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Abstract

Background

Only a few pneumotropic types of the human adenoviruses (e.g. type B14p1) cause severe

lower respiratory tract infections like pneumonia and acute respiratory distress syndrome

(ARDS) even in immunocompetent patients. By contrast, many other human adenovirus

(HAdV) types (e.g. HAdV-C5) are associated mainly with upper respiratory tract infections.

This is in accordance with a highly physiological cell culture system consisting of differenti-

ated primary human bronchial epithelial cells which are little susceptible for apical HAdV-C5

infections.

Objective and Methods

We hypothesized that a pneumotropic and highly pathogenic HAdV type infects differenti-

ated human bronchial epithelial cells efficiently from the apical surface and also induces

proinflammatory cytokines in order to establish ARDS and pneumonia. Therefore, the apical

infection of differentiated primary human bronchial epithelial cells with the pneumotropic

and virulent type HAdV-B14p1 was investigated in comparison to the less pneumotropic

HAdV-C5 as a control.

Results

Binding of HAdV-B14p1 to the apical surface of differentiated human bronchial epithelial cells

and subsequent internalization of HAdV DNA was 10 fold higher (p<0.01) compared to the
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less-pneumotropic HAdV-C5 one hour after infection. Overall, the replication cycle of HAdV-

B14p1 following apical infection and including apical release of infectious virus progeny was

about 1000-fold more effective compared to the non-pneumotropic HAdV-C5 (p<0.001).

HAdV-B14p1 infected cells expressed desmoglein 2 (DSG2), which has been described as

potential receptor for HAdV-B14p1. Moreover, HAdV-B14p1 induced proinflammatory che-

mokines IP-10 and I-Tac as potential virulence factors. Interestingly, IP-10 has already been

described as a marker for severe respiratory infections e.g. by influenza virus A H5N1.

Conclusions

The efficient "apical to apical" replication cycle of HAdV-B14p1 can promote endobronchial

dissemination of the infection from the upper to the lower respiratory tract. Simultaneous

induction of proinflammatory cytokines probably contributes to the high virulence of HAdV-

B14p1.

Introduction
Only four types (type 4 of species HAdV-E, types 3, 7 and 14p1 of species HAdV-B) of the 71
human adenovirus (HAdV) types frequently cause lower respiratory tract infections, present-
ing as pneumonia and acute respiratory distress syndrome (ARDS).

HAdV-B14 was first described as respiratory pathogen in Dutch military recruits in the late
1950s [1] and found to be associated with pharyngoconjunctival fever in college students but
was not associated with severe clinical diseases [2]. Subsequently, the significance of the other
pneumotropic types HAdV-E4 and -B7 for severe lower respiratory tract infections (including
ARDS) in military recruits was recognized in the 1960s and a vaccine for these types was devel-
oped [3].

The re-emerging HAdV-B14p1 was first isolated in the US, related to fatal pneumonia out-
breaks [4] and predominated beginning from 2006 [5]. HAdV-B14p1 causes lower respiratory
tract infections not only in military recruits (as HAdV-E4 and -B7) but also in the civilian pop-
ulation affecting infants, young adults, and elderly individuals with and without preexisting
medical conditions [4]. These findings indicated a higher virulence of the re-emergent
HAdV-B14p1 even compared to HAdV-E4 and HAdV-B7. Recently HAdV-B14p1 was also
isolated in Canada, China, Ireland and Scotland from pneumonia patients [6–9].

So far, the organo-tropism and virulence factors of HAdV-B14p1 are not yet fully eluci-
dated. Probably, all HAdV types can be transmitted by droplets and replicate in the upper
respiratory tract. Efficient endobronchial (luminal) spread of the HAdV-B14p1 infection to the
lower respiratory tract and induction of inflammatory cytokines may be essential for a rapid
onset of pneumonia. Animal models to study HAdV pneumonia like the cotton rat [10] have
drawbacks due to the species specificity of HAdV. Their replication in rodents is inefficient,
expression of their late genes is incomplete [11] and the release of infectious virus progeny is
aborted. Therefore, the application of high titer viral inoculums (e.g. 106 to 1010 plaque forming
units/ml) was required to establish a pneumonia phenotype in animal models [10].

Differentiated human bronchial epithelial cells, which were polarized and differentiated at
the air-liquid interface, are a model to study apical HAdV infections of the bronchial tract [12].
Luminal (apical) HAdV-C5 infection of differentiated human bronchial epithelial cells proved
to be inefficient compared to basal infection [12–14], as the primary receptor for HAdV-C5,
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the coxsackie and adenovirus receptor (CAR) is mainly expressed on the basolateral side. This
may limit the luminal, endobronchial spread of the HAdV-C5 infection from the upper to the
lower respiratory tract. In accordance with this finding, the few cases of HAdV-C5 pneumonias
have been limited to immunocompromised patients and may be the result of lower respiratory
tract infections by viremia [15].

In the present study, the in vitro model system of differentiated human bronchial epithelial
cells was used for the first time to study HAdV-B14p1 infection. Apical HAdV-B14p1 infection
was found to be more effective compared to HAdV-C5 infection and resulted in efficient apical
release of infectious virus progeny. In vivo, this may promote the luminal (endobronchial)
spread of HAdV-B14p1 from the upper to the lower respiratory tract. Furthermore,
HAdV-B14p1 infection induced proinflammatory responses by inducing chemokines IP-10
and I-Tac. The attracting of T-cells and macrophages to the side of infection may result in a
massive immune response leading to severe pneumonia and ARDS.

Materials and Methods

Cell culture model of differentiated human bronchial epithelial cells
Primary human bronchial epithelial cells were isolated from lung explants of patients suffering
from pulmonary fibrosis, pulmonary embolism and chronic obstructive pulmonary disease as
described previously (Fig 1A) [16,17]. Written informed consent was provided by the tissue
donors. The project was approved from the ethical review committees (Ethikkommission der

Fig 1. Schematic diagram of primary human bronchial epithelial cell isolation and cultivation. (A) Isolation procedure for primary human bronchial
epithelial cells (B) Primary human bronchial epithelial cells cultured under submerged (left) and air-liquid interface conditions (right).

doi:10.1371/journal.pone.0131201.g001

Apical Adenovirus 14p1 Infection

PLOS ONE | DOI:10.1371/journal.pone.0131201 July 13, 2015 3 / 12



Ärztekammer Hamburg, WF-011/13; Ethikkommssion der Medizinischen Hochschule Han-
nover 122–2007). Cells were seeded onto collagen I coated, semipermeable 0.33 cm2 polyester
(PET) filter membrane inserts (0.4 μm pore size, Corning Costar, New York) for 24-well plates.
Cells from a single donor were used for each experimental set (including HAdV-B14p1, -C5
and mock infection) in order to limit inter-donor differences. Experiments were repeated with
bronchial epithelial cells derived of 4 different donors. Cells were seeded at a density of 105

cells per insert. After cells had reached confluence (with about 5 x 105 cells per insert), the air-
way medium was removed from the upper compartment and cells were cultured under air-liq-
uid interface conditions (Fig 1B). Subsequently, the epithelial cells were cultured for 6 weeks
for differentiation until differentiation was observed by expression of cilia (S1 Fig) and high
transepithelial electrical resistance (TEER)>400Ωcm2.

Virus stocks
HAdV-C5 (ATCC VR-5) and a clinical isolate of HAdV-B14p1 (kindly provided by Michael
Carr, National Virus Reference Laboratory, University College, Dublin, Ireland) [6] were prop-
agated on A549 (ATCC CCL-185) cells and harvested with three freeze and thaw cycles at 70–
80% cytopathic effect (CPE) for production of crude virus stocks. Ratio of particles/infectious
units as measured by the tissue culture infectious dose 50% method (TCID50) was 4.35 for
HAdV-C5 (TCID50/ml: 3.16 x 1010; particles/ml: 1.33 x 1011) and 19.7 for HAdV-B14p1
(TCID50/ml: 1010; particles/ml: 1.97 x 1011).

Adenovirus infection
Quadruplicates of differentiated airway epithelial cells (5 x 105 cells/ insert, size 0.33 cm2) were
infected with HAdV on the apical surface at a multiplicity of infection (moi) of 10 TCID50/cell
for 1 h at 37°C (Fig 2). On day 1, 4 and 8 post infection (p.i.) virus was collected by washing the
apical surface with 100 μl DMEM-. These samples and medium samples from the lower com-
partment were titered for infectious virus progeny by the TCID50 technique on A549 cells.

Quantitative HAdV PCR
Quantitative polymerase chain reaction (qPCR) was used to quantify viral genomes in the
stock virus preparation and in infected cells and supernatants. Cells were sampled at 1 h and

Fig 2. Schematic diagram of the infection and experimental procedure of differentiated human bronchial epithelial cells.

doi:10.1371/journal.pone.0131201.g002
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48 h p.i. after unbound virus was removed by washing. DNA was extracted using the DNA
Blood Kit (Qiagen, Hilden, Germany) according to the manufacturer´s protocol. Quantitative
PCR was performed using the Platinum Quantitative PCR SuperMix-UDG (Invitrogen, Darm-
stadt, Germany) and specific forward (5´-GCCACGGTGGGGTTTCTAAACTT-3´, Adeno-
quant-1) and reverse (5´-GCCCCAGTGGTCTTACATGCACATC -3´, Adenoquant-2)
primers and probe (FAM 5´-TGCACCAGACCCGGGCTCAGGTACTCCGA -3´ TAMRA)
(Eurogentec, Seraign, Belgium) [18].

Immunostaining and confocal microscopy
Differentiated cells were fixated on the PET membranes as described previously [19]. The PET
membrane was kept attached to the insert during the whole staining and washing procedure.
The primary antibody was applied as a 30 μl drop on a parafilm to the PET membrane and
additionally 50 μl of the antibody was applied to the apical side of the cell layer. The washing
steps were carried out by placing the insert into a 24 well plate and adding PBS to the upper
and the lower compartment. Secondary antibodies were applied as the primary antibodies.
Nuclei were counterstained with DAPI. After final washing the PET membrane was cut from
the insert and mounted on a glass slide with the cells facing the cover slip using Mowiol
(Sigma-Aldrich, St. Louis, MO) as mounting medium. Primary antibodies used were a poly-
clonal rabbit occludin (OCLN) antibody (1:40 diluted; Invitrogen, Paisley, UK), a monoclonal
mouse CAR antibody (RmcB, 1:100 diluted, kindly provided by M. Bergelson), a monoclonal
mouse desmoglein 2 (DSG2) antibody (Clone 6D8, 1:50 diluted, Santa Cruz Biotechnology,
Santa Cruz, CA), and a FITC conjugated monoclonal adenovirus antibody (Millipore, Bilerica,
MA). Secondary antibodies were anti rabbit conjugated with FITC and anti mouse conjugated
with dsRed (1:200 diluted, Jackson, Immunoresearch, West Grove, PA). Images were acquired
with a Leica DM IRB Laser Scanning Confocal Microscope.

Microarray-based mRNA expression analysis
Samples for the “Whole Human Genome Oligo Microarray V2” (ID 026652, Agilent, Santa
Clara, CA) were prepared and the microarray was processed as described in the “One-Color
Microarray-Based Gene Expression Analysis Protocol V5.7” (Agilent). Scanning was con-
ducted with the Agilent Micro Array Scanner G2565CA, data extraction was performed with
the “Feature Extraction Software V10.7.3.1” (extraction protocol: GE1_107_Sep09.xml).

Processed signals of the green channel (“gPS”) were normalized by linear scaling: All gPS
values of one sample were multiplied by a scaling factor calculated as: 1500 / 75th percentile of
the respective array. All normalized gPS values that fell below an intensity border of 15 were
substituted by the respective surrogate value of 15.

Quantification of CXCL10 and CXCL11 chemokine expression
Proinflammatory chemokines CXCL10 (IP-10) and CXCL11 (I-Tac) protein levels were quan-
tified by enzyme immunoassay (Quantikine Immunoassay CXCL10 and CXCL11, R&D sys-
tems, Minneapolis, MN).

Results

Apical HAdV infection of differentiated bronchial epithelial cells
After apical infection of differentiated human bronchial epithelial cells, cell associated
HAdV-B14p1 DNA concentrations were significantly higher (p<0.01) compared to HAdV-C5
DNA levels at 1 h p.i. This result indicated more efficient receptor binding and internalization
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of HAdV-B14p1 (Fig 3A). HAdV genome replication resulted in elevated levels of
HAdV-B14p1 DNA compared to HAdV-C5 DNA at 48 h p.i. (Fig 3A).

Apical and basal release of infectious virus progeny
The release of infectious HAdV progeny at the apical surface of differentiated human bronchial
epithelial cells was monitored with help of the TCID50 method. Release of HAdV-B14p1 was sig-
nificantly higher compared to HAdV-C5 on day 4 p.i. (p<0.01) and 8 d p.i. (p<0.001) (Fig 3B).

To compare directed basal to apical release after apical HAdV-C5 and HAdV-B14p1 infec-
tion, the infectious virus progeny release at the basal surface of differentiated human bronchial
epithelial cells was additionally monitored. HAdV-C5 reached significant higher titers com-
pared to HAdV-B14p1 on day 4 p.i. (p<0.001) and day 8 p.i. (p<0.05) (Fig 3C).

CPE was finally observed on day 12 p.i. and transepithelial resistance dropped (S2 Fig) as
cells were lysed and tight junctions disrupted. An early and temporary decrease of TEER was
only observed in HAdV-C5 infection but cells were morphologically unchanged and viable.

Desmoglein 2 (DSG2) expression
Bronchial epithelial cells were immunostained for HAdV hexon antigens and DSG2, the
recently described novel adenoviral apical receptor [20], at day 4 post infection. DSG2 positive
cells were found to be HAdV-B14p1 infected (Fig 4A–4D). Staining for HAdV-B14p1 was
mainly cytoplasmic whereas DSG2 staining was mainly cell membrane associated. DSG2 was
expressed close to the apical side of differentiated bronchial epithelial cells (Fig 4B–4E). For
comparison, CAR, the main receptor for HAdV-C5, was expressed on the basolateral side and
partially colocalized with the tight junction marker occludin (OCLN) (Fig 4C–4F).

Induction of proinflammatory chemokines
The induction of the chemokine genes IP-10 (CXCL10) and I-Tac (CXCL11) and of the proin-
flammatory cytokine gene IL-6 was observed in a genome wide mRNAmicroarray analysis at
48 h post HAdV-B14p1 infection (S1 Table), but not in HAdV-C5 infected control cultures.
Subsequently the release of chemokines IP-10 and I-Tac by HAdV-B14p1 by infected cell cul-
tures was confirmed on the protein level by ELISA (Fig 5A and 5B).

Discussion
Spread of HAdV infections from the upper respiratory tract, as the site of primary infection to
the lower respiratory tract, seems to be a prerequisite for severe disease manifestations such as
bronchiolitis, pneumonia and ARDS. For example, infection of the upper respiratory tract with
the "classical" pneumotropic HAdV types 4 and 7 by droplets or smear infection can result in
manifestation of ARDS [21–24]. By contrast vaccination with (non attenuated!) HAdV-E4 and
-B7 in enteric-coated tablets is not associated with severe respiratory disease but induces pro-
tective immunity by enteric HAdV replication [25]. From the experience with this vaccine, we
deduced the working hypothesis that efficient luminal spread form the upper to the lower
respiratory tract is essential for onset of pneumonia. Similar experience with a vaccine is not
available in case of the (re-)emerging pneumotropic type HAdV-B14p1 [4,5]. However, the
endobronchial dissemination of HAdV-B14p1 was investigated in the present study due to its
high clinical relevance. This endobronchial spread requires apical infection of differentiated
human bronchial epithelial cells and apical release of infectious virus progeny as demonstrated
for HAdV-B14p1 in the present study (Fig 3B). Binding of HAdV-B14p1 to the apical surface
of bronchial epithelial cells and subsequent internalization was 10 fold higher compared to the
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Fig 3. Efficient apical infection of differentiated human bronchial epithelial cells with HAdV-B14p1. (A)
Intracellular HAdV genomes were quantified by qPCR at 1 h and 48 h p.i. (** p< 0.01; *** p< 0.001, unpaired
t-test) (B) Release of infectious virus progeny at the apical side of the differentiated bronchial epithelial cell
layer as determined by the TCID50 method on day 1, 4, and 8 p.i. (** p< 0.01; *** p< 0.001, unpaired t-test).
(C) Release of infectious virus progeny at the basal side of the differentiated bronchial epithelial cell layer as
determined by the TCID50 method on day 1, 4, and 8 p.i. (* p< 0.05; *** p< 0.001, unpaired t-test). The
TCID50 values in B and C are normalized against the input virus titers measured on day 1 p.i. and set to 1 x
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less-pneumotropic HAdV-C5 (Fig 3A). This correlated well with the expression of DSG2, the
recently described receptor for HAdV-B14p1 at the distal end of intercellular junctions [20].
Thus DSG2 should be accessible from the apical side, probably facilitating entry by opening
intercellular junctions, whereas most other non pneumotropic HAdV types (including
HAdV-C5) bind to CAR [26]. This may limit the infection efficiency of HAdV-C5 from the
endobronchial (apical) side because only a low abundance splice variant of CAR has been
observed on the apical surface of human bronchial epithelial cells [19].

Although not every cell positive for DSG2 was infected with HAdV-B14p1 in our model sys-
tem, all infected cells were indeed located at the apical surface, indicating apical binding and
entry of HAdV-B14p1 (Fig 4D). In addition, a few bronchial epithelial cells negative for DSG2
were also found to be HAdV-B14p1 infected (data not shown). This finding may be explained
with down regulation of DSG2 expression in HAdV-B14p1 infected cells. On the other hand,
initial infection of the differentiated pseudostratified layer may be facilitated by DSG2 but not
limited to DSG2 positive cells suggesting the relevance of other cellular receptors for
HAdV-B14p1. DSG2 expression has been described on polarized BT474, T84 and CaCo-2 cells
[20]. In the present study DSG2 expression was detected for the first time on differentiated

100 because the TCID50 values measured on day 1 are probably remaining viral particles originating from the
virus inoculum.

doi:10.1371/journal.pone.0131201.g003

Fig 4. Immunofluorescence staining of differentiated human bronchial epithelial cells. Confocal microscopy immunofluorescence analysis of
differentiated human bronchial epithelial cells. Figs A, B, C show XY planes, Figs D, E, F show XZ planes. (A, D)Cells were infected from the apical side with
HAdV-B14p1 at a moi of 10 (TCID50/cell), fixated 4 days p.i. and stained for HAdV in green (FITC conjugated antibody) and the desmoglein 2 (DSG2
receptor) in red (dsRed antibody), the nucleus was counterstained in blue (DAPI). (B, E) Differentiated human bronchial epithelial cells stained for DSG2
receptor in red (dsRed) and occludin (OCLN) a tight junction marker in green (FITC), nucleus was counterstained in blue (DAPI). (C, F)Differentiated human
bronchial epithelial cells were stained for CAR receptor in red (dsRed) and the tight junction marker OCLN in green (FITC) and the nucleus in blue (DAPI).

doi:10.1371/journal.pone.0131201.g004
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primary bronchial epithelial cells. However, the direct binding of HAdV-14p1 to DSG2 was
not studied, thus the receptor usage of HAdV-14p1 on bronchial epithelial cells needs to be
confirmed in a future study.

Other species HAdV-B types, like HAdV-B3 or -B7 were not included in present study, as
these frequently isolated respiratory pathogens cause pneumonia only in a small subset of
cases. Moreover, reports on the receptor usage of HADV-B3 are partially contradictory report-
ing the binding to CD46 [27] or CD80/86 [28] as their main receptor. Probably different
HAdV-B3 strains could use different receptors which may be related to their different virulence
and pneumotropism.

The temporary drop of the TEER (S2 Fig) observed on day 1–3 p.i. in HAdV-C5 infection
might be explained by a faint "early CPE" due to free capsid proteins in the virus stocks [29]. An
early CPE is caused mainly by the penton base protein [30]. Additionally, HAdV-C fiber pro-
teins, produced in excess during virus replication, are able to disrupt tight junctions, allowing
HAdV-C progeny to escape to the apical surface of a differentiated bronchial epithelium by a
paracellular pathway [31]. This previous study already reported the efficient primary release of
HAdV-C2 on the basolateral side, similar to our results with HAdV-C5 (Fig 3C). The overall
(apical plus basal) release of infectious virus progeny was not significantly different between
HAdV-C5 and HAdV-B14p1 when surveyed on day 4 and 8 p.i. More efficient genome replica-
tion and secondary cell to cell spread may have minimized the differences between
HAdV-B14p1 and HAdV-C5 binding and entry. In spite of these effects, the apical to apical rep-
lication cycle of the highly virulent HAdV-B14p1 was far more effective and resulted in an about
1000-fold higher virus titer compared to HAdV-C5 infection (day 8 p.i., p<0.001) (Fig 3B).

The induction of proinflammatory and chemotactic cytokines may also be essential for
severe inflammation of the lower respiratory tract. Induction of CXCL10 (IP-10) and IL-8 by
an NF-kB pathway has been observed as a response of the cell to adenoviral infections [32]. In
case of the pneumotropic type HAdV-B7, the induction of IP-10 was observed in type I and
type II alveolar epithelial cells whereas induction of IL-8 was only observed in type I alveolar

Fig 5. Induction of chemokines after apical HAdV infection of differentiated human bronchial epithelial cells. (A) IP-10 concentration in cell culture
medium on day 4 and 8 p.i. as determined by ELISA (B) I-Tac concentration in cell culture medium on day 4 and 8 p.i. as determined by ELISA (n.s.: not
significant, * p< 0.05; *** p< 0.001, two way ANOVA). Values shown are SEM values of quadruplicate infections.

doi:10.1371/journal.pone.0131201.g005
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epithelial cells [33]. IL-8 induction seems to be inconsistent between HAdV types and the
infected tissues or cells [33–35].

Interestingly, a clinical study found elevated IP-10 levels to be a potential biomarker for
severe acute respiratory virus infections [36]. Human airway epithelial cells have already been
shown to release IP-10 in response to influenza A H5N1 infection [37]. This is in congruence
with the results of this study since HAdV-B14p1 infection of differentiated bronchial epithelial
cells resulted in a significant IP-10 and additionally I-Tac induction and release. The induction
of these chemokines by HAdV-B14p1 infection, may result in the infiltration of the infected
lung with macrophages, activated T cells and NK cells and subsequently result in the expres-
sion of multiple proinflammatory cytokines as observed in ARDS [38,39].

In conclusion, the “apical to apical” replication cycle of pneumotropic HAdV-B14p1 could
promote the endobronchial (luminal) spread of HAdV-B14p1 to the lower respiratory tract.
Subsequent induction of proinflammatory cytokines by HAdV-B14p1 may lead to severe
pneumonia and ARDS.

Supporting Information
S1 Fig. Scanning electron microscopy depicting of cilia on the apical surface of differenti-
ated bronchial epithelial cells cultured for 6 weeks on the air—liquid interface.
(TIF)

S2 Fig. TEER of differentiated human bronchial epithelial cells during HAdV infection.
TEER values were measured on differentiated human bronchial epithelial cells after HAdV
infection from day 1 to day 15 p.i. An initial drop in resistance (day 1–3 p.i.) observed with
HAdV-C5 infection might be due to a slight, reversible early CPE caused by the virus inoculum.
(TIF)

S1 Table. Microarray data: All genes found to be upregulated (threshold value 2.0) in differ-
entiated human bronchial epithelial cells by HAdV-B14p1 or HAdV-C5 infection compared
to mock infection.Multiple listing of gene names (for example, see CXCL10 (IP-10), CXCL11
(I-TAC) and IL-6) indicated that the upregulation was detected by multiple, different probes.
Genes were listed by relative signal intensity in HAdV-B14p1 infection vs. mock infection.
(XLS)
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