uptake and 
transport in plants, and the molecular response of plants 
to different levels of potassium availability. Based on this 
information, four strategies for improving potassium use 
efficiency in plants are proposed; 1) increased root volume, 
2) increasing efficiency of potassium uptake from the soil 
and translocation in planta, 3) increasing mobility of 
potassium in soil, and 4) molecular breeding new varieties 
with greater potassium efficiency through marker assisted 
selection which will require identification and utilization of 
potassium associated quantitative trait loci.  
1 
 
INTRODUCTION 
 
Potassium (K+) is one of the essential macronutrients that is 
necessary for plant health and it constitutes up to 10% of plant 
dry weight (Adams and Shin, 2014; Leigh and Wyn Jones, 
1984; Walker et al., 1996). Potassium plays critical roles in 
controlling ion homeostasis, osmoregulation, protein metabol-
ism, enzyme activity, membrane polarization, and various me-
tabolic processes (Amtmann et al., 2006; Hastings and Gutk-
necht, 1978; Schachtman and Shin, 2007; Walker et al., 1996). 
Additionally, fundamental physiological processes in plants, 
including photosynthesis, photorespiration, and growth are 
dramatically affected by K+ availability (Gattward et al., 2012; 
Pettogrew, 2008). Agricultural production in developed coun-
tries use fertilizers to increase crop yields and quality, however, 
excessive usage of fertilizers leads to the leaching of nutrients 
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from the soil and contributes to environmental pollution, without 
corresponding increases in yield. In contrast, insufficient fertiliz-
er application in countries where resources are limited results 
suboptimal yields (Food and Agriculture Organization of the 
United Nations, 2006). The present review discusses strategies 
to improve K+ use efficiency in plants by understanding the 
molecular mechanisms involved in K+ uptake and transport, as 
well as the molecular response of plants to different levels of K+ 
availability. 
 
K+ UPTAKE AND TRANSPORT 

 
K+ is the most abundant essential cation in plant cells with an 
average concentration of approximately 100 mM in the cytosol 
and 10-200 mM in the vacuole (Leigh and Wyn Jones, 1984; 
Voelker et al., 2006; Wang and Wu, 2013). K+ is involved in 
many aspects of cell physiology and metabolism, including cell 
expansion, enzyme activation, stomatal opening and turgor 
pressure maintenance. In order to maintain an appropriate con-
centration of K+, plant cells monitor K+ availability in roots. Al-
though the details of the mechanism that allow plants to sense 
K+ availability and absorb have not been fully elucidated, K+ 
channels and transporters are considered key players (Adams 
and Shin, 2014; Amtmann and Blatt, 2009; Fu and Luan, 1998; 
Gierth et al., 2005; Grabov, 2007; Hastings and Gutknecht, 
1978; Leigh and Wyn Jones, 1984; Schachtman and Shin, 
2007; Voelker et al., 2006; Wang and Wu, 2013). Higher plants 
utilize a dual affinity K+ uptake system for K+ acquisition, de-
pending on K+ availability (Epstein et al., 1963). Plants absorb 
K+ via the low affinity K+ uptake system, in which shaker type K+ 
inward rectifying channels play the main role, when K+ is suffi-
cient in the soil (> 100 M). In Arabidopsis, a shaker type K+ 
inward rectifying channel, ARABIDOPSIS K+ TRANSPORTER1 
(AKT1), which is expressed in the plasma membrane of the 
outer cell layers of roots, plays the major role in the low affinity 
K+ uptake system (Hirsch et al., 1998; Ros et al., 1999; Spald-
ing et al., 1999). Plant K+ channels have been reported to form 
a complex with other K+ channels. These complexes serve as 
the functional subunits of K+ channels and each subunit may be 
able to respond to a wide range of K+ conductance (Very and 
Sentenac, 2003). AKT1 forms a homotetramer and heterote-
tramer with another K+ channel, KC1, and this heteromeric 
complex acts as a functional subunit. While KC1 alone does 
not function as a K+ inward channel, AKT1 alone can form a 
functional homocomplex. The AKT1 homomeric complex, how-
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ever, has different features than the AKT1-KC1 complex (Da-
ram et al., 1997; Duby et al., 2008; Geiger et al., 2009; Jean-
guenin et al., 2011). The AKT1-KC1 complex is post-
translationally regulated by CALCINEURIN B-LIKE proteins, 
(CBLs)/CBL-INTERACTING PROTEIN KINASEs (CIPKs), and 
N-ethylmaleimide-sensitive factor attachment protein receptor 
(SNARE) proteins (Lan et al., 2011; Ren et al., 2013; Xu et al., 
2006).  

In contrast to the low affinity K+ uptake system, the high affini-
ty K+ uptake system is active when external K+ availability is low 
(< 100 M) and is comprised of electrochemical potential-driven 
type transporters (Britto and Kronzucker, 2008; Grabov, 2007; 
Maathuis and Sanders, 1992). The H+:K+ symporter, 
KT/KUP/HAK transporters, in higher plants are considered to 
play a crucial role in high affinity K+ transport. Barley HvHAK1 
was one of the first KT/KUP/HAK type K+ transporters identified 
in plants. The expression of HvHAK1 transporter is induced by 
K+ starvation and its product functions as a key player in high 
affinity K+ uptake (Santa-Maria et al., 1997). A large number of 
KT/KUP/HAK transporter genes are generally found in higher 
plant genomes. There are 13 members in Arabidopsis and 17 
members in rice (Banuelos et al., 2002; Rubio et al., 2000) and 
cluster I type KT/KUP/HAK transporters are also characterized 
as high affinity K+ transporters (Grabov, 2007). Among cluster I 
transporters, Arabidopsis HAK5 has been the most intensively 
studied (Gierth et al., 2005; Hong et al., 2013; Nieves-
Cordones et al., 2010; Qi et al., 2008). The HAK5 transporter is 
one of a few KT/KUP/HAK transporter genes whose expression 
is induced by K+ deficiency and decreased when K+ is resup-
plied (Ahn et al., 2004; Qi et al., 2008). KT/KUP/HAK type 
transporters are different than the shaker type inward K+ chan-
nels because they cannot readily discriminate ions among the 
alkali I metal group, such as Na+, Rb+ and Cs+. An even greater 
distinguishing characteristic is that the high affinity K+ transport 
mediated by KT/KUP/HAK transporters is blocked by ammo-
nium (NH4

+) (Qi et al., 2008; Szczerba et al., 2008). Importantly, 
KT/KUP/HAK type transporter complexes have not been con-
firmed in plants. However, various types of higher plant sym-
porters are known to form dimers such as: a nitrate transporter 
NRT1;1 (Sun et al., 2014; Yong et al., 2010), ABC transporters 
(Damas et al., 2011), and a sucrose transporter StSUT1 
(Liesche et al., 2008). It is therefore possible that KT/KUP/HAK 
form dimers but this remains to be experimentally determined. 

In addition to shaker type K+ channels and KT/KUP/HAK type 
transporters, other membrane proteins have been reported to 
play a role in K+ transport. HIGH‐AFFINITY K+ TRANSPOR-
TERs (HKTs), H+:Na+/K+ symporters, which are similar to the 
TrkH transporter in prokaryotes and the Trk transporter in fungi, 
are found in all plant species (Corratge-Faillie et al., 2010). The 
monocotyledons HKTs are involved in K+ and Na+ uptake but 
dicotyledons HKTs only function as Na+ transporters (Bertho-
mieu et al., 2003; Davenport et al., 2007; Garciadeblas et al., 
2003; Horie et al., 2001; 2007). A molecular analysis of HKT 
transporters has revealed that an amino acid substitution (se-
rine to glycine) in the dicotyledons HKT enables it to conduct K+ 
(Maser et al., 2002). Tonoplast-localized TANDEM-PORE K+ 
channels (TPKs, previously known as KCOs family) have also 
been identified as plant counterparts of animal KCNK K+ chan-
nels (Czempinski et al., 1997; 2002; Voelker et al., 2006). Ara-
bidopsis TPK1 has been confirmed to have outward K+ channel 
activity and to be activated by calcium (Ca2+) (Czempinski et al., 
2002; Voelker et al., 2006).  

Plant CYCLIC NUCLEOTIDE-GATED CHANNELs (CNGCs) 
are nonselective cation channels which bear structural similarity 

to shaker type K+ channels. Some CNGCs have been con-
firmed to have the ability to transport K+. There are 20 CNGC 
members in Arabidopsis (Demidchik et al., 2002) and CNGC1, 
CNGC2, CNGC4, CNGC10 and CNGC18 have been demon-
strated to have K+ transport activity (Adams and Shin, 2014; 
Frietsch et al., 2007; Leng et al., 1999; 2002; Ma et al., 2006). 
Some CATION/H+ EXCHANGERs (CHXs) are involved in K+ 
uptake and function in osmoregulation and homeostasis (Cel-
lier et al., 2004; Mottaleb et al., 2013; Padmanaban et al., 2007; 
Zhao et al., 2008). Two Arabidopsis GLUTAMATE RECEP-
TORs (GLRs), GLR1.1 and GLR1.4, have also been reported 
to play a role in K+ acquisition (Lacombe et al., 2001; Roy et al., 
2008; Tapken and Hollmann, 2008).  

Once plants absorb K+ from the soil via various channels and 
transporters as described above, there is a need for long dis-
tance K+ movement so that it can be distributed to the aerial 
portions of the plant. Various K+ channels are also known to be 
responsible for this process. An Arabidopsis outward rectifying 
K+ channel, STELAR K+ OUTWARD RECTIFIER (SKOR) pla-
ys a key role in K+ transport from the outer portion of the root to 
the xylem, a crucial process for long distance K+ movement (Liu 
et al., 2006). K+ EFFLUX ANTIPORTERs (KEAs) have been 
demonstrated to play a role in K+ loading into the xylem (Aran-
da-Sicilia et al., 2012; Yao et al., 1997). Several Arabidopsis 
shaker type inward rectifying K+ channels, including K+ 
CHANNEL IN ARABIDOPSIS THALIANA1 (KAT1) (Schach-
tman et al., 1992), KAT2 (Pilot et al., 2001), and AKT2/3 (Che-
rel et al., 2002; Deeken et al., 2002; Ivashikina et al., 2005), 
have been experimentally confirmed to function in phloem-
associated K+ movement.  

Intracellular K+ movement, such as K+ sequestration into va-
cuoles and K+-mediated guard cell movement, are also regulated 
by K+ channels. K+ sequestration into vacuoles may allow plants 
to absorb additional K+ and to help maintain adequate levels of 
cytosolic K+, thus providing tolerance to upcoming K+ deprivation. 
N+/H+ EXCHANGERs (NHXs) have been shown to be involved 
in K+ and Na+ sequestration into vacuoles (Bassil et al., 2012; 
Gaxiola et al., 1999; Liu et al., 2010; Rodriguez-Rosales et al., 
2009). Arabidopsis NHX3 plays a significant role in K+ sequestra-
tion and is important for establishing low K+ tolerance (Liu et al., 
2010). The regulation of stomatal opening and closing by the 
movement of guard cells, which act as gatekeepers for carbon 
dioxide, is a crucial feature for photosynthesis. The process of 
guard cells movement is osmotically driven. Activation of K+ in-
ward channels, such as the Arabidopsis KAT1 and KAT2 com-
plex (Lebaudy et al., 2010), the rice OsKAT2 and OsKAT3 com-
plex (Hwang et al., 2013a; 2013b), and the Arabidopsis Ca2+/H+ 
antiporter, CHX20 (Padmanaban et al., 2007), results in K+ influx 
into guard cells and stomatal opening. In contrast, an Arabidopsis 
outward rectifying K+ channel, GORK, controls stomatal closing 
through membrane depolarization and K+ efflux in an abscisic 
acid (ABA) dependent manner (Ache et al., 2000; Becker et al., 
2003). K+ uptake and transport are complex processes that are 
very interdependent and tightly regulated. To increase crop pro-
duction, improving K+ uptake from the soil and increasing effi-
ciency of K+ translocation should have a significant and positive 
impact. A deeper understanding of the function and regulation of 
K+ transporters and channels will be necessary to improve K+ 
uptake efficiency in plants. 

 
REGULATION OF K+ UPTAKE AND K+ DEFICIENT 
SIGNALING 

 
In the last decade, the regulatory components of K+ sensing 
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and signaling have been intensively studied. Even though the 
phenotypic response to K+ deficiency requires a period of time 
to manifest in plants, a short-term deficiency response occurs 
within a few hours, leading to the activation of the high affinity 
K+ uptake system (Adams and Shin, 2014; Schachtman and 
Shin, 2007; Shin and Schachtman, 2004). In Arabidopsis, 
Reactive Oxygen Species (ROS) produced by NADPH oxidas-
es, plays a critical role in low-K+ induced gene expression, as 
well as the activation of the high affinity K+ uptake system within 
6 h after low levels of K+ are perceived (Shin and Schachtman, 
2004). The expression of Arabidopsis HAK5 is regulated in a 
ROS dependent manner and the endoplasmic reticulum loca-
lized peroxidase, RCI3, is also involved in low-K+ induced ROS 
production, as well as HAK5 expression (Kim et al., 2010). 
Jung et al. (2009) reported that ROS induced by K+ deficiency 
accumulates in the root hair elongation zone in Arabidopsis and 
modulates low-K+ induced root hair elongation. In addition to 
the response to K+ deficiency, ROS is also involved in the re-
sponse to other macronutrient deficiencies, such as nitrogen 
(N), phosphate (P), and sulfur (S) (Schachtman and Shin, 
2007; Shin et al., 2005). Since low-K+ induced ROS accumula-
tion and HAK5 expression is inhibited in Arabidopsis by com-
pounds that block ethylene, it appears that ethylene is required 
for low-K+ induced ROS accumulation (Jung et al., 2009).  

Other phytohormones, such as jasmonic acid, auxin, cytoki-
nin, and ABA, have also been reported to be involved in plant 
response to K+ starvation (Armengaud et al., 2004; 2010; Kim 
et al., 2009; Nam et al., 2012; Shin et al., 2007). Several genes 
involved in jasmonic acid biosynthesis are induced by K+ star-
vation (Armengaud et al., 2004), and as a result, the levels of 
jasmonic acid are increased. Auxin has been shown to mod-
ulate lateral root growth under low K+ conditions where the 
levels of free indole-3-acetic acid and the expression of an 
Arabidopsis R2R3 type MYB transcription factor (MYB77) are 
dramatically reduced, resulting in a decrease in the number of 
lateral roots (Shin et al., 2007). There is also additional evi-
dence that auxin is involved in K+ signaling. One of the Arabi-
dopsis KT/KUP/HAK proteins, KUP4 has been implicated in 
auxin transport (Rigas et al., 2001; Vicente-Agullo et al., 2004) 
and the expression of maize and Arabidopsis K+ inward chan-
nels is up-regulated by auxin (Philippar et al., 2004; 2006).  

Cytokinins are also required for a number of different res-
ponses in K+ deficiency. Cytokinin levels are reduced under low 
K+ conditions, and cytokinins have been shown to play a role in 
low-K+ induced root hair growth, gene expression, and ROS 
accumulation (Nam et al., 2012). In contrast to cytokinins, the 
level of ABA increases under conditions of low K+ due to the 
inactivation of a negative regulator of ABA signaling by the low-
K+ induced nucleus-localized protein, NPX1 (Kim et al., 2009). 
Additionally, a guard cell-localized K+ channel, GORK, is tightly 
regulated by ABA (Becker et al., 2003) and the activation of an 
Arabidopsis K+ channel, KAT1 requires the phosphorylation by 
an ABA-activated kinase (Sato et al., 2009). Networks between 
phytohormones may serve as critical factors in the regulation of 
K+ sensing and signaling and they may be even more complex 
than described above. The role of these interactive networks 
and other phytohormones, such as brassinosteroids, gibberellin 
and strigolactone remains largely unknown. 

Ca2+ also plays a key role in K+ deficient signaling, as well as 
in ion homeostasis. Cytosolic Ca2+ levels dramatically increase 
when plants sense K+ starvation, leading to the activation of K+ 
channels. Elevated levels of Ca2+ induce the formation of CBL-
CIPK complexes that phosphorylate their target proteins such 
as AKT1 (Amtmann and Armengaud, 2007; Lan et al., 2011; 

Luan et al., 2009; Wang and Wu, 2013). CBL1 and CBL9 form 
a complex with CIPK23, which then phosphorylates and acti-
vates AKT1, resulting in enhanced K+ uptake (Lan et al., 2011; 
Xu et al., 2006). In other examples, the CBL4-CIPK6 complex 
has been shown to regulate AKT2/3-mediated K+ currents 
(Held et al., 2011), and CBL3-CIPK9 has been demonstrated to 
control K+ homeostasis (Liu et al., 2013). The various combina-
tions of CBLs-CIPKs may be able to control diverse biological 
processes since Arabidopsis has ten CBL proteins (Kudla et al., 
1999) and at least 25 CIPKs (Luan et al., 2009). More exam-
ples of complexities in the regulation of K+ channels are also 
provided by the interaction of K+ channels with PROTEIN 
PHOSPHATASE 2C (PP2C) (Cherel et al., 2002; Lan et al., 
2011) and SNARE proteins (Honsbein et al., 2009). PP2Cs 
directly interact with the kinase domain of CIPK in the CBL-
CIPK complex and dephosphorylate CIPK, resulting in the inac-
tivation of AKT1 (Cherel et al., 2002; Lan et al., 2011). SNARE 
proteins have been known to play a role in the vesicle traffick-
ing that occurs in response to various biotic stresses (Collins et 
al., 2003; Pajonk et al., 2008), and to bind to ion channels 
(Leung et al., 2007; Leyman et al., 1999; Sokolovski et al., 
2008; Sutter et al., 2006; 2007). An Arabidopsis SNARE protein, 
SYP121, is involved in AKT1 regulation through selective bind-
ing to KC1 (Honsbein et al., 2009).  

In addition to phosphorylation/dephosphorylation, many K+ 
channels are regulated by their interaction with other proteins, 
such as 14-3-3 proteins (Latz et al., 2007; Rajan et al., 2002; 
Sottocornola et al., 2006; 2008; Xu and Shi, 2006). A variety of 
biological processes are modulated by 14-3-3 proteins via their 
interaction with phosphorylated target proteins (Oecking and 
Jaspert, 2009; Roberts, 2003). K+ currents in Arabidopsis me-
diated by KAT1 and TPK1 K+ channels are enhanced by their 
interaction with 14-3-3 proteins (Latz et al., 2007; Sottocornola 
et al., 2006). Additionally, some isoforms of 14-3-3 are tran-
scriptionally induced by K+ deficiency (Shin et al., 2011; Xu and 
Shi, 2006). It is speculated that many more regulatory compo-
nents are also involved in the regulation of K+ channels and K+ 
deficient signaling. Interaction between these components is an 
important component of the regulatory system. Further under-
standing of the regulatory mechanisms would provide greater 
opportunities for controlling K+ uptake and transport. 

 
INTERACTION WITH OTHER STRESS RESPONSES  
 
Many authors have reviewed the subject of the interaction be-
tween the regulation of K+ and other macronutrients (Amtmann 
and Blatt, 2009; Amtmann et al., 2006; Schachtman and Shin, 
2007; Wang and Wu, 2010; 2013). Amtmann and Armengaud 
(2009) summarized how various metabolites and enzymes are 
affected by the availability of different macronutrients. Limited N, 
P, K and S result in a reduction in photosynthesis and alterations 
in amino acid biosynthesis and enzyme activity. Malate, glucosi-
nolate, nitrate, glutamate, polyamine, and 2-oxoglutarate are all 
affected by deficiencies of various macronutrients, including K+ 
deficiency (Amtmann and Armengaud, 2009). The activity of 
pyruvate kinase is very sensitive to K+ availability (Guerrero-
Mendiola et al., 2009; Oria-Hernandez et al., 2005; 2006; Rami-
rez-Silva and Oria-Hernandez, 2003; Ramirez-Silva et al., 1993; 
2001). The level of phosphoenolpyruvate metabolized by pyru-
vate kinase is also altered by P starvation (Morcuende et al., 
2007). The transcriptional regulation of macronutrient deficiency 
responsive genes and nutrient transporters represent an addi-
tional complexity to these interactive networks. ROS levels are 
increased by N, P, K and S starvation (Morcuende et al., 2007; 
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Fig. 1. Strategies for improving the efficiency of K+ uptake and utili-
zation in plants. Regulating the expression of transcription factors 
involved in root hair (1a) and lateral root (1b) development could 
increase the root volume that is in contact with soil solution, thus 
providing increased access to K+. Overexpression of genes regulat-
ing K+ uptake (2a) and K+ translocation in planta (2b) could increase 
K+ accumulation in plants. Increased production of root exudates 
containing organic acids whose activity releases K+ into the soil 
solution could enhance K+ mobility (3). The use of K+ -associated 
QTLs in molecular breeding programs could be used for the devel-
opment on new cultivars with higher K+ use efficiency (4). 

 
 
 

Schachtman and Shin, 2007; Shin and Schachtman, 2004; Shin 
et al., 2005) and ROS plays a pivotal role in the transcriptional 
regulation of many genes responding to nutrient deprivation, 
including HAK5 (Amtmann and Blatt, 2009; Jung et al., 2009; 
Shin and Schachtman, 2004). Several transcription factors are 
also affected by deficiencies in various macronutrients (Hong et 
al., 2013; Shin, 2011). The nitrate transporter, NRT1.1, a dual-
mode transporter, is phosphorylated on threonine101 under low 
nitrate conditions by CIPK23 which is a key regulator of AKT1. 
When NRT1.1 is phosphorylated on threonine101 by CIPK23, it 
functions as a high affinity nitrate transporter but dephosphoryla-
tion of NRT1.1 leads to switching it to a low affinity nitrate trans-
porter (Ho et al., 2009; Tsay et al., 2011). Even though it is still 
unclear how CIPK23 regulates both NRT1.1 and ATK1, it ap-
pears that CIPK23 may work as a coordinator of K+ and nitrate 
uptake. The majority of the components involved in interaction 
between the different networks that respond to nutrient deficien-
cies are still obscure. Understanding the interaction between the 
molecular operation and regulation of different macronutrient 

systems in plants will help to improve crop production and the 
efficient use of fertilizers. 

K+ also functions as a regulator of biotic stress response. 
Several reports demonstrated that K+ limitation affects plant 
response to pathogen infection (Holzmueller et al., 2007; Sar-
war, 2012; Wang et al., 2013; Williams and Smith, 2001). This 
also links the positive regulators of pathogen resistance in 
plants such as ROS, jasmonic acid, and ethylene, to their ef-
fects on macronutrient systems and crop productivity. Abiotic 
stresses, such as drought, cold, and salt stress, are also 
strongly influenced by K+ availability. For example, K+ deficien-
cy has a negative impact on drought tolerance (Cakmak, 2005). 
Plant response to K+ deficiency and abiotic stresses, especially 
salt stress and drought stress, are similar to a certain extent. 
Abiotic stress and K+ deficiency restrict plant root growth and 
increase the production of ROS and phytohormones (Armen-
gaud et al., 2004; Cakmak, 2005; Schachtman and Shin, 2007; 
Shi et al., 2013; Wang and Wu, 2013). Most of the early res-
ponses (up to 24 h) to salt stress and K+ starvation are indistin-
guishable and the induced genes, signaling components, and 
phytohormones are fairly similar. For example, a nuclear pro-
tein X1 (NPX1) which regulates ABA dependent drought stress 
was originally isolated as a K+ deficiency induced gene (Kim et 
al., 2009). The similarity between the responses to these very 
different types of stress may be due to a need to maintain os-
motic pressure in both stresses. Furthermore, salinity stress is 
more directly related to K+ availability (Shabala and Cuin, 2008). 
An elevated Na+ concentration inhibits K+ uptake in plants and 
induces membrane depolarization which activates outward 
rectifying K+ channels (Shabala and Cuin, 2008; Shabala et al., 
2006) and finally results in K+ starvation in plants. 

  
STRATEGIES TO IMPROVE K+ USE EFFICENCY IN 
PLANTS 

 
K+ is not metabolized and is one of the most abundant of 
earth’s minerals, comprising approximately 2.5% of the lithos-
phere. Although plants can absorb K+ from the soil solution, the 
majority of K+ in soil is unavailable, existing in fixed and lattice 
forms (Ashley et al., 2006; Syers, 1998). In addition to the prob-
lem of limited availability of K+, other soil components also inter-
fere with the uptake of K+. For example, higher NH4

+ and Na+ 
concentrations interrupt K+ uptake by plant roots (Ashley et al., 
2006; Qi and Spalding, 2004). Soil moisture also has an influ-
ence on the efficiency of K+ uptake in plants.  

Since K+ Availability is one of the important factors regulating 
cell growth, such as root hair development (Desbrosses et al., 
2003; Ivashikina et al., 2001; Rigas et al., 2001) and pollen tube 
growth (Lu et al., 2011), plants growing under K+-limited condi-
tions are stunted and poorly developed. Plants have at least two 
mechanisms to adjust and adapt to limited K+ in order to survive. 
When plants perceive a K+ shortage, they increase their root 
volume, which in turn increases the capacity of roots to uptake 
more K+ from the soil. Plants also activate a high-affinity K+ up-
take system. Once plants cannot make adjustments to increase 
uptake of K+ and redistribution of available K+ internally, most 
likely from the vacuole, because K+ is limited; plants slow down 
their metabolism and eventually stop growing. In order to remedy 
the problem of reduced yields in agricultural crops due to K+ limi-
tation in plants, one could propose to either increase the use of 
fertilizer or to find a way to improve efficiency of K+ uptake, trans-
port and utilization. Based upon our current knowledge, four 
strategies are suggested for improving K+ use efficiency in plants 
(Fig. 1). 
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Increasing root volume to provide greater access to avail-
able K+  
Twenty-eight hour exposure of Arabidopsis plants to a K+ defi-
cient condition leads to increased root hair elongation. This is 
considered to be an adaptive response to increase the root 
volume for enhanced access to available K+ (Jung et al., 2009). 
Longer periods of K+ starvation, however, results in reduced 
shoot biomass and both primary and lateral root development 
(Armengaud et al., 2004; Shin et al., 2007). The increased 
length of root hairs in response to low K+ has also been ob-
served in pea, red clover, alfalfa, barley, rye, ryegrass and rape 
(Hogh-Jensen and Pedersen, 2003). Therefore, it is likely that 
plants try to increase root volume in order to cope with low K+ in 
soils. This enhancement of root hair volume could be achieved 
by overexpressing transcription factors that are directly involved 
in root hair development. A MYB like transcription factor, 
CAPRICE (CPC), is a positive regulator of root hair differentia-
tion (Kirik et al., 2004; Schellmann et al., 2002; Wada et al., 
2002) and the overexpression of a tomato CPC-like MYB gene 
(SlTRY), under the control of the Arabidopsis CPC promoter in 
a CPC mutant (cpc-2) of Arabidopsis, has been reported to 
result in increased numbers of root hairs (Tominaga-Wada et 
al., 2012). Overexpression of the low K+ induced AP2/ERF 
transcription factor 11 (RAP2.11) also results in enhanced root 
hair length (Kim et al., 2012). Additionally, overexpression of a 
cotton bHLH domain containing TCP transcription factor in 
Arabidopsis also positively regulates root hair initiation and 
elongation (Hao et al., 2012). Several Arabidopsis transcription 
factors, including MYB77 (Shin et al., 2007), NO APICAL 
MERISTEM CUP-SHAPED COTYLEDON1 (NAC1) (Xie et al., 
2000), KNOTTED-LIKE ARABIDOPSIS TRANSCRIPTION 
FACTOR 6 (KNAT6) (Dean et al., 2004), and a MADS box 
transcription factor (ANR1) (Montiel et al., 2004; Zhang and 
Forde, 1998), have been demonstrated to be positive regula-
tors of lateral root initiation. Overexpression of these transcrip-
tion factors under the control of a root specific promoter, or a K+ 
deficiency inducible promoter such as the Arabidopsis HAK5 
promoter (Jung et al., 2009), presents one promising strategy 
to improve K+ uptake efficiency.  

 
Increasing K+ uptake efficiency and K+ translocation in 
planta 
Enhancing the kinetics of K+ uptake is one of the most direct 
ways to improve K+ uptake efficiency. This approach involves 
activating the components of K+ uptake, such as K+ transpor-
ters, K+ channels, K+ channel/ transporter interacting proteins, 
and upstream components. Generally, low K+ availability in-
creases the rate of K+ uptake. Therefore, constitutive activation 
of the high affinity K+ uptake system even under optimal K+ 
conditions will help to increase K+ uptake. Hong et al. (2013) 
have reported that overexpression of transcription factors that 
activate the Arabidopsis high affinity transporter, HAK5, en-
hances tolerance to K+ deficiency. In some cases, however, 
plants overexpressing K+ transporters or upstream components 
of high affinity K+ uptake do not show increased K+ uptake and 
accumulation even though they exhibit some growth enhance-
ment or increased salt tolerance (Adams et al., 2014; Song et 
al., 2014). This may be due to a redundancy or tight regulation 
of the temporal and spatial expression of these proteins. This 
absence of an effect on K+ uptake could perhaps be alleviated 
by the use of either root specific or K+ deficiency induced pro-
moters. In addition to enhancing K+ uptake from the soil solu-
tion, improving K+ translocation in planta would greatly contri-
bute to K+ use efficiency. The efficiency of phloem K+ transport 

is directly linked to the rate of shoot growth which is dependent 
on adequate K+ availability (Ache et al., 2001; Deeken et al., 
2002; Martin et al., 1993). Arabidopsis SKOR mediates the first 
step of K+ long distance movement from the root to the shoot 
(Liu et al., 2006). KAT2, AKT2/3 and KEAs are also involved in 
intracellular K+ translocation (Adams and Shin, 2014; Deeken 
et al., 2003; Maser et al., 2001; Philippar et al., 2004; Yao et al., 
1997). Regulating the expression of these genes in a coordi-
nated manner may contribute to an improvement in K+ use 
efficiency, however, the validity requires further studies.  

 
Increasing mobility of K+ in the soil  
K+ availability can be increased by enhancing K+ mobility in the 
soil and the release of K+ from non-exchangeable forms (Ren-
gel and Damon, 2008). One factor that has a positive effect on 
K+ mobility is root exudates. Plants release organic acids such 
as malic acid and tartaric acid which result in increased K+ mo-
bility in soil (Wang et al., 2000). Inoculation of plant roots with 
Bacillus spp. bacteria increases root exudates and maize plants 
has been reported to increase K+ uptake and growth upon in-
oculation (Rengel and Damon, 2008; Sheng and He, 2006; 
Zhao et al., 2013). Thus, enrichment of beneficial microorgan-
isms may also be a useful strategy for improving K+ availability 
in soil.  

 
Molecular breeding using K+-associated quantitative trait 
loci (QTLs) 
Breeding efforts directed at improving yield have focused on 
improving nutrient use and uptake efficiency. K+ uptake and 
utilization efficiency varies within crop species and root traits 
also have a significant impact on determining crop yields (White 
et al., 2013a; 2013b). Root hair associated traits have been 
shown to be linked to higher P acquisition (Brown et al., 2013). 
Additionally, several shoot K+-accumulation-associated QTLs 
are located on chromosome 4 of Arabidopsis, which harbor 
KUP2, ATK2, KAT2 and TPK3 (White et al., 2010). These 
QTLs could be used in breeding programs utilizing marker as-
sisted selection. Chao et al. (2013) also have reported that 
tetraploid Arabidopsis has higher K+ accumulation than diploid 
or haploid Arabidopsis suggesting that ploidy level could also 
be a factor used to improve K+ accumulation. 

The ability to absorb K+ from soil is a prerequisite for plant 
survival and the ability to efficiently absorb, transport, and utilize 
K+ is directly linked to the quality and yield of crops. Therefore, 
improving K+ uptake and use efficiency in plants is a major 
target in the development of new crop cultivars. In this review, 
the current knowledge of the molecular processes involved in 
K+ uptake, translocation, and the responses to K+ availability is 
summarized. Based on this information, four strategies for im-
proving K+ use efficiency in plants are suggested (Fig. 1). The 
first strategy is directed at increasing root volume in order to 
obtain a large root surface area that is in contact with the soil 
solution. This could be accomplished by utilizing and overex-
pressing transcription factors that are directly involved in root 
development. The second strategy aims to improve K+ up-
take/translocation by activating various components of the K+ 
uptake/transport system. The third strategy involves enhancing 
K+ mobility in the soil. It is suggested that increasing root ex-
udates, which contain organic acids, would increase exchan-
geable and soluble K+ in the soil. Lastly, the fourth strategy 
focuses on the use of K+ efficiency-associated QTLs in breed-
ing programs. A complex set of interacting molecular networks 
involved in a variety of biochemical activities have a direct or 
indirect influence on K+ efficiency in field grown plants. Combi-
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nation of the suggested strategies and knowledge on the inte-
raction of the K+-related regulatory mechanisms with other 
regulatory networks might contribute to the development of new 
cultivars that could utilize macronutrients more efficiently under 
the conditions where the resources are limited. 
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