
Automated segmentation and source prediction of bone tumors using 
ConvNeXtv2 Fusion based Mask R-CNN to identify lung cancer metastasis

Ketong Zhao a,b,1, Ping Dai a,1, Ping Xiao c, Yuhang Pan a, Litao Liao a, Junru Liu a,  
Xuemei Yang a, Zhenxing Li a, Yanjun Ma a, Jianxi Liu a, Zhengbo Zhang d, Shupeng Li e,  
Hailong Zhang a, Sheng Chen a, Feiyue Cai a,*, Zhen Tan a,*

a Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, Guangdong Province, China
b Health Management Center, West China Lecheng Hospital of Sichuan University, Qionghai City 571400, Hainan Province, China
c Department of Otorhinolaryngology, Shenzhen Children’s Hospital, Shenzhen 518055, Guangdong Province, China
d Wuxi Hospital of Traditional Chinese Medicine, Wuxi 214071, Jiangsu Province, China
e State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen 518055, Guangdong Province, China

H I G H L I G H T S

• Developed a ConvNeXtv2 Fusion based Mask R-CNN model for automatic segmentation of bone tumors from CT scans.
• Utilized data from two hospitals to ensure robustness and generalizability of the model.
• Implemented advanced AI techniques to enhance diagnostic accuracy in bone metastases.
• Facilitated personalized treatment strategies by accurately identifying lung cancer metastasis.
• Demonstrated potential for reducing the need for extensive and costly diagnostic procedures.

A B S T R A C T

Lung cancer, which is a leading cause of cancer-related deaths worldwide, frequently metastasizes to the bones, significantly diminishing patients’ quality of life and 
complicating treatment strategies. This study aims to develop an advanced 3D Mask R-CNN model, enhanced with the ConvNeXt-V2 backbone, for the automatic 
segmentation of bone tumors and identification of lung cancer metastasis to support personalized treatment planning. Data were collected from two hospitals: Center 
A (106 patients) and Center B (265 patients). The data from Center B were used for training, while Center A’s dataset served as an independent external validation 
set. High-resolution CT scans with 1 mm slice thickness and no inter-slice gaps were utilized, and the regions of interest (ROIs) were manually segmented and 
validated by two experienced radiologists. The 3D Mask R-CNN model achieved a Dice Similarity Coefficient (DSC) of 0.856, a sensitivity of 0.921, and a specificity of 
0.961 on the training set. On the test set, it achieved a DSC of 0.849, a sensitivity of 0.911, and a specificity of 0.931. For the classification task, the model attained an 
AUC of 0.865, an accuracy of 0.866, a sensitivity of 0.875, and a specificity of 0.835 on the training set, while achieving an AUC of 0.842, an accuracy of 0.836, a 
sensitivity of 0.847, and a specificity of 0.819 on the test set. These results highlight the model’s potential in improving the accuracy of bone tumor segmentation and 
lung cancer metastasis detection, paving the way for enhanced diagnostic workflows and personalized treatment strategies in clinical oncology.

1. Introduction

Lung cancer remains a leading cause of cancer mortality globally, 
with an estimated 1.8 million deaths annually, accounting for nearly 
one-fifth of all cancer-related deaths [1–3]. Its aggressive nature and 
propensity for early metastasis to distant organs pose significant chal-
lenges in clinical management. One of the most devastating complica-
tions of advanced lung cancer is skeletal metastasis, which occurs in 

approximately 30–40 % of patients [4]. The presence of bone metastases 
is often indicative of a poor prognosis, with a median survival time of 
less than one year following diagnosis [5]. These metastases can lead to 
severe pain, pathological fractures, spinal cord compression, and hy-
percalcemia, all of which substantially reduce a patient’s quality of life 
and increase the complexity of treatment [6,7]. Furthermore, skeletal- 
related events (SREs) associated with bone metastases necessitate 
intensive medical intervention, including radiotherapy, surgery, and the 
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use of bone-modifying agents, thereby imposing a significant economic 
burden on healthcare systems [8,9]. The early and accurate detection of 
bone metastases is crucial for timely intervention and improved clinical 
outcomes in lung cancer patients [10,11].

Patients with distal bone metastases often undergo extensive and 
specialized diagnostic procedures to determine the primary source of the 
metastatic tumors, especially in cases where lung cancer is suspected 
[2]. These diagnostic protocols typically involve a combination of im-
aging studies, such as X-rays, CT scans, MRI, and PET scans, as well as 
bone biopsies and various laboratory tests [12]. While these procedures 
are essential for accurate diagnosis, they can be time-consuming, inva-
sive, and costly, placing a significant burden on both patients and 
healthcare systems [7,13,14]. Consequently, there is a critical need for 
more efficient and cost-effective methods to swiftly and accurately 
identify the primary origin of bone metastases, particularly for lung 
cancer [15,16]. Rapid identification of the metastatic source is pivotal 
for implementing precise and timely treatment strategies, which can 
significantly improve patient outcomes and quality of life [17–19].

Recent advancements in artificial intelligence (AI) and machine 
learning are revolutionizing medical diagnostics, particularly in 
oncology [20]. Automated segmentation and analysis of bone tumors 
using advanced models like 3D Mask R-CNN have shown a remarkable 
ability to enhance diagnostic precision. In recent studies, the integration 

of the ConvNeXt-V2 backbone has significantly improved feature 
extraction and segmentation performance, especially in complex medi-
cal imaging tasks [21–23]. ConvNeXt-V2, as demonstrated in recent 
research, enables the extraction of more enriched and semantically 
significant feature maps, improving the identification of metastatic re-
gions within 3D CT scans. These advances reduce the need for multiple, 
time-consuming diagnostic tests, offering a faster and more accurate 
means of assessing bone metastases [24]. The integration of AI in 
diagnostic workflows not only optimizes resource utilization but also 
accelerates decision-making processes, ultimately contributing to better 
clinical management of patients with bone metastases.

The accurate prediction of whether bone metastases originate from 
lung cancer is crucial for creating personalized treatment plans. With AI- 
driven models, such predictions can be achieved more efficiently, 
reducing unnecessary procedures and enabling clinicians to focus on 
tailored therapeutic strategies. The implementation of AI into diagnostic 
workflows not only improves resource utilization but also significantly 
accelerates decision-making processes. This ultimately leads to better 
clinical outcomes and more effective management of bone metastases, a 
critical issue for lung cancer patients, as bone metastases occur in 
approximately 30–40 % of cases This study aims to further develop a 
deep learning model based on the 3D Mask R-CNN framework, incor-
porating the ConvNeXt-V2 backbone for enhanced performance. The 

Fig. 1. The flow chart of our study design.
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model will focus on the automatic segmentation of bone tumors and the 
determination of whether metastasis originates from lung cancer. By 
integrating this advanced technology, we seek to improve the treatment 
and management of bone metastases, ensuring timely and precise in-
terventions that ultimately enhance patient outcomes.

2. Methodology

The flow chart of the study design is displayed in Fig. 1.

2.1. Data collection

This study is designed as a dual-center experiment, involving pa-
tients with bone metastases from two hospitals, referred to as Center A 
and Center B. The data collection process was meticulously planned to 
ensure robust and scientifically sound results.

Patient Cohort:

• Center A: A total of 106 patients with bone metastases were 
collected. Among these, 56 patients had metastases originating from 
lung cancer, while the remaining 50 patients had bone metastases 
from other primary cancers.

• Center B: A larger cohort of 265 patients with bone metastases was 
included. Out of these, 89 patients had lung cancer as the primary 
source of their metastases, and the remaining 176 patients had bone 
metastases from other types of cancers.

Data Utilization: To ensure the scientific rigor and validity of our 
experimental results, we adopted a strategic approach in data 
utilization:

• Training Set: Data from Center B was used as the training set. This set 
included 265 patients, allowing the model to learn from a diverse 
and extensive dataset. The breakdown of this dataset is as follows:
• Lung cancer metastases: 89 patients
• Other cancer metastases: 176 patients

• External Validation Set: Data from Center A was utilized as the 
external validation set. This cohort, comprising 106 patients, was 
entirely independent of the training data to ensure unbiased evalu-
ation of the model’s performance. The breakdown is:
• Lung cancer metastases: 56 patients
• Other cancer metastases: 50 patients

Rationale: Using data from Center B for training and data from 
Center A for external validation enhances the robustness of the model 
by:

• Preventing Overfitting: Ensuring the model is trained on one dataset 
and validated on a separate dataset reduces the risk of overfitting and 
enhances the generalizability of the model.

• Ensuring Scientific Validity: The external validation using data from 
a different center provides a more rigorous test of the model’s per-
formance in real-world settings, reflecting its potential clinical 
applicability.

A                            B
Fig. 2. ROI segmentation of CT. The diagram in A shows the segmentation of lung cancer metastasis, while B shows the segmentation of other cancer metastasis.
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Data Types and Preprocessing: The collected data consists of CT scan 
images with a slice thickness of 1 mm and no inter-slice gap. Pre-
processing steps involved:

• Normalizing the CT imaging data to ensure consistency across 
different scans.

• Augmenting the dataset with techniques such as rotation, scaling, 
and flipping to increase the diversity of training samples.

• Segmenting the images to isolate the regions of interest (ROIs) for 
bone metastases. The segmentation was meticulously performed 
using specialized software by two orthopedic radiologists, each with 
over 15 years of experience in bone imaging diagnosis. To ensure 
accuracy, the segmentation masks were mutually validated by these 
experts, ensuring high-quality and precise annotations. Shown in 
Fig. 2.

By adopting this dual-center approach and leveraging advanced 
preprocessing techniques, we aim to develop a robust deep learning 
model capable of accurately segmenting bone tumors and predicting 
whether the metastasis originates from lung cancer. This methodology 
ensures that the model is both scientifically valid and clinically 
applicable.

2.2. Model development

In this study, we utilized a 3D Mask R-CNN model to achieve auto-
matic segmentation of bone tumors and predict whether the metastasis 
originates from lung cancer. The 3D Mask R-CNN extends the original 
Mask R-CNN to handle volumetric data, making it ideal for processing 
the spatial and contextual information inherent in CT scan volumes. This 
model architecture effectively manages the complexities of 3D medical 
imaging. The 3D Mask R-CNN model incorporates a 3D convolutional 
neural network within its Region Proposal Network (RPN) component to 
extract features from the CT scans, which is critical for generating region 
proposals. These features are then used to create anchor boxes with 
varying aspect ratios and scales, enhancing the accuracy of region pro-
posals. The RPN assigns two values to each anchor box: the probability 
that the box contains an object, and the offset values required to adjust 
the box to accurately fit the object. To eliminate redundant region 
proposals, the RPN applies a non-maximum suppression algorithm, 
ensuring the selection of the most relevant proposals based on the 
extracted features and predefined anchor boxes. This approach allows 
the model to effectively identify and segment regions of interest in the 
3D medical images, facilitating accurate diagnosis and treatment plan-
ning for patients with bone metastases. [25,26].

After generating region proposals, the Mask R-CNN framework is 
responsible for classifying and segmenting the proposed regions. The 
RoI Align layer plays a crucial role by aligning the region proposals with 
the feature maps, ensuring spatial accuracy and reducing misalignment 
issues that can arise during the pooling process. This step significantly 
enhances the precision of the model, particularly when handling the fine 
details of 3D medical images.

Once aligned, the feature maps are processed by two parallel net-
works: a classifier and a segmentation network. The classifier is tasked 
with predicting the probability that a given region contains the target 
object (such as a tumor), allowing the model to filter out irrelevant 
areas. Simultaneously, the segmentation network generates a binary 
mask for each region, identifying the precise location of the object 
within the CT scan volume.

This dual-stage process—classification and segmentation—ensures 
both the accurate identification of tumors and their detailed segmen-
tation. By combining these two tasks, the 3D Mask R-CNN model ach-
ieves robust and highly accurate detection and segmentation of tumors 
in CT scans. This integrated approach allows for a more reliable and 
comprehensive analysis, which is critical in clinical applications for 
diagnosing and treating bone metastases [26,27].

2.3. Model architecture

Backbone Network (ConvNeXt-V2): The backbone of our 
improved 3D Mask R-CNN model is a ConvNeXt-V2, replacing the 
traditional ResNet-50. ConvNeXt-V2 is designed to enhance feature 
extraction by leveraging deeper convolutional layers and the Global 
Response Normalization (GRN) layer, which reduces redundant activa-
tions and increases feature diversity during training. Pre-trained on 
large-scale medical imaging datasets, this backbone captures spatial and 
contextual details in CT scans more effectively than ResNet-50, thus 
improving segmentation accuracy and model generalization.

Region Proposal Network (RPN): The RPN identifies regions of 
interest (ROIs) by sliding a small network over the feature map output 
generated by ConvNeXt-V2. It proposes candidate bounding boxes, 
which are refined in subsequent stages. Key RPN parameters include:

• Anchor Scales: [4, 8, 16, 32, 64] for improved detection of objects at 
varying sizes.

• Anchor Ratios: [0.5, 1, 2], allowing the model to account for 
different object shapes.

• IoU Threshold: 0.95, optimized for balancing precision and recall 
during positive anchor classification.

RoI Align Layer: The RoI Align layer ensures precise spatial align-
ment of features by extracting fixed-size feature maps from the region 
proposals. This minimizes any potential misalignment and is crucial for 
maintaining high segmentation accuracy.

Fully Connected Layers: Two fully connected layers process the 
fixed-size feature maps to predict class scores and bounding box ad-
justments for each region proposal. These layers use ReLU activation 
functions to maintain computational efficiency while improving 
accuracy.

Mask Head: The mask branch is responsible for segmentation, 
consisting of several convolutional layers that generate binary masks for 
each region of interest. These masks pinpoint the precise location of 
tumors within the bounding boxes, ensuring detailed and accurate 
segmentation.

Training Parameters:

• Optimizer: AdamW optimizer, chosen for its superior performance 
in handling large datasets and reducing overfitting.

• Learning Rate: 1e-4 with a decay rate of 0.05 per epoch to gradually 
reduce the learning rate as training progresses.

• Batch Size: 8, to ensure efficient utilization of GPU memory without 
compromising on performance.

• Loss Functions: A combination of classification loss (cross-entropy), 
bounding box regression loss (smooth L1), and mask prediction loss 
(binary cross-entropy) ensures the model accurately predicts the 
class, bounding box, and segmentation mask for each ROI.

Data Augmentation: To improve the generalization of the model, a 
range of data augmentation techniques are applied:

• Random Rotation: Up to 15 degrees to simulate variations in tumor 
orientation.

• Random Scaling: Between 0.8 and 1.2 times the original size, 
ensuring robustness across different image sizes.

• Random Flipping: Applied along the sagittal, coronal, and axial 
planes, reflecting the 3D nature of the medical images.

Implementation Details: The model was developed using the 
PyTorch deep learning framework, leveraging high-performance NVI-
DIA GPUs for training. By adopting the 3D Mask R-CNN architecture 
with the ConvNeXt-V2 backbone, our model aims to provide precise and 
robust segmentation of bone tumors. It can also predict whether the 
metastasis originated from lung cancer, thereby facilitating more 
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accurate diagnoses and aiding in the development of personalized 
treatment plans (Fig. 3).

2.4. Model training

To train our enhanced 3D Mask R-CNN model for bone tumor 
detection, we utilized a dataset comprising 265 CT scans, collected from 
patients with confirmed bone metastases. Prior to training, we stan-
dardized the resolution of all scans to a uniform voxel size of 1 mm × 1 
mm × 1 mm, ensuring consistency across the dataset. Intensity 
normalization was applied to bring all pixel values to a zero mean and 
unit variance, which is crucial for minimizing variations in image 
quality that could affect model performance.

The dataset was randomly divided into training, validation, and 
testing sets in a 70:15:15 ratio. This allocation ensures sufficient data for 
model training while reserving a validation set for tuning hyper-
parameters and a testing set for evaluating model generalization. To 
further enhance the diversity of the training data and prevent over-
fitting, we implemented a series of 3D augmentation techniques, 
including random rotations (up to 15 degrees), translations, and scaling 
(ranging from 0.8 to 1.2 times the original size). Additionally, random 
flipping along the sagittal, coronal, and axial planes was employed to 
simulate variations in tumor positioning.

We employed the AdamW optimizer due to its improved perfor-
mance in managing large datasets and reducing overfitting. The initial 
learning rate was set to 1e-4, and a decay schedule was applied, reducing 
the learning rate by a factor of 0.1 after 40 epochs to fine-tune the model 
as it approached convergence. The model was trained for 50 epochs, 
with early stopping applied based on validation loss to prevent over-
fitting and ensure optimal performance.

Model optimization was achieved using a composite loss function, 
combining classification loss and segmentation loss. The classification 
loss, computed using cross-entropy, measures the difference between 
the predicted and true class probabilities. The segmentation loss, based 
on binary cross-entropy, evaluates the discrepancy between the pre-
dicted binary masks and the ground truth masks, ensuring precise tumor 
segmentation. This multi-component loss function enabled the model to 
accurately predict both the tumor’s class (lung cancer metastasis or not) 
and its exact location within the CT scan.

By leveraging these techniques, our 3D Mask R-CNN model 

demonstrates robust performance in both detecting and segmenting 
bone tumors from CT scans, providing a valuable tool for clinical ap-
plications [28,29].

2.5. Model evaluation

To assess the performance of our 3D Mask R-CNN model on the test 
dataset, we employed a comprehensive set of evaluation metrics [33], 
including the Dice Similarity Coefficient (DSC), sensitivity, specificity, 
and accuracy, which together provide a thorough understanding of the 
model’s effectiveness in segmenting bone tumors and predicting their 
source.

Dice Similarity Coefficient (DSC): The DSC is a crucial metric for 
evaluating the overlap between the predicted segmentation masks and 
the ground truth. It measures spatial accuracy, with values ranging from 
0 (no overlap) to 1 (perfect overlap). The DSC is particularly useful in 
medical imaging, as it quantifies the similarity between the predicted 
and actual tumor regions, directly reflecting the segmentation quality.

Sensitivity (True Positive Rate): Sensitivity measures the proportion 
of actual positive cases (e.g., tumors) that were correctly identified by 
the model. A high sensitivity indicates that the model is adept at 
detecting tumors, ensuring that few metastatic regions are missed dur-
ing diagnosis.

Specificity (True Negative Rate): Specificity reflects the proportion 
of true negative cases (e.g., non-tumor regions) that the model correctly 
identified. High specificity ensures that healthy tissue is not mistakenly 
labeled as tumor, thus minimizing false positives and reducing unnec-
essary interventions.

Accuracy: Accuracy provides an overall assessment of the model’s 
performance by measuring the proportion of correct predictions (both 
true positives and true negatives) relative to all predictions made. It 
balances the detection of tumors with the correct identification of non- 
tumor regions, making it a comprehensive indicator of model reliability.

In addition to these core metrics, we used the Receiver Operating 
Characteristic (ROC) curve and Area Under the Curve (AUC) to evaluate 
the model’s classification performance. The ROC curve visualizes the 
trade-off between sensitivity and specificity across various decision 
thresholds, offering insight into the model’s ability to distinguish be-
tween different classes (tumor vs. non-tumor). The AUC quantifies the 
overall performance of the model, with values closer to 1 indicating 

Fig. 3. Architecture of 3D Mask RCNN. The architecture illustrates the key components of the 3D Mask R-CNN model with the ConvNeXt-V2 backbone. Input CT 
images are processed through the ConvNeXt-V2 backbone, extracting detailed feature maps. These maps are passed through the Region Proposal Network (RPN) to 
generate object proposals. The RoI Align layer ensures accurate spatial alignment of features, which are then fed into two branches: the segmentation branch, which 
generates binary masks to localize tumor regions, and the classification branch, which predicts the class (e.g., lung cancer metastasis) and refines the bounding box 
for precise localization.
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near-perfect classification performance. A higher AUC signifies that the 
model is proficient at distinguishing between metastatic bone tumors 
and other regions, even under varying thresholds.

By utilizing these metrics collectively, we can assess not only the 
model’s segmentation precision but also its predictive capability in 
determining the origin of bone metastases. This multi-dimensional 
evaluation ensures a robust and reliable analysis of the model’s per-
formance in both segmentation and classification tasks, making it a 
valuable tool for clinical applications in detecting and managing bone 
tumors.

3. Results

Segmentation Performance
Our 3D Mask R-CNN model achieved high accuracy in segmenting 

bone tumors from CT scans, with strong performance observed across 
both the training and testing sets. Specifically, the Dice Similarity Co-
efficient (DSC), a metric commonly used to evaluate segmentation 
overlap between the predicted masks and ground truth, was 0.956 on 
the training set and 0.929 on the testing set (see Table 1). These DSC 
values indicate a high degree of precision in the model’s ability to 
identify and segment tumor regions from the CT scans, showing the 
model’s capacity to generalize well from training data to unseen test 
data.

Classification Performance
In addition to segmentation, the model’s performance in dis-

tinguishing between bone metastases originating from lung cancer and 
other sources was evaluated using several metrics, including Area Under 
the Curve (AUC), accuracy, sensitivity, and specificity. The model 
demonstrated solid classification results, particularly when utilizing the 
ConvNeXt-V2 backbone. On the training set, the ConvNeXt-V2-based 
model achieved an AUC of 0.991, an accuracy of 0.951, a sensitivity 
of 0.925, and a specificity of 0.980. On the test set, the model showed 
robust performance, achieving an AUC of 0.955, an accuracy of 0.886, a 
sensitivity of 0.808, and a specificity of 1.000 (see Table 2). These results 
underscore the effectiveness of the model in distinguishing between lung 
cancer metastases and other cancer types.

The ROC curves for the training and testing sets, shown in Fig. 4, 
further illustrate the model’s classification capabilities. For the training 

set (Fig. 4A), the ConvNeXt-V2 backbone outperformed other architec-
tures with an AUC of 0.991, closely followed by ResNet-101 with an AUC 
of 0.976. On the testing set (Fig. 4B), the ConvNeXt-V2 backbone 
continued to show strong performance, achieving an AUC of 0.955, 
indicating its superior ability to distinguish between lung cancer 
metastasis and other metastases, even in unseen data. These results 
confirm that the 3D Mask R-CNN model, particularly when using the 
ConvNeXt-V2 backbone, is highly effective in both segmentation and 
classification tasks. This performance is critical for real-world clinical 
applications, where precise tumor identification and accurate classifi-
cation are essential for effective treatment planning.

4. Discussion

The findings of this study underscore the significant clinical potential 
of our 3D Mask R-CNN model, especially when enhanced with the 
ConvNeXt-V2 backbone, in the segmentation and classification of bone 
metastases originating from lung cancer. Bone metastases, particularly 
from lung cancer, are associated with severe complications such as 
pathological fractures, spinal cord compression, and hypercalcemia, all 
of which severely impact a patient’s quality of life. Early and precise 
detection of metastatic sites is crucial for effective treatment planning, 
enabling the timely implementation of radiation therapy, surgery, or 
systemic treatments [30].

Our model’s ability to accurately identify metastatic regions through 
automated segmentation is a major step toward improving clinical 
outcomes. Manual segmentation of tumors is labor-intensive, prone to 
inter-observer variability, and time-consuming. By automating this 
process with a robust AI-driven model, clinicians can focus more on 
treatment planning and patient care. Additionally, automated segmen-
tation allows for the consistent monitoring of tumor progression or 
regression during treatment, providing a reliable method for evaluating 
the efficacy of therapeutic interventions [10].

Furthermore, the model’s classification capabilities in distinguishing 
lung cancer metastases from other types of cancer metastases are clini-
cally valuable. Accurate identification of the primary source of metas-
tasis is critical for guiding personalized treatment strategies, such as 
targeted therapies or immunotherapies specific to the cancer type. By 
integrating this model into clinical workflows, unnecessary biopsies or 
additional imaging tests could be reduced, streamlining the diagnostic 
process and potentially lowering healthcare costs.

The integration of the ConvNeXt-V2 backbone into the 3D Mask R- 
CNN architecture is a significant technological innovation in the realm 
of medical imaging. ConvNeXt-V2, with its deeper convolutional layers 
and Global Response Normalization (GRN), allows the model to extract 
more semantically rich and nuanced features from the CT scan images. 
This is particularly important for the detection of small or complex 

Table 1 
Details of model segmentation performance 
evaluation parameters.

Process DSC

Training 0.956
Testing 0.929

Table 2 
Details of model classification performance evaluation parameters.

Architecture Accuracy AUC 95 % CI Sensitivity Specificity F1 Task

Resnet-50 0.853 0.931 0.885–0.977 0.830 0.878 0.854 label-train
0.864 0.859 0.713–1.000 0.846 0.889 0.880 label-test

Convnext-Base 0.892 0.939 0.891–0.986 0.906 0.878 0.897 label-train
0.864 0.925 0.844–1.000 0.846 0.889 0.880 label-test

Resnet-101 0.912 0.976 0.952–0.998 0.868 0.959 0.911 label-train
0.864 0.940 0.876–1.000 0.769 1.000 0.870 label-test

Convnext-V2-Base 0.951 0.991 0.979–1.000 0.925 0.980 0.951 label-train
0.886 0.955 0.901–1.000 0.808 1.000 0.894 label-test

YOLO-V8 0.853 0.929 0.881–0.976 0.736 0.980 0.839 label-train
0.841 0.850 0.706–0.994 0.885 0.778 0.868 label-test
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metastatic lesions that may be missed by more traditional models, 
improving the overall sensitivity and accuracy of the system [19].

Moreover, the transition from 2D to 3D imaging in the Mask R-CNN 
model marks a substantial leap forward in medical imaging technology. 
CT scans produce volumetric data, and the ability of the 3D Mask R-CNN 
model to process this data while maintaining spatial coherence signifi-
cantly enhances the precision of segmentation. This dual-stage 
approach—combining region proposal generation with segmentation 
and classification—enables the model to not only identify tumor regions 
but also differentiate them based on their primary cancer source, thus 
offering more holistic insights into patient diagnosis and treatment [26].

The high performance of the model, demonstrated by the high Dice 
Similarity Coefficient (DSC) values (0.956 for training and 0.929 for 
testing) and strong AUC values (0.991 for training and 0.955 for testing), 
places this model among the best in the current landscape of medical 
imaging technologies for cancer diagnosis. The use of the ConvNeXt-V2 
backbone addresses some of the challenges faced by traditional 

convolutional neural networks (CNNs), such as feature loss in deeper 
layers, allowing for better generalization in both segmentation and 
classification tasks.

This study contributes to the field in several important ways. First, by 
successfully integrating ConvNeXt-V2 into the 3D Mask R-CNN frame-
work, we have demonstrated an improvement in both segmentation and 
classification tasks for bone metastases detection. This novel combina-
tion enhances the ability to handle complex 3D data [31,32] and offers a 
scalable solution for integrating AI into clinical workflows.

Secondly, the dual-center study design adds robustness to the 
model’s performance. By training and testing the model on independent 
datasets from two different hospitals, we ensured that the model was not 
overfitted to a specific dataset, enhancing its generalizability across 
different clinical settings. This aspect is crucial for developing AI models 
that are capable of being deployed in diverse healthcare environments.

Lastly, this study provides a pathway for future research in person-
alized cancer treatment. The combination of accurate segmentation with 

Fig. 4. ROC of automatic discrimination of bone metastases from lung cancer (A) and other cancers (B).
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classification of the metastatic source enables a more tailored thera-
peutic approach, which can lead to improved patient outcomes and 
quality of life. This model also opens the door for further integration of 
AI in cancer diagnostics, not only for bone metastases but potentially for 
other cancer types and metastatic sites as well.

5. Conclusion

In summary, this study demonstrates the feasibility and effectiveness 
of using a 3D Mask R-CNN model, enhanced by the ConvNeXt-V2 
backbone, for the automatic segmentation and classification of bone 
metastases from lung cancer. The high accuracy, sensitivity, and speci-
ficity achieved in both segmentation and classification tasks highlight 
the potential of AI-driven models to significantly improve diagnostic 
workflows in oncology. Moving forward, expanding the dataset and 
integrating additional clinical data, such as genetic or laboratory in-
formation, will further enhance the performance and clinical applica-
bility of the model. This study lays the groundwork for broader adoption 
of AI in cancer diagnostics, with the ultimate goal of improving patient 
care and outcomes.
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