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A B S T R A C T   

A new and efficient Cu(II)-containing mesoporous nanocatalytic system was synthesized by direct 
immobilization of copper metal powder on the Fe3O4@EDTA nanocomposite. The as-prepared 
Fe3O4@EDTA@Cu(II) nanocomposite was then characterized by FT-IR, XRD, SEM, TEM, SEM- 
based EDX and elemental mapping, XPS, TGA, VSM, and also BET and BJH analyses. The 
resulting Fe3O4@EDTA@Cu(II) mesoporous nanocomposite exhibited satisfactory catalytic ac-
tivity towards the reduction and one-pot reductive acetylation of nitroarenes and also N-acety-
lation of arylamines in water at 60 ◦C. Notably, the applied Cu(II)-containing nanocatalyst was 
efficiently recovered from the reaction mixture using an external magnetic field and could be 
reused successfully for five cycles. The protocol developed in this study offers several advantages 
in terms of mild reaction conditions, simple workflows, using water as a green solvent, and easy 
recovery and catalyst reuse, making it more ecologically and economically attractive.   

1. Introduction 

Green chemistry aims to develop sustainable and efficient chemical synthesis methods and production while minimizing envi-
ronmental impact [1–7]. One of the noteworthy aspects of green chemistry is using eco-friendly solvents for chemical reactions. In this 
regard, water is used widely as a green solvent for chemical reactions due to its abundance, low cost, and non-toxicity [8–15]. Another 
aim of green chemistry is to remove toxic substances that are dangerous for the ecosystems. One of these substances is nitrobenzene 
(PhNO2) and some of its derivatives, which have various harmful effects on humans, animals, and the environment [16–20]. Reduction 
of the hazardous nitrobenzene and its derivatives with nanocatalysts is widely evaluated and used in academic laboratories and the 
chemical industry. Notably, the mentioned reduction reaction of aromatic nitro compounds is a crucial process in the chemical in-
dustry, with various applications in the production of different chemicals and materials such as surfactants, emulsifiers, nylon, pes-
ticides, herbicides, and pharmaceuticals [21–25]. Furthermore, when aniline (PhNH2), as a product of the PhNO2 reduction, undergoes 
acetylation, lead produces N-arylacetamides, which is an essential intermediate in organic synthesis for the production of various 
drugs, including acetaminophen (paracetamol), lidocaine, mepivacaine, prilocaine, chloroquine, sulfonamides, and many other 
drug-like compounds [26–33]. 
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In recent years, there has been increasing interest in developing new and durable nanocatalysts, especially magnetically recov-
erable and reusable ones, with simple structures and incorporating inexpensive metals that can still maintain high performance and 
selectivity in organic synthesis because conventional catalytic systems can be expensive to produce and often require complex syn-
thesis methods, which can limit their widespread use in industry [34–38]. To make a new recyclable catalyst, in addition to a magnetic 
core (such as Fe3O4, CuFe2O4, MnFe2O4, etc.), we need a suitable substrate to hold the metal components in the final structure of the 
catalyst. In this regard, ethylenediaminetetraacetic acid (EDTA), known as an ordinary and powerful organic chelating agent, can form 
extremely stable, highly soluble, and hardly biodegradable chelates with most metallic elements, including copper (Cu), nickel (Ni), 
chromium (Cr), and ferrite (Fe) [39]. On the other hand, choosing and using the proper and effective metal in the last layer of the 
catalyst is essential. Copper (Cu) is a 3d earth-abundant transition metal (EATM) whose materials have been widely used in numerous 
catalytic organic reactions due to its various oxidation states from zero to positive 3 [40–44]. 

In continuation of our research program upon designing efficient catalytic systems for various organic transformations [45–51] and 
also, due to the reputation of introducing new green protocols to the conversion of nitroarenes to valuable organic compounds, herein 
we wish to report a new strategy for immobilization of copper(II) using pure copper metal powder on the Fe3O4@EDTA nanocomposite 
and investigation of the as-prepared Fe3O4@EDTA@Cu(II) catalytic applications in the green reduction and one-pot reductive acet-
ylation of nitroarenes and also N-acetylation of arylamines in water. 

2. Results and discussion 

2.1. Preparation and characterization of the Fe3O4@EDTA@Cu(II) nanocomposite 

The process for creating the Fe3O4@EDTA@Cu(II) nanocomposite is illustrated in Fig. 1. First of all, the Fe3O4 nanoparticles (NPs) 
are synthesized using the co-precipitation method. In the next step, the surface of the Fe3O4 NPs is modified with EDTA. Eventually, the 
Cu(II) NPs are immobilized on the modified EDTA using pure copper metal, resulting in the desired Fe3O4@EDTA@Cu(II) nano-
composite. After the Fe3O4@EDTA@Cu(II) nanocomposite preparation, we characterized the structure of mentioned nanocomposite 
by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission 
electron microscopy (TEM), SEM-based energy dispersive X-ray (EDX) and elemental mapping, X-ray photoelectron spectroscopy 
(XPS), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and Brunauer–Emmett–Teller (BET) and Bar-
rett–Joyner–Halenda (BJH) analyses. 

The FT-IR spectroscopy of the Fe3O4, Fe3O4@EDTA, and Fe3O4@EDTA@Cu(II) nanostructures was carried out using the potassium 
bromide (KBr) disk method, and all of the spectra were recorded in the region 400–4000 cm− 1, as shown in Fig. 2. In the FT-IR spectra 
of the Fe3O4@EDTA@Cu(II) nanocomposite, the broad peak at 3429 cm− 1 is related to the OH stretching vibrations. Also, the peaks at 
2935 cm− 1, 2923 cm− 1, and 2850 cm− 1 are related to the C–H stretching vibrations. Furthermore, the peak at 1618 cm− 1 corresponds 
to the C=O stretching vibrations, whereas the peaks at 1384 cm− 1, 1216 cm− 1, and 1157 cm− 1 can be related to the C–O–H (bending), 
C–O (stretching), and C–N (stretching), respectively. Notably, the peaks at 630 cm− 1 and 580 cm− 1 related to the splitting ν1 vibration 
mode of Fe2+¡O2− and Cu2+¡O2− , whereas the peak at 430 cm− 1 corresponds to the splitting ν2 vibration mode of Fe3+¡O2− . 

The X-ray diffraction (XRD) spectra of the Fe3O4, Fe3O4@EDTA, and Fe3O4@EDTA@Cu(II) nanostructures are recorded in a range 
of Bragg’s angle (2θ = 10–80◦) at room temperature (Fig. 3). The XRD pattern of the prepared Fe3O4 NPs reveals nine characteristic 
peaks at 2θ = 18.34◦, 30.28◦, 35.54◦, 43.31◦, 53.62◦, 57.25◦, 62.85◦, 71.28◦, and 74.21◦, which matched well with Joint Committee on 

Fig. 1. Preparation of the Fe3O4@EDTA@Cu(II) nanocomposite.  
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Powder Diffraction Standards (JCPDS) cards, file no. 79–0418, 65–3107, 74–2402, 01-075-0449, and 98-007-7842. Comparison of the 
obtained pattern for Fe3O4@EDTA@Cu(II) nanocomposite with the XRD peaks of Fe3O4 composition indicates that the relative po-
sition and intensity of all peaks correspond to the standard pattern, suggesting that the spinel crystal structure is preserved during the 
functionalization process. 

Fig. 2. FT-IR diagrams of the Fe3O4, Fe3O4@EDTA, and Fe3O4@EDTA@Cu(II) nanostructures.  

Fig. 3. XRD diagrams of the Fe3O4, Fe3O4@EDTA, and Fe3O4@EDTA@Cu(II) nanostructures.  
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The SEM (Fig. 4) and TEM (Fig. 5) images provide insights into the particle size and morphology of the as-prepared Fe3O4@ED-
TA@Cu(II) nanocomposite. The mentioned images indicate that Fe3O4@EDTA@Cu(II) exhibits a predominantly monodisperse dis-
tribution and has a rough surface texture. Also, based on SEM images (Fig. 4), the particle size range of the Fe3O4@EDTA@Cu(II) 
nanocomposite is from 22 to 100 nm. On the other hand, the SEM-based energy-dispersive X-ray (EDX) (Fig. 6) and elemental mapping 
(Fig. 7) analyses were conducted to validate the Fe3O4@EDTA@Cu(II) composition elements. In this regard, the EDX analysis (Fig. 6) 
provided the percentage of the elements, including 32.7 w%, 29.8 w%, 28.3 w%, 6.3 w%, and 3.0 w% for C, Fe, O, N, and Cu, 
respectively. 

Fig. 4. SEM images of the as-prepared Fe3O4@EDTA@Cu(II) nanocomposite.  
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The elemental chemical composition and chemical valence state of the as-prepared Fe3O4@EDTA@Cu(II) nanocomposite were 
investigated by X-ray photoelectron spectroscopy (XPS). The related XPS total spectrum illustrated that the sample included C, N, O, 
Fe, Cu, and also Na elements (Fig. 8, section a). The deconvoluted C 1s spectrum (Fig. 8, section b) showed binding energy peaks 
corresponding to C–H and C–C (284.74 eV), C–N (285.92 eV), and O=C–O (288.09 eV). Also, the deconvoluted N 1s spectrum (Fig. 8, 
section c) exhibited binding energy peaks corresponding to Cu–N (399.70 eV) and C–N (401.17 eV). Furthermore, the deconvoluted O 
1s spectrum (Fig. 8, section d) presented binding energy peaks corresponding to Cu–O and Fe–O (529.62 eV), O*− C=O (531.07 eV), 
O* = C–O (531.75 eV), and H–O–H (535.31 eV). On the other hand, Fig. 8 (section e) shows that the Fe 2p spectrum can be mainly 

Fig. 5. TEM images of the as-prepared Fe3O4@EDTA@Cu(II) nanocomposite.  

Fig. 6. SEM-based EDX diagram of the Fe3O4@EDTA@Cu(II) nanocomposite.  
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deconvoluted into Fe(II) 2p3/2 (710.06 eV), Fe(III) 2p3/2 (711.83 eV), Fe(II) 2p1/2 (723.70 eV), and Fe(III) 2p1/2 (725.62 eV). It is 
worthy to note the deconvoluted Cu 2p spectrum (Fig. 8, section f) revealed four distinct peaks at Cu(0) 2p3/2 (932.21 eV), Cu(II) 2p3/2 
(933.80 eV), Cu(0) 2p1/2 (952.10 eV), and Cu(II) 2p1/2 (953.77 eV). Additionally, three satellite peaks at 941.02 ev, 943.70 eV, and 
962.25 eV confirmed the present of CuO in the structure of the as-prepared Fe3O4@EDTA@Cu(II) nanocomposite (Fig. 8, section f) 

Fig. 7. SEM-based elemental mapping of the Fe3O4@EDTA@Cu(II) nanocomposite.  
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Fig. 8. XPS analysis of the as-prepared Fe3O4@EDTA@Cu(II) nanocomposite.  
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[52–55]. 
The magnetic properties of the prepared Fe3O4, Fe3O4@EDTA, and Fe3O4@EDTA@Cu(II) nanostructures were investigated at room 

temperature using the vibrating sample magnetometer (VSM) technique, as shown in Fig. 9. It is worthwhile to note that VSM is a 
widely used technique for studying magnetic materials and measuring their magnetic properties, including magnetic moment, 
magnetic anisotropy, and magnetic susceptibility. According to the VSM curves, the Fe3O4, Fe3O4@EDTA, and Fe3O4@EDTA@Cu(II) 
nanostructures exhibit superparamagnetic behavior with saturation magnetization (Ms) amounts of 64.49 emu g− 1, 21.62 emu g− 1, 
and 8.36 emu g− 1, respectively. 

The thermal gravimetric analysis (TGA) was conducted to investigate the thermal stability of the as-prepared Fe3O4@EDTA@Cu(II) 
nanocomposite by heating it up to 700 ◦C (Fig. 10). The mentioned TGA diagram exhibits a weigh loss of around 2 % below 231 ◦C, 
which is related to the moisture content of the Cu(II)-containing nanocomposite. The second mass loss in the range of 240–400 ◦C is 
attributed to the thermal decomposition of EDTA. 

The nitrogen (N2) gas adsorption–desorption analysis of the Fe3O4@EDTA@Cu(II) nanocomposite confirmed the isotherm shape is 
IV with a H3 hysteresis loop (Fig. 11, section a), which is characterized as mesoporous materials. Furthermore, from the BET plot 
(Fig. 11, section b), the specific surface area, pore volume value, and mean pore diameter of the as-prepared Cu(II)-containing 
mesoporous nanocomposite were 12.544 m2 g− 1, 2.882 cm3(STP) g− 1, and 12.12 nm, respectively. Also, the BJH pore size distribution 
plot of the titled Fe3O4@EDTA@Cu(II) nanocomposite is shown in Fig. 11 (section c). 

2.2. Catalytic applications of the as-prepared Fe3O4@EDTA@Cu(II) nanocomposite 

2.2.1. Reduction of nitroarenes catalyzed by Fe3O4@EDTA@Cu(II) nanocomposite 
First of all, the catalytic performance of the as-prepared Fe3O4@EDTA@Cu(II) nanocomposite (8 mg) was assessed on the reduction 

of nitrobenzene (PhNO2) using sodium borohydride (NaBH4) in various solvents and temperatures (Table 1). It is worthy to note that 
among various inorganic hydrides, NaBH4 known as one of the most studies, simplest, mild hydrogen-rich chemical species for 
hydrogen production and reducing functional groups in organic synthesis [56–59]. The optimization process was carried out using 
different solvents, and the obtained results are reported in Table 1. As shown in Table 1, the suitable solvent and temperature for the 
mentioned model reaction were water and 60 ◦C, respectively. After that, the scope and limitations of the mentioned strategy were 
evaluated upon various aromatic nitro compounds, and the findings are illustrated in Table 2. This study showed that a small quantity 
of Fe3O4@EDTA@Cu(II) could achieve high performance in the stated reaction within a short period. Furthermore, the plausible 
reaction mechanism for the green reduction of aromatic nitro compounds using NaBH4 in the presence of the as-prepared 
Fe3O4@EDTA@Cu(II) nanocomposite in water as is depicted in Scheme 1. In the first step, NaBH4 dissociated in water to generate 
hydrogen gas (H2) in the presence of the mentioned Cu(II)-containing mesoporous nanocatalyst, which we observed as bubbles inside 
the reaction vessel during the stated reaction. Then, the produced H2 gas diffuses into the reaction environment and subsequently 
adsorbs onto the Fe3O4@EDTA@Cu(II) nanocomposite, especially on the Cu(II) nanoparticles surface. The activation of H2 gas by 
Fe3O4@EDTA@Cu(II) nanocomposite is one of the fundamental steps in the reaction mechanism of nitroarenes reductions. 

2.2.2. One-pot reductive acetylation of nitroarenes and also N-acetylation of arylamines catalyzed by Fe3O4@EDTA@Cu(II) nanocomposite 
In the next step, the potential catalytic application of the as-prepared Fe3O4@EDTA@Cu(II) nanocomposite in organic synthesis 

was investigated towards one-pot reductive acetylation of nitroarenes. The amide bond creation via a simple strategy has a special 
place in organic synthesis. The N-acetylation of arylamines is a widely recognized reaction in the field of organic synthesis, which 
serves as a means to protect amine functional groups in complex syntheses and prepare organic frameworks that contain acetamide 

Fig. 9. Magnetization curves of the prepared Fe3O4, Fe3O4@EDTA, and Fe3O4@EDTA@Cu(II) nanostructures.  
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Fig. 10. TGA diagram of the as-prepared Fe3O4@EDTA@Cu(II) nanocomposite.  

Fig. 11. Nitrogen gas adsorption–desorption profile (a), BET plot (b), and BJH pore size distribution plot (c) of the as-prepared Fe3O4@EDTA@Cu 
(II) nanocomposite. 
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moiety. It is worth noting that ongoing research endeavors continue to seek improvements in this uncomplicated chemical process. On 
the other hand, due to the importance of the one-pot reaction in synthetic chemistry and especially green chemistry [60–69], using the 
mentioned strategy for the stated one-pot reductive acetylation of nitroarenes is desirable. In this regard, and after obtaining the 
successful reduction strategy for the green reduction and conversion nitroarenes to the corresponding arylamines, we decided to 
introduce a new one-pot reductive acetylation approach for the efficient synthesis of N-arylacetamides from aromatic nitro com-
pounds. To this purpose, in the second step of the stated one-pot organic reaction (viz. acetylation), we used 1 mmol of acetic an-
hydride (Ac2O) as an acetylating agent under the same temperature conditions (60 

◦

C). As shown in Table 3, we successfully prepared 
diverse N-arylacetamide derivatives. On the other hand, we tested the straightforward N-acetylation of arylamines in the presence of 
the as-prepared Cu(II)-containing nanocatalytic system in water using Ac2O, and the obtained results illustrated in Table 4. The 
mentioned reaction, as shown in Table 4, revealed the rate of the acetylation reaction is swift and immediate. In addition, a suitable 
mechanism for this straightforward organic transformation is illustrated in Scheme 2. 

2.3. Recoverability and reusability experiments of the as-prepared Fe3O4@EDTA@Cu(II) nanocomposite 

The recyclability and reusability of the as-prepared Fe3O4@EDTA@Cu(II) nanocomposite have also been evaluated on the 
reduction of PhNO2 (1 mmol) to PhNH2 using NaBH4 (2 mmol) in the presence of the as-prepared Cu(II)-containing mesoporous 
nanocatalyst (8 mg) in water at 60 ◦C as a model reaction, exposed satisfying results even after five runs (Fig. 12, section a). Moreover, 
a TEM image (Fig. 12, section b) of the recovered Fe3O4@EDTA@Cu(II) nanocomposite after the fourth recycling step has been 
demonstrated, which shows that the structure of the mentioned Fe3O4@EDTA@Cu(II) mesoporous nanocomposite remained intact. 

2.4. A comparative study 

To validate the efficiency of our new synthetic protocols on the reduction and one-pot reductive acetylation of nitroarenes in the 
presence of the as-prepared Fe3O4@EDTA@Cu(II) nanocomposite in water, both of them have been compared with some of the 
previously reported procedures. As shown in Table 5, the obtained results demonstrated that the current synthetic approaches have a 
convenient place in terms of efficiency and greenness than the previously available procedures. 

3. Experimental 

3.1. Reagents, samples, and apparatus 

All starting materials, reagents, and solvents were commercially available and purchased from Merck, Sigma-Aldrich, and Fluka 
companies. SOLTEC SONICA 2400 MH S3 (300 W) instrument was used for ultrasonic irradiation. FT-IR spectra were recorded on 
Thermo Nicolet Nexus 670 spectrometer, and 1H NMR spectra were obtained by Bruker Avance 300 MHz spectrometer. The crystalline 
structures of the prepared nanocomposites were analyzed by X-ray diffraction (XRD) on a Philips PANalytical X’PertPro diffractometer 
(Netherlands) in 40 kV and 30 mA with a monochromatized Cu Kα radiation (λ = 1.5418 Å). SEM images and EDX diagram obtained 
from FESEM-TESCAN MIRA3 electronic microscope. TEM images were obtained from Zeiss EM10C-100 kV transmission electron 
microscope. X-ray photoelectron spectroscopy (XPS) analysis was performed using the SPECS UHV analysis system. Thermal gravi-
metric analysis (TGA) was performed using a TA Q600 device manufactured in the USA, over a temperature range of 40–700 ᴼC. 
Magnetic properties of the prepared samples were measured using a vibrating sample magnetometer (Meghnatis Daghigh, Iran) under 
magnetic fields up to 20 kOe. The nitrogen adsorption–desorption isotherms were examined on Belsorp-Max, Japan. 

Table 1 
Optimization experiments for the reduction of PhNO2 to PhNH2 with NaBH4 catalyzed by as-prepared Fe3O4@EDTA@Cu(II) nanocomposite.  

Entry Solvent Temperature conditions Time (min) Conversion (%) 

1 H2O Room temperature 60 45 
2 H2O 60 ◦C 6 100 
5 CH3OH Reflux 120 50 
6 CH3CH2OH Reflux 120 40 
7 CH3CN Reflux 120 10 
8 CH2Cl2 Reflux 120 10 
9 PEG-400 60 ◦C 120 30  
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Table 2 
Reduction of nitroarenes to corresponding aryl amines using NaBH4 catalyzed by as-prepared Fe3O4@EDTA@Cu(II) nanocomposite in water.  

Entry Substrate Product RMCR Time (min) Yield (%) 

1 1:2:8 6 97 

2 1:2:8 8 92 

3 1:2:8 5 90 

4 1:2:8 6 90 

5 1:2:8 12 90 

6 1:2:8 4 90 

7 1:4:12 3 92 

8 1:4:12 4 94 

(continued on next page) 
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3.2. Preparation of the Fe3O4@EDTA@Cu(II) nanocomposite 

According to previous research, using a co-precipitation technique, black and dark-colored magnetite nanoparticles (MNPs) were 
effectively synthesized. The synthesis process involved mixing FeCl3⋅6H2O and FeCl2⋅4H2O in an alkaline medium under inert con-
ditions. Then, 0.6 g of Fe3O4 nanoparticles were ultrasonicated in dichloromethane solvent to create a homogeneous mixture. Then, 
0.6 g of EDTA disodium was added to the mixture and stirred at room temperature for 24 h to allow the EDTA to bind to the Fe3O4 
nanoparticles. As a result, a brown color product was formed, which was then collected using a magnet. The product was washed three 
times with ethanol to remove any remaining impurities and dried. In the next step, the obtained Fe3O4@EDTA was ultrasonicated in 
ethanol to form a homogeneous solution, and approximately 0.7 g of pure copper powder was added to this solution. The mixture was 
then refluxed for 24 h, which enabled the Cu(II) ions to bind to the Fe3O4@EDTA nanocomposite. The resulting nanocomposite was 
then dried at 60 ᴼC, which removed any remaining solvent and left behind it. 

3.3. General procedure for the reduction of nitroarenes to the corresponding arylamines catalyzed by Fe3O4@EDTA@Cu(II) nanocomposite 

For example, in a round-bottom flask (10 mL) equipped with a magnetic stirrer, a mixture of PhNO2 (1 mmol) and H2O (3 mL) was 
prepared. Then, the as-prepared Fe3O4@EDTA@Cu(II) nanocomposite (8 mg) was added, and the mixture was stirred. At the next step, 
NaBH4 (2 mmol) was added, and the resulting mixture continued to stir at 60 ◦C for the appropriate time under oil-bath conditions. 
After completion of the reaction, the mixture was cooled to room temperature, and the mentioned Cu(II)-containing mesoporous 
nanocatalytic system was separated from the reaction pot by an external magnet. The reaction mixture was extracted with ethyl acetate 
(EtOAc) (2 × 5 mL) and then dried over anhydrous sodium sulfate (Na2SO4). Finally, the solvent was evaporated under reduced 
pressure to afford the pure liquid aniline in 97 % yield. 

3.4. General procedure for the one-pot reductive acetylation of nitroarenes catalyzed by Fe3O4@EDTA@Cu(II) nanocomposite 

As an example, and after completion of the PhNO2 reduction process (which was completely discussed in 3.3 section), acetic 
anhydride (Ac2O) (1 mmol) was added to the reaction mixture, followed by stirring for an additional 1 min at the same temperature. 

Table 2 (continued ) 

Entry Substrate Product RMCR Time (min) Yield (%) 

9 1:4:12 3 92 

10 1:4:12 4 92 

11 1:4:12 4 94 

12 1:4:12 10 90 

RMCR (Reaction main components ratio) = substrate (mmol):NaBH4 (mmol):catalyst (mg). 
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Then, the mixture was cooled to room temperature, and the Fe3O4@EDTA@Cu(II) mesoporous nanocatalyst was separated using an 
external magnet. Then, the reaction mixture was extracted with EtOAc (2 × 5 mL) and then dried over anhydrous Na2SO4. Finally, 
evaporation of the solvent under reduced pressure afforded the pure acetanilide in 95 % yield. 

Scheme 1. Plausible mechanism for the Fe3O4@EDTA@Cu(II)-catalyzed reduction of ArNO2 to ArNH2 using NaBH4.  
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Table 3 
One-pot reductive acetylation of nitroarenes catalyzed by as-prepared Fe3O4@EDTA@Cu(II) nanocomposite in water.  

Entry Substrate Product RMCR Time (min) Yield (%) 

1 1:2:8:1 7 95 

2 1:2:8:1 9 84 

3 1:2:8:1 6 85 

4 1:2:8:2 7 86 

5 1:2:8:2 13 88 

6 1:2:8:2 5 89 

7 1:4:12:1 4 90 

8 1:4:12:1 5 91 

(continued on next page) 

L. Mavaddatiyan and B. Zeynizadeh                                                                                                                                                                              



Heliyon 10 (2024) e35062

15

3.5. Selected spectral data of products 

3.5.1. Aniline 
FT-IR (KBr): 3429, 3352, 3210, 3071, 3035, 2926, 2850, 1620, 1601, 1498, 1467, 1276, 1149, 1021, 880, 752, 692, 503 cm− 1. 1H 

NMR (300 MHz, CDCl3): 7.20 (t, J = 7.5 Hz, 2H, Ar), 6.80 (t, J = 7.2 Hz, 1H, Ar), 6.72 (d, J = 7.8 Hz, 2H, Ar), 3.60 (bs, 2H, NH2). 

3.5.2. Benzene-1,4-diamine 
FT-IR (KBr): 3408, 3373, 3306, 3007, 2921, 1627, 1516, 1448, 1339, 1308, 1261, 1126, 1064, 1042, 932, 828, 714, 513 cm− 1. 1H 

NMR (300 MHz, CDCl3): 6.57 (s, 4H, Ar), 3.33 (bs, 4H, NH2). 

3.5.3. (2-Aminophenyl)methanol 
FT-IR (KBr): 3389, 3297, 3186, 3120, 3026, 2955, 2849, 1609, 1589, 1495, 1456, 1347, 1322, 1268, 1217, 1155, 1074, 1040, 

1004, 932, 767, 750, 687, 609, 561, 532 cm− 1. 1H NMR (300 MHz, CDCl3): 7.13 (t, J = 7.8 Hz, 1H, Ar), 7.03 (d, J = 7.5 Hz, 1H, Ar), 
6.75-6.65 (m, 2H, Ar), 4.59 (s, 2H, CH2), 3.55 (s, 3H, NH2 and OH). 

3.5.4. N-phenylacetamide 
FT-IR (KBr): 3299, 3195, 3128, 2927, 1663, 1605, 1521, 1380, 1310, 1255, 1021, 815, 750, 610, 499 cm− 1. 1H NMR (300 MHz, 

CDCl3) 7.52 (s, 1H, ─NH─), 7.49–7.27 (m, 4H, Ph), 7.11 (t, J = 7.2 Hz, 1H, Ph), 2.18 (s, 3H, ─CH3). 

3.5.5. N,N’-(1,4-phenylene)diacetamide 
FT-IR (KBr): 3303, 3179, 3092, 2927, 2859, 1658, 1501, 1399, 1323, 1260, 1163, 1016, 879, 830, 742, 596, 527, 476 cm− 1. 1H 

NMR (300 MHz, DMSO‑d6): 9.82 (s, 2H, 2 × NH), 7.46 (s, 4H, Ar), 1.98 (s, 6H, 2 × CH3). 

Table 3 (continued ) 

Entry Substrate Product RMCR Time (min) Yield (%) 

9 1:4:12:1 4 91 

10 1:4:12:1 5 91 

11 1:4:12:1 5 93 

12 1:4:12:2 11 95 

RMCR (Reaction main components ratio) = substrate (mmol):NaBH4 (mmol):catalyst (mg):Ac2O (mmol). 

L. Mavaddatiyan and B. Zeynizadeh                                                                                                                                                                              



Heliyon 10 (2024) e35062

16

Table 4 
N-Acetylation of arylamines catalyzed by as-prepared Fe3O4@EDTA@Cu(II) nanocomposite in water.  

Entry Substrate Product RMCR Yield (%) 

1 1:1 98 

2 1:1 96 

3 1:1 85 

4 1:2 97 

5 1:2 96 

6 1:2 97 

7 1:1 96 

8 1:1 95 

(continued on next page) 
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4. Conclusion 

Fundamentally, our research efforts were focused on developing efficient methods with minimal environmental impact for various 
organic transformations. To this purpose, we prepared a Cu(II)-containing mesoporous nanocatalytic system via a new strategy using 
copper metal powder instead of well-known copper salts. Subsequently, we characterized the structure of the mentioned as-prepared 
Fe3O4@EDTA@Cu(II) nanocomposite by FT-IR, XRD, SEM, TEM, SEM-based EDX and elemental mapping, XPS, TGA, VSM, and also 
BET and BJH analyses. Then, the mentioned Fe3O4@EDTA@Cu(II) mesoporous nanocomposite displayed satisfactory catalytic activity 
upon reduction and one-pot reductive acetylation of nitroarenes and also N-acetylation of arylamines in water at 60 ◦C. The large-scale 
nanosheets of the Fe3O4@EDTA@Cu(II) catalytic system possess a significant impact on the overall catalytic performance in the 
mentioned organic reactions. This particular heterogeneous catalyst promotes these reactions effectively. Its simplicity and ability to 
recover and reuse make it a cost-effective choice for practical applications. We also contribute to eco-friendly practices by using water 
as a solvent. The advantages of this approach are numerous. Not only do we achieve relatively short reaction times, but we also 
simplify the catalyst preparation using readily available resources at low cost. In addition, our synthetic strategies consistently produce 
valuable products with minimal purification. Overall, these innovative methods are promising for future applications in the chemical 
industry because they imply sustainable and efficient practical processes in chemistry. 
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Table 4 (continued ) 

Entry Substrate Product RMCR Yield (%) 

9 1:1 96 

10 1:1 96 

11 1:1 97 

12 1:2 98 

RMCR (Reaction main components ratio) = substrate (mmol):Ac2O (mmol). 
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