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ABSTRACT

Transcription factor (TF) footprinting uncovers pu-
tative protein—-DNA binding via combined analyses
of chromatin accessibility patterns and their un-
derlying TF sequence motifs. TF footprints are fre-
quently used to identify TFs that regulate activities of
cell/condition-specific genomic regions (target loci)
in comparison to control regions (background loci)
using standard enrichment tests. However, there is
a strong association between the chromatin accessi-
bility level and the GC content of a locus and the num-
ber and types of TF footprints that can be detected
at this site. Traditional enrichment tests (e.g. hyper-
geometric) do not account for this bias and inflate
false positive associations. Therefore, we developed
a novel post-processing method, Bias-free Footprint
Enrichment Test (BIiFET), that corrects for the bi-
ases arising from the differences in chromatin ac-
cessibility levels and GC contents between target
and background loci in footprint enrichment analy-
ses. We applied BiFET on TF footprint calls obtained
from EndoC-BH1 ATAC-seq samples using three dif-
ferent algorithms (CENTIPEDE, HINT-BC and PIQ)
and showed BiFET’s ability to increase power and
reduce false positive rate when compared to hyper-
geometric test. Furthermore, we used BiFET to study
TF footprints from human PBMC and pancreatic islet
ATAC-seq samples to show its utility to identify puta-
tive TFs associated with cell-type-specific loci.

INTRODUCTION

Detecting transcription factor (TF) binding to DNA
is critical to understand and study transcriptional con-
trol of gene expression. Chromatin immunoprecipitation-

sequencing (ChIP-seq) assays are effective in uncovering
genome-wide binding patterns of a TF. However, profiling
multiple TFs using this technology in a cell type of interest
is costly and requires large input cell numbers, which lim-
its its wide application to study TF-DNA interactions. A
more high-throughput alternative to experimental profiling
of these interactions is digital TF footprinting (1), which
computationally infers TF binding to DNA by integrating
chromatin accessibility patterns (e.g. DNase-seq/ATAC-
seq profiles) with the underlying TF binding motifs repre-
sented as position weight matrices (PWM) (2,3). Several al-
gorithms have been developed for this purpose to model
the probability of a TF’s binding to a given locus from
genomewide chromatin accessibility maps (4-7).

Due to advances in genomewide chromatin accessibility
profiling, notably the ATAC-seq (8) technology, increasing
numbers of chromatin accessibility maps have been gen-
erated in primary human cells to study complex diseases,
which transformed the clinical epigenomics field (9,10). Ef-
fective detection and analyses of TF footprints from these
data will be instrumental to nominate potential regulators
associated with a clinical phenotype of interest (e.g. im-
munosenescence (11) or cancer subtypes (12). TF footprint
enrichment analyses can be utilized for this purpose by com-
paring the number of TF footprint calls in genomic regions
of interest (target sites) against footprint calls in a reference
set of regions (background sites). Unfortunately, standard
enrichment tests (e.g. hypergeometric test (HT) or equiv-
alently one-sided Fisher’s exact test) are subject to biases
intrinsic to TF footprinting data and can lead to spurious
enrichment results unrelated to the biological/clinical ques-
tion of interest.

In our analyses, TF footprints obtained from ATAC-
seq samples in three different human cell/tissue types
(EndoC-BHI1 pancreatic beta cell line (13), peripheral blood
mononuclear cells (PBMCs) (11), and pancreatic islets) re-
vealed two major sources of bias affecting downstream en-
richment analyses: differences in sequence GC content and
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chromatin accessibility levels of target/background regions.
First, the GC content of a region significantly affects which
TF footprints can be detected in this locus; when target re-
gions on average have higher GC content than the back-
ground regions, many GC-rich motifs are falsely identified
as enriched in targets, which has been previously noted in
motif enrichment analyses and corrected for by minimiz-
ing the imbalance of GC content between target and back-
ground sites (14,15). TF footprint analyses are subject to a
similar bias; however, no current methodology accounts for
this bias in TF footprint enrichment analyses.

Second, detection of footprints in an open chromatin re-
gion (OCR) is highly dependent on the number of reads
(e.g. Tn5 cuts) spanning this region(1,4). DNA-cutting en-
zymes, such as DNase I or Tn3, have sequence-specific bi-
ases that contribute to the differences in the number of
reads at different OCRs (3,16-18). Footprint detection al-
gorithms typically identify footprints in an OCR using the
depletion of cuts at a given sequence relative to nearby
flanking regions (19). Therefore, these algorithms likely de-
tect more footprints in OCRs with more cuts (i.e. more read
counts). Due to this association between read count num-
bers at a given locus and the number of footprints detected
at this site, standard enrichment tests detect many false pos-
itive (FP) TFs when target regions have more reads on the
average compared to the background regions.

In this study, we present a robust enrichment test for post-
processing of TF footprints, BIFET: Bias-free Footprint
Enrichment Test, that corrects for the biases arising from
differences between background and target regions in terms
of their number of sequencing reads and GC content (Fig-
ure 1). The goal of BiFET is to post-process TF footprint
calls obtained via other footprinting algorithms to com-
pare two sets of genomic regions for enrichment of foot-
prints. Differential TF footprints methods have been devel-
oped to compare pairs of DNase-seq or ATAC-seq samples,
(i.e. BaGFoot (20) and Wellington-bootstrap (21)); how-
ever, there is no computational method that conducts en-
richment tests for TF footprints while accounting for biases
in footprinting data.

Several footprinting algorithms have been developed to
infer TF binding from chromatin accessibility data, which
broadly fall into two categories: shape detection and motif-
driven. Shape detection algorithms, e.g. Neph (22), Welling-
ton (23), DNase2TF (7), Boyle (24), HINT (25) and HINT-
BC (26) scan DNase-seq or ATAC-seq data to detect a
footprint-like spatial shape—short genomic regions of low
(DNase I or Tn5) cleavage immediately flanked from both
ends by high cleavage— without specifying the TF motif.
Motif-driven algorithms on the other hand, e.g. FLR (27),
CENTIPEDE (5), PIQ (6) and BinDNase (28), first scan
the genome for known TF sequence motifs and classify loci
with a motif as bound or unbound based on the chromatin
accessibility profiles (26).

We evaluated BiIFET’s performance on TF footprints
from EndoC-BH1 ATAC-seq data obtained via three foot-
printing algorithms: HINT-BC (representing shape de-
tection algorithms), CENTIPEDE and PIQ (representing
motif-driven algorithms) that are selected based on their
popularity in the field (based on their citation numbers)
and their efficacy as evaluated in (26). EndoC footprints
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from three algorithms were used to simulate true TF bind-
ing events, which enabled us to compare the detection power
and the FP rate of BiFET to the frequently used HT. In
comparison to the HT, BiFET is robust to the choice of the
background set and has high detection power and low false
positive rate (FPR) regardless of the algorithm used to call
footprints. Furthermore, we applied BIFET on ATAC-seq
data from human PBMCs and pancreatic islets to uncover
TFs that are associated with PBMC or islet-specific regu-
latory elements and studied the efficacy of BiFET in the
downstream enrichment analyses of footprinting data from
clinically relevant samples.

MATERIALS AND METHODS
Bias-free Footprint Enrichment Test (BiFET)

BiFET aims to identify TFs whose footprints are over-
represented in target regions (e.g. ATAC-seq peaks associ-
ated with a phenotype) compared to background regions
after correcting for differences in read counts and GC con-
tent between target and background regions. Specifically,
BiFET tests the null hypothesis that target regions have the
same probability of having footprints for a given TF k as
the background regions after correcting for the read count
and the GC content bias (See Figure 1 for a summary of
our framework). For this, the number of target peaks with
footprints for TF k (#) is used as a test statistic and the P-
value is calculated as the probability of observing # or more
peaks with footprints under the null hypothesis. The asso-
ciation between read counts and footprint detection rate, is
modeled with a logistic function fi:

2
Silris o) = Ttean 1,

where r; denotes the number of reads in peak i. f is equal to
0 when the peak has no reads (r; = 0) and increases mono-
tonically converging to 1 as the number of reads increases to
infinity at a rate determined by «; > 0 (See Supplementary
Figure S1A for the relation between f] and ¢ for increasing
read count values).

Similarly, we model the association between the GC con-
tent of a genomic region and the footprint detection by in-
troducing a second logistic function f;:

2

Sgis Br) = Troha

where g; denotes the GC content (proportion of GC) in the
genomic region i and B > 0 determines how fast f, con-
verges to 1. Unlike the read count bias, the positive associ-
ation between the GC content and footprint detection ex-
ists only for TFs with GC-rich motifs (See Figure 2C and
D; Supplementary Figure S2B, C, E and F for the relation
between footprint detection and GC content of genomic re-
gions for GC-rich and GC-poor motifs). The logistic func-
tion f; with various values of 8 can model this TF-specific
association between GC content and the footprint detec-
tion. For example, when By is high (i.e. 10 000) as in Sup-
plementary Figure S1B, f; is equal to 1 for any value of g;
> 0, hence the footprint detection does not depend on the
GC content. For GC-poor motifs, 8 will have a high value,
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Figure 1. BiFET framework. BiIFET models chromatin accessibility (i.e. read count) and GC content differences between target and background regions

for an effective TF footprinting enrichment test.

hence there will not be an association between the GC con-
tent and the footprint detection.

At last, the probability that a footprint for TF & is called
in a peak i (py;) is modeled as:

Pri = qefi(ri, ) f2(gis Br)

In this model, the parameter ¢; denotes TF-specific bind-
ing rate, which is adjusted by functions f; and f, that mea-
sure the effect of the read count levels and GC content of
peaks on footprint detection rates. This model assumes that
the read counts and the GC contents of genomic regions
independently affect the probability of footprint detection.
This assumption is supported by our analyses (Supplemen-
tary Figure S3), which shows that the relation between foot-
print detection and GC content (or read counts) is pre-
served as we stratify the data by read counts (or GC con-
tent), respectively.

When target and background regions have similar read
counts and GC content, the difference in rates of TF foot-
print calls can be explained by the difference in ¢; between
the two sets. Therefore, we test if ¢ differs between the tar-
get and background regions. More specifically, we assume
that the probability of the target peak i having a footprint
for TEkis pri1 = qr1fi(ri, ar) f2(gi, Br) and the probabil-
ity of the background peak 7 having a footprint for TF & is
Pri2 = qk2fi(ri, ax) f2(gi, Br) and test the null hypothesis
( Ho : gx1 = qr2 = qx) and estimate the parameters gz, ok
and B, by maximizing the likelihood of the footprint data

for TF k:
1_[ DPk.i 1_[

i€UB.  je(T-T)U(B-B)

= l_[ ak (i, ) f2(gis Br)

ieT,UBy

<1

JE(T=T)U(B—By)

(I = pr.i)

(I = qu /i@, ) 12(855 Br)),

where 7 and B denote target and background peaks and
T and B; are target peaks and background peaks with
footprints for TF k, where |T;| = #, and |By| = by. The
optimization was performed by R optim function with a
limited-memory modification of the BFGS quasi-Newton
method (29).

We then define the P-value for testing the null hypothesis
as the probability that there are 7 or more target peaks with
footprints for TF k:

Pr(ITil = 0)= Y | [[ & /il @) fogi, Bo)

|Tel=tc | i€Ti

< [ 4 =a fitry. @) (g B |

JeT=Tj

where Gr, @ and B are maximum likelihood estimates
(MLE) of ¢, ay and . This probability is calculated using
R package poibin (30).

BiFET is available as a Bioconductor package at http://
bioconductor.org/packages/release/bioc/html/BiFET.html.
Instructions on how to use BiFET and the required input
files are explained in vignettes available at https://github.
com/UcarLab/BiFET/blob/master/vignettes/BIFET.Rmd.

Simulation studies in EndoC cell line

EndoC ATAC-seq data processing. We assessed the per-
formance of BiFET by simulating TF footprint calls using
ATAC-seq data in human EndoC-BHI1 beta cell line (13).
From these data 138 707 OCRs (i.e. ATAC-seq peaks) were
identified using MACS version 2.1.0 (31) with parameters
‘-nomodel -f BAMPE’. The peaks were truncated to a total
length of 200 bp (£100 bp from the peak center) to elimi-
nate biases associated with differences in peak lengths. This
same peak length cut-off has been used in all of our analy-
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Figure 2. The relation between TF footprints and sequence/genomic features of a locus. (A) ATAC-seq read counts versus number of PIQ footprints
detected in a peak. Due to the outliers, we restricted analyses to peaks whose read counts are below the 99th percentile. (B) For TFs with high-GC motifs,
GC content of a peak correlate significantly with the number of PIQ footprints detected at this peak. (C) For TFs with low-GC motifs, GC content of a
peak is not correlated with the number of PIQ footprints detected at this peak. (D) Example high-GC content PWMs (E) Example low-GC content PWMs.

ses to ensure that number of footprints was not affected by
differences in target and background peak lengths.

Footprint calling using three algorithms. We applied CEN-
TIPEDE, HINT-BC and PIQ algorithms with their default
parameters using a PWM library compiled from the JAS-
PAR database (32) and Jolma et al. (33) (n =979 PWMs in
total). CENTIPEDE uses a Bayesian mixture model to es-
timate the posterior probabilities of TF motif binding(5).
PIQ uses a Gaussian process to model and smooth the
footprint profiles around motif sites and to estimate the
probability of occupancy for each motif occurrence (6).
HINT-BC (HINT bias-corrected) extends HINT (Hmm-
based IdeNTtification of Tf footprints) to adjust for the se-
quence cleavage bias of chromatin cutting enzymes (26).
These footprint detection algorithms are selected based on
two criteria: their popularity in the field (based on the num-

ber of times they are cited) and their efficacy as evaluated
in (26). PIQ and HINT-BC are among the top performers
(26). CENTIPEDE is the most frequently used method for
footprint detection. Since HINT-BC does not specify which
TF is associated with the detected footprint, we overlapped
HINT-BC footprints with this PWM library. In this analy-
sis, if at least 2/3 of a TF’s motif overlapped with a HINT-
BC footprint, we associated this TF to the footprint. For all
three algorithms TF footprints were filtered based on the
scores that measure the confidence of the footprint detec-
tion, i.e., positive predictive values (PPV) > 0.9 for PIQ,
posterior probabilities of binding > 0.95 for CENTIPEDE
and tag-count score > 80" percentile for HINT-BC with
frequently used thresholds. Throughout this study, only the
footprints that are detected within the truncated peak re-
gions were used for enrichment analyses. PWM clustering



PAGE 5 OF 14

analyses after enrichment analyses were conducted using
TFBSTools R package (34).

TF footprinting simulations. To investigate the impact of
read count and GC content differences between target and
background regions on the enrichment test results, we ap-
plied three different methods to select target regions com-
prising 5% of all EndoC ATAC-seq peaks (6935 peaks):

1) Target peaks were randomly selected from all peaks (tar-
get + background) so that the expected read counts and
GC content do not differ between target and background
regions.

ii) Target peaks were randomly selected by setting the sam-
pling probability to be proportional to f(x = read counts
per peak) using four functions: (a) f(x) = x, (b) f(x) =
x!72 (c) f(x) = x /2 and (d) f(x) = x~! where the aver-
age read count for target peaks decreases from (a) to (d).
In (a) and (b), target peaks have higher read counts than
the background peaks, whereas in (¢) and (d), they have
lower read counts than the background peaks.

iii) Target peaks were randomly selected by setting the sam-
pling probability to be proportional to f(x = GC content
per peak) using four different f functions: (a) f(x) = x, (b)
f(x) =x!2, (¢) f(x) = x~'/2, (d) f(x) = x~! where the aver-
age GC content for the target peak set decreases from (a)
to (d). In (a) and (b), the average GC content for target
peaks are higher than that of background peaks, whereas
in (c) and (d), it is lower than the background peaks.

In all three cases, target peaks were randomly selected in-
dependent of their location, functional association or TF
motif enrichments. Therefore, no TFs were expected to
specifically bind to these random peaks, and any TF that
is significantly enriched in target peaks is marked as an FP
call. To quantify the detection power of our method, we ran-
domly selected 10 TFs; for each of these TFs, we simulated
artificial footprint calls in N% of the target sets. In other
words, for each selected TF k, we increased the number of
target peaks with footprints for this TF (i.e. | 7;|) by N%.
We set N to be the binding rate of the TF (i.e. the percent-
age of peaks with footprints for the TF) across all peaks or
across target peaks, whichever is larger. Since we simulated
additional footprints for these 10 TFs only within target re-
gions, they should be truly enriched in target peaks com-
pared to the background peaks. Hence, these 10 TFs are
treated as true positives (TP) in our analyses, whereas the
rest of the TFs detected are considered FP. Each simulation
setting was repeated 50 times to eliminate biases stemming
from random samplings. For each simulation, we identified
TFsthat are enriched in the target set compared to the back-
ground set using HT and BiFET and assessed the FPR and
TP rate for each method using TF footprints from three dif-
ferent footprint detection algorithms.

Analysis of human islet and PBMC ATAC-seq data

Islet and PBMC ATAC-seq data processing. ATAC-seq
peaks from five human PBMCs (11) and five human islets
(42) were called using MACS version 2.1.0 with parame-
ters “-nomodel -f BAMPE’. The peaks from all ten samples
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were merged to generate one consensus peak set (N = 57
108 peaks) by using R package DiffBind 2.2.5. (35), where
only the peaks called at least twice (out of 10 samples) were
included in the analysis. We used the ‘summits’ option to
re-center each peak around the point of greatest read over-
lap and obtained consensus peaks of same width (200 bp,
4100 bp around the summit). Out of these consensus peaks,
we defined PBM C-specific peaks as those that were called in
at least four PBMC samples and in none of the islet samples
(n = 4106 peaks). Similarly, we defined islet-specific peaks
as those called in at least four islet samples but in none of the
PBMC samples (n = 12 886 peaks). Consensus peaks that
exclude PBMC/islet-specific peaks were used as the back-
ground (i.e. non-specific) regions in our enrichment analy-
ses (n = 40 116 peaks). PIQ was used to call TF footprints
from the pooled islet and pooled PBMC samples to increase
the detection power for TF footprints based on JASPAR
PWMs (n = 454 in total). Only the TF footprints with pos-
itive predictive values >0.9 are used in downstream enrich-
ment analyses.

Footprinting calls using random motifs. Unlike in our sim-
ulation study, in real world datasets we typically do not
know which TFs are true or FP regulators of the loci of in-
terest. To quantify BiFET’s ability to reduce FPR, we gen-
erated artificial PWMs and used PIQ to call footprints for
these artificial motifs in ATAC-seq samples (i.e. FP calls).
To generate artificial PWMs, we started with the JASPAR
PWMs (n = 454) and randomly permuted every column
(base pair) of the PWM to obtain a random PWM. For each
randomly generated PWM (454 in total), we calculated its
Euclidean distance to the JASPAR PWMs using R package
PWMsimilarity (36) and selected the top 200 random mo-
tifs that are the most dissimilar to the known motifs based
on their PWM similarity. These 200 random motifs were
used to call PIQ footprints from islet and PBMC ATAC-
seq samples and used for assessing FPR.

RESULTS

Number of ATAC-seq reads and GC content of a region affect
TF footprints detected at this locus

From EndoC-BH1 ATAC-seq data, 974 975 significant
CENTIPEDE footprints were detected for 790 (out of 979
tested) PWMs within ATAC-seq peaks (Methods). PIQ de-
tected 830,795 significant footprints for 969 PWMs and
HINT-BC detected 135,657 footprints associated with 979
PWMs within ATAC-seq peaks. Only the footprints that are
within ATAC-seq peaks were used in downstream analysis.

Despite the differences in genome-wide footprint calls,
comparable numbers of footprints were detected within
ATAC-seq peaks per TF using different algorithms (Pear-
son correlation coefficient r = 0.58 for CENTIPEDE and
PIQ, r = 0.72 for HINT-BC and PIQ, r = 0.46 for CEN-
TIPEDE and HINT-BC; Supplementary Figure S4A-C).
Furthermore, similar numbers of footprints were detected
per peak by different methods (r = 0.6 for CENTIPEDE
and PIQ, r = 0.42 for HINT-BC and PIQ, r = 0.32 for
CENTIPEDE and HINT-BC; Supplementary Figure S4D—
F), suggesting that different algorithms produce compara-
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ble footprints from the same data and they are subject to
similar biases in footprint calls.

The number of ATAC-seq reads spanning a peak corre-
lated significantly (p<e-16) with the number of footprints
detected within this peak, for all three algorithms: » = 0.58
for PIQ (Figure 2A), r = 0.38 for CENTIPEDE (Supple-
mentary Figure S2A) and r = 0.35 for HINT-BC (Supple-
mentary Figure S2D), which is in alignment with previous
observations from DNAse-seq data (4). Furthermore, for
GC-rich motifs (i.e. motifs for which the average probabil-
ity of having G or C in their PWM > 0.5 such as KLF5 and
SP1 in Figure 2D), GC content of the peak and the num-
ber of footprints detected from this region was also signifi-
cantly correlated: r = 0.57 for PIQ (Figure 2B), r = 0.54 for
CENTIPEDE (Supplementary Figure S2C) and r = 0.24
for HINT-BC (Supplementary Figure S2F). We observed
that HINT-BC is less subject to such GC bias, likely be-
cause it is not motif-driven and it adjusts for the sequence
cleavage bias of cutting enzymes. Despite this adjustment,
HINT-BC footprints are still subject to sequencing related
bias (both GC content- and read count distribution-related)
and BIiFET effectively reduces FP associations for HINT-
BC footprints as suggested by our simulation studies (Sup-
plementary Table S2). For TFs with low-GC content PWMs
(e.g. Forkhead (FOX) TF family members, POU2F2 in Fig-
ure 2E), GC content of the peak is not associated with the
number of footprints detected at the peak (Figure 2C; Sup-
plementary Figure S2B and E). These observations suggest
a relationship between locus-specific read count and GC
content and the detection probability of TF footprints from
this site, which is conserved across three algorithms and
likely bias downstream enrichment analyses.

BiFET enrichment results are robust to differences between
target and background regions

By simulating TF footprint enrichments in EndoC cells, we
quantified the impact of enrichment test choice under differ-
ent scenarios (‘Materials and Methods’ section). First, we
observed that, as expected, BIFET and HT performs simi-
larly when target and background regions have comparable
read counts and GC contents (Table 1A for PIQ, Supple-
mentary Table S1A for CENTIPEDE and Supplementary
Table S2A for HINT-BC results).

However, when target regions harbor more ATAC-seq
reads (i.e. higher read counts) compared to background re-
gions, HT produces large numbers of FP enrichments. For
example, HT identified 648 out of 959 TF motifs (i.e. 969
PWMs detected within peaks—10 TP) to be significantly
enriched in randomly selected target regions (FPR = 68%)
when there is a significant difference between target and
background regions in terms of median read counts (Ta-
ble 1B, setting A). For the same scenario, BIFET controlled
the FPR at 0.001, where only 1 out of 959 TF motifs had a
significant enrichment. On the contrary, when read counts
of target regions were lower than those of background re-
gions, HT had a lower true positive rate (TPR) than BiFET
(e.g. 87% TPR with BiFET versus 50% with HT for setting
d in Table 1B). BiFET and HT generated similar results for
footprints called using CENTIPEDE and HINT-BC (Sup-
plementary Tables S2B and 3B)
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BiFET also outperformed HT under varying GC content
distributions for background and target regions. When the
median GC content of target regions is higher than that
of the background regions, HT produced many FP calls.
For example, 128/959 TF motifs tested (FPR = 13%) were
detected to be significantly enriched when GC contents of
background and target regions were significantly different
(Table 1C, setting A). Under the same scenario, BiFET bet-
ter controlled the FPR and detected only 22 TFs to be
enriched out of 959 (FPR = 2%). Similarly, BiFET out-
performed HT for footprints obtained from CENTIPEDE
(Supplementary Table S1C) and even from HINT-BC (Sup-
plementary Table S2C), which corrects for sequence cleav-
age bias during footprint calling. These simulation results
suggest that in comparison to the standard enrichment test
(i.e. HT), BiFET is robust to the choice of background re-
gions and has high detection power and low FPR irrespec-
tive of the algorithm used for footprinting calls.

BiFET uncovers TFs associated with cell-specific regulatory
elements

We used BiFET to detect TFs associated with cell-specific
OCRs by comparing ATAC-seq data from human PBMCs
(11) and pancreatic islets (42). Using a stringent definition
of cell-specific accessibility (‘Materials and Methods’ sec-
tion), we identified 4106 PBMC-specific ATAC-seq peaks
(e.g. CD28 locus in Figure 3A) and 12 886 islet-specific
ATAC-seq peaks (e.g. ISLI locus in Figure 3B). The re-
maining ATAC-seq peaks (n = 40 116) were considered
non-specific and used as the background set in our enrich-
ment analyses. PIQ detected 389 948 significant footprints
for 401 PWMs within PBMC ATAC-seq peaks and 390 502
significant footprints for 414 PWMs within islet ATAC-seq
peaks. Using BiFET and HT, we identified PWMs whose
footprints were enriched in PBMC-specific peaks compared
to the background peaks (i.e. non-specific peaks) and, sim-
ilarly, TFs whose footprints were enriched in islet-specific
peaks compared to the background peaks. PBMC-specific
peaks (i.e. target peaks) had higher ATAC-seq read counts
than the background peaks in the PBMC samples, where
median log read count of target peaks was 4.8 and median
log read count of background peaks was 3.8 (Figure 3C,
left panel). On the other hand, PBMC-specific peaks had
lower GC content than the common peaks (median GC
proportion = 0.495 versus 0.53; Figure 3C, right panel).
Since background peaks had significantly lower read counts
than the target peaks, they tended to have fewer footprints.
Therefore, if read count bias was not adjusted for, the stan-
dard enrichment tests would identify many FP enrichments.

BIiFET identified 89 PWMs (mapping to 84 TFs) to be
significantly (FDR < 5%) enriched in PBMC-specific peaks
out of 401 PWMSs that were tested. In comparison, HT
identified 205 PWMs as significantly enriched in PBMC-
specific peaks, including all 89 PWMs captured by BiFET.
As expected, when a PWM is significantly enriched by ei-
ther method, the percent of target peaks with footprints
is higher than the percent of background peaks with foot-
prints for this TF (Figure 3D, red dots). However, differ-
ences in percent of peaks with footprints between target and
background were smaller for the TFs that are solely identi-
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Table 1. Simulation results for EndoC PIQ footprints shows efficacy of BIFET
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A. Randomly sampling target peaks

Median reads Median reads Median GC % Median GC% TP (TPR) TP (TPR) FP (FPR) FP (FPR)
of target of background of target of background by BiFET by HT by BiFET by HT

72 72 0.43 0.43 8(0.8) 8.1(0.81) 0.14 (0.00015) 0.28 (0.00029)
B. Randomly sampling target peaks with different read counts

Simulation Median reads Median reads TP (TPR) TP (TPR) FP (FPR) FP (FPR)

setting of target of background by BiFET by HT by BiFET by HT

a 275 70 9.2(0.92) 10 (1) 1.3 (0.0014) 648 (0.68)

b 123 71 8.7 (0.87) 9.9 (0.99) 0.86 (9¢-04) 423 (0.44)

c 58 73 8.4 (0.84) 6(0.6) 0.06 (6.3e-05) 0(0)

d 52 74 8.7 (0.87) 5(0.5) 0.04 (4.2e-05) 0(0)

C. Randomly sampling target peaks with different GC contents

Simulation Median GC%  Median GC% TP (TPR) TP (TPR) FP (FPR) FP (FPR)

setting of target of background by BiFET by HT by BiFET by HT

a 0.45 0.42 8.4 (0.84) 9.4 (0.94) 22(0.023) 128 (0.13)

b 0.44 0.42 8.1 (0.81) 8.9 (0.89) 0.94 (0.00098) 30 (0.032)

c 0.42 0.43 8.3(0.83) 8(0.8) 0.35 (0.00036) 0.29 (3e-04)

d 0.41 0.43 8.2 (0.82) 7.6 (0.76) 0.61 (0.00064) 0.24 (0.00026)

We calculated the median read counts and GC proportions of target and background sets and the number of TP, true positive rate (TPR), number of FP
and FPR under FDR 0.05 averaged across 50 simulations for each simulation setting: (A) randomly sampling target peaks among all peaks, (B) randomly
sampling target peaks with different read counts among all peaks and (C) randomly sampling target peaks with different GC contents among all peaks.

A Example PBMC-specific locus B Example islet-specific locus C Read counts and GC proportions for PBMC peaks D PBMC-specific TFs
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fied by HT (i.e. dark red dots labeled as ‘HT-only’ in Figure
3D).

Similarly, we identified TF footprints enriched in islet-
specific peaks using BiIFET and HT. Similar to the PBMC
data, islet-specific peaks (target peaks) had higher average
ATAC-seq read count than the background peaks in islets,
where median log read count for target peaks is 4.4 and me-
dian log read count for background peaks is 3.9 (Figure 3E,
left panel). Islet-specific peaks also had lower GC content
than the background peaks (median GC proportion = 0.46
versus 0.53; Figure 3E, right panel). BiIFET identified 135
PWMs (mapping to 122 TFs) out of 414 tested to be signif-
icantly enriched in islet-specific peaks (FDR = 0.05), while
HT identified 187 PWMs, including the 135 PWMs detected
by BIFET. We noted that since the difference in read counts
between target and background peaks was not as striking
as in PBMC samples (Figure 3C versus E), the number of
PWMs exclusively detected using HT were less in islet sam-
ples compared to PBMC samples (52 versus 116). As ex-
pected, TFs enriched in islet-specific peaks had more foot-
prints in target regions than in background regions (Fig-
ure 3F). TFs with significant enrichment according to both
methods (light blue dots in Figure 3F) clearly separated
from the non-significant TFs, while the TFs identified only
by the HT (dark blue dots in Figure 3F) had similar foot-
print rates between background and target sets, suggesting
that enrichments detected only by HT are likely FP.

To study the functional relevance of TF enrichments ob-
tained from PBMC- and islet-specific peaks, we performed
pathway enrichment analysis using HOMER (14). Of the 84
PBMC-specific TFs and 122 islet-specific TFs (Supplemen-
tary Table S3) identified by BiFET, 46 TFs were common
(Supplementary Figure S5A) suggesting that some TF's that
regulate cell-specific regions can be common across cell
types. The top three enriched Wiki pathways for PBMC-
specific TFs (n = 38) were all immune-related including
“Type I1, III interferon signaling’ and ‘Development of pul-
monary dendritic cells and macrophage subsets’ (Supple-
mentary Table S4). In contrast, islet-specific TFs (n = 76)
included HNFIA, HNFIB, HNF4A and PAX6 (Supple-
mentary Table S5), and the most enriched KEGG path-
way for islets was ‘Maturity Onset Diabetes of the Young’.
These functional enrichment results show that islet/PBMC-
specific TFs identified by BIFET reflect functional enrich-
ments relevant to the cognate cell type.

We repeated the pathway enrichment analyses for TFs
identified by HT. HT identified 175 PBMC-specific TFs
and 167 islet-specific TFs, of which 113 were common be-
tween two cell types (Supplementary Figure S5B). We found
that the pathways enriched for TFs that are PBMC-specific
(n = 62) included immune-related pathways, but their P-
values were less significant compared to those obtained
from BiFET results (Supplementary Figure SSCand E; Sup-
plementary Table S6). Likewise, we observed that pathways
enriched for islet-specific TFs (n = 54) had less significant
P-values compared to BiFET results for islet biology related
pathways (Supplementary Figure S5D and F; Supplemen-
tary Table S7). These results indicate that BIFET was more
effective in detecting cell type-specific regulators than the
standard enrichment test and can be effective in reducing
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FP enrichments between TFs and genomic regions of inter-
est to study human diseases and biology.

Comparison between BiFET and differential footprinting
methods

BaGFoot (20) and Wellington-bootstrap (21) algorithms
have been developed to identify differential TF footprints
between pairs of DNase-seq or ATAC-seq samples. We
compared the performance of these methods in identifying
TF footprints enriched in PBMCs versus islet cells using our
ATAC-seq samples and the same PWM list. Wellington-
bootstrap (WB) builds on the Wellington footprint detec-
tion (23) method. First, Wellington footprints are detected
from sample A and for each footprint locus a test is con-
ducted to reveal whether pooling sample B with sample
A affects the footprint detection. This yields a set of sites
that are over-footprinted in sample A. Repeating the anal-
ysis with reversed roles for samples A and B yields over-
footprinted sites in sample B. In PBMC-specific (n = 4106)
and islet-specific peaks (n = 12 886), WB identified 2729 re-
gions over-footprinted in PBMC and 10 050 regions over-
footprinted in islets at FDR 5%. Since WB does not use
motif PWMs, we overlapped PWMs used in our study with
these over-footprinted regions, where we assumed a hit if
>2/3 of the motif width overlaps the over-footprinted lo-
cus. A total of 378 out of 454 PWMs overlapped PBMC
over-footprinted regions and 444 PWMs overlapped islet
over-footprinted regions. For 376 PWMs we found over-
footprints in both cell types, suggesting that Wellington-
bootstrap is not very effective in identifying cell-specific reg-
ulators although it can detect differences at a specific locus
between two given samples. Next, we run motif enrichment
analyses on over-footprinted regions using HOMER (14).
18 motifs were enriched in PBMC over-footprinted regions
and 39 motifs were enriched in islet over-footprinted re-
gions, 10 of which were common. Of the 18 PBMC-enriched
motifs, 6 motifs were also identified by BiIFET and of the 39
islet-enriched motifs, 14 were detected by BiFET. However,
BIiFET identified other TFs that are enriched in islets and
PBMC:s (Supplementary Figure S6A). Pathway enrichment
analyses showed that motifs associated with islets/PBMCs
using BiFET were enriched more significantly with the
pathways relevant to the cognate cell type (Supplementary
Figure S6B and C; Supplementary Table S8 for complete
results). PBMC-specific motifs identified by BIFET (and
missed by WB) included TFs associated with type II, 1T in-
terferon signaling such as IRF1, IRFS, IRF9 and STATI,
STAT?2, which have established roles in immune functions.
Similarly, islet-specific motifs identified by BiFET (missed
by WB) included TFs associated with maturity onset di-
abetes of the young (MODY) such as HNF1A, HNF1B,
HNF4A and PAX6. These analyses suggest that although
WB can capture whether a genomic region has a differen-
tial footprint between two conditions, it does not perform
well for global enrichment analyses, as evident from the fact
that it missed many immune and islet-related TF footprint-
ing enrichments that are captured by BiFET. Furthermore,
since WB does not use PWMs a priori extra analyses are
required to interpret results.
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Next, we applied BaGFoot to detect PWMs enriched
in PBMC- and islet-specific peaks. BaGFoot does not
call footprints prior to differential analyses, instead it de-
tects changes in TF activity based on changes in footprint
depth of each motif and flanking accessibility between two
samples. At P-value cut-off 0.05, BaGFoot identified 10
PWDMs that are islet-specific (e.g. HNF1A, HNF1B) and 7
PWMs that are PBMC-specific (e.g. RUNX2, KLF5). How-
ever, none of these cell-specific TFs were significant after
multiple-hypothesis-test correction at FDR 10%. In con-
trast, BIFET captured the majority of these TFs at FDR 5%
(Supplementary Figure S6A). Furthermore, cell-type rel-
evant pathway terms were more significantly enriched for
BIiFET results (Supplementary Figure S6B and C; Supple-
mentary Table S9 for complete results). As suggested by
these analyses, BIFET detects the majority of the TFs de-
tected by BaGFoot even after multiple hypothesis correc-
tion and provides a more flexible methodology to analyze
footprinting data to compare any two peak sets: target and
background peak sets. For example, BIFET can be applied
even on peaks obtained from one ATAC-seq sample (e.g. to
compare footprints enriched in promoters versus enhancers
in one experiment). In addition, BIFET is the only method
that is implemented as a Bioconductor package.

BiFET reduces false positive associations in ATAC-seq foot-
printing analyses

Although pathway enrichment analysis suggested that the
TFs identified by BIiFET better capture regulators of
PBMC/islet-specific functions, it is difficult to assess which
of these are true regulators in clinical samples. To demon-
strate the advantage of BiFET in reducing FP in clini-
cally relevant comparisons, we performed enrichment anal-
yses using BiFET and HT on PIQ footprints for 200 ar-
tificially generated random motifs (‘Materials and Meth-
ods’ section). For these artificial motifs, 121 085 footprints
were detected within PBMC ATAC-seq peaks, where 194
motifs had at least one footprint. The number of detected
footprints for these random motifs was highly correlated
(Pearson correlation r = 0.71) with the read counts similar
to the original JASPAR motifs (» = 0.66) (Supplementary
Figure S7A and B) Application of BiFET on these foot-
prints identified 12 PWMs that are significantly enriched
in PBMC-specific peaks compared to background peaks,
while HT identified 79 significantly enriched PWM:s for the
same analyses, including all 12 PWMs captured by BiFET.
For these random PWMs, the percent of target peaks with
footprints was overall lower than that of the original JAS-
PAR motifs (Supplementary Figure S7C versus Figure 3D).
As expected, for significantly enriched PWMs, percent of
target peaks with footprints was higher than the percent
of background peaks with footprints (Supplementary Fig-
ure S7C, red dots). Similar to the previous results, the dif-
ferences in percent of peaks with footprints between target
and background regions were smaller for the PWMs that
are solely identified by HT (i.e., dark red dots labeled as
‘HT-only’ in Supplementary Figure S7C) when compared
to PWMs identified by both methods. Furthermore, BIFET
had higher enrichment P-values for these PWMs when com-
pared to HT (Supplementary Figure S7D). Together these
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results suggest that footprint detection is subject to high
rates of FP calls and BiFET can be a useful downstream
analysis method to reduce FP associations for accurate in-
terpretation of footprint enrichments.

Background set choice affects false positive rate and detection
power in standard tests

Simulation studies suggested that differences in read counts
have a bigger impact on enrichment results than differences
in GC content. Therefore, the differences between BiFET
and HT enrichment results for PBMC- and islet-specific
peaks likely stem from the differences in average read counts
between target and background peaks (Figure 3C and E,
left panel). To test this, we repeated HT enrichment anal-
yses using different subsets of background peaks with dif-
ferent average read counts. First, we ordered background
peaks based on their read counts and selected top n% of
these peaks, where n is ranging from 50 to 100%, where
100% is equal to the original background set. Using these
peak sets as the new background set, we performed HT and
identified the set of PWMs significantly enriched in PBMC-
specific peaks (Hn). As n increased from 50 to 100% (Table
2A), the average read counts of newly defined background
peaks decreased from 168 to 93 and the number of identi-
fied PWMs (IHnl) increased from 105 to 205. These analy-
ses suggest that HT results highly depend on the choice of
background regions and FP rate for enrichments increase
as the difference between target and background regions
increase in terms of their average ATAC-seq read counts.
The PWMs captured by each of these analyses almost fully
matched BIFET results (Hn () B in Table 2A), suggesting
again that BiFET captures likely TP.

A potential solution to the dependence of HT results on
background set choice is to carefully select background re-
gions to match target regions in terms of GC content and
average read counts. Subsampling background regions to
match the GC content of target and background regions
has been widely used in motif enrichment analyses to cor-
rect for GC bias (14,15). However, in addition to the dif-
ficulty of sub-sampling background peaks to match tar-
get peaks both in terms of GC content and read counts
simultaneously, there are several disadvantages associated
with this strategy. First, having a smaller set of background
peaks would reduce the power to detect differentially en-
riched PWMs. In our PBMC and islet data analyses, we
had a large background set (n = 40,116) and therefore suffi-
cient power to detect enriched PWMs. Decrease in the size
of background set can be tolerated up to a certain point.
However, as background set shrinks further, the detection
power would decrease. To test this, we randomly selected
a subset of background peaks (n%) used in the most strin-
gent case in the previous test (i.e. top 50% of the background
peak). As n decreased from 100% (original set, 20 058 back-
ground peaks) to 10% (2005 background peaks), the num-
ber of enriched PWMs (i.e. [Hnl) also decreased from 105
to 33 (Table 2B), showing the reduction in power driven by
the size of the background set. The second problem with
random sampling of background peaks is the stochasticity
it introduces in data analyses and the enrichment results.
We tested this by repeating the random sampling of back-
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Table 2. HT results depend on background peaks used in the analyses

A. Use top n% background peaks

n 50 60 70 80 90 100
mean read count 168 147 129 114 102 93
Hyl 105 115 134 157 182 205
IH,  BI 87 88 88 89 89 89

B. Randomly select n% of X = top 50% background peaks

n% 10 20 30 40 50 60 70 80 90 100
mean read count 168 169 165 169 168 171 170 169 168 168
Hyl 33 57 69 90 84 92 96 100 105 105

C. Randomly select 10% of X = top 50% background peaks

Run 1 2 3 4 5 6 7 8 9 10
mean read count 165 171 168 177 169 167 170 171 173 168
IHjol 25 43 34 49 39 34 51 43 26 45

Mean read count of target peaks = 189.

B = set of TFs identified by BiFET.

We tested different scenarios to understand the impact of background peak selection on HT results. (A) Selecting top n% of all background peaks based
on their read counts showed that increasing the difference between target and background sets in terms of read counts increases the FP enrichments with
HT. (B) Randomly sampling different percentages of background peaks (n~20 000 peaks) showed that reducing the size of the background set reduces
detection power for HT. (C) Repeating the analyses from (B) for 10 times showed that random sampling introduces stochasticity in the HT enrichment
results, where different sets of PWMs are captured to be enriched in each run.

ground peaks 10 times, where 10% of 20 058 peaks were se-
lected as background peaks at each iteration. The number
of PWMs significantly enriched in target peaks compared
to these background peaks varied from 25 to 51 among dif-
ferent runs (Table 2C), with only 13 TFs common across 10
runs. These analyses suggest that the choice of background
set has a significant impact on HT enrichment results and
cannot be easily handled by subsampling data. BIFET does
not require prior selection of background regions and works
effectively with any background set, even if this set signifi-
cantly differs from the target sets in terms of chromatin ac-
cessibility levels and GC content.

Footprints for high-GC motifs are captured in regions with
high read counts

To understand the association between read counts and the
footprint detection rate for each TF, we further studied the
oy parameter in our models. Higher values for o imply that
the TF k can be detected in peaks with low read counts
while lower values for o« imply that the TF k& can be de-
tected mainly in peaks with high read counts (‘Materials
and Methods’ section). Using PIQ calls from PBMC and
islet data, we identified TFs with high oy, values (>95th per-
centile) and low o values (< 5th percentile) (Supplementary
Table S10). We restricted our analysis to TFs that have foot-
prints in at least 0.05% of all peaks (n = 29 peaks), since the
estimate o could be unstable for TFs with fewer footprints.
As suggested by our model, TFs with low «; (blue bars in
Figure 4A and Supplementary Figure S§A for islet) were de-
tected within peaks with high read counts (i.e. bigger peaks),
whereas the TFs with high oy (red bars in Figure 4A and
Supplementary Figure S8A for islet) were detected within
peaks with low read counts (i.e. smaller peaks). Surprisingly,
we noted that the oy estimates obtained from PBMC foot-

printing data were in agreement with those obtained from
the islet footprinting data (Spearman correlation = 0.88,
Figure 4B), suggesting that the dependence of TF footprint
detection rate on read counts (i.e. ¢ parameter in our mod-
els) is specific to each TF and independent of the underlying
cell type.

We did not detect a strong relationship between the length
or the information content of a PWM and the correspond-
ing TF’s a; value (Supplementary Figure S9A and B for
PBMC; Supplementary Figure S10A and B for islet). How-
ever, GC content of the PWMs (i.c. the average probabil-
ity of having G or C within a motif) was inversely corre-
lated with o4 values (Supplementary Figure S9C for PBMC
(P-value = 3.8e-13); Supplementary Figure S10C for islet
(P-value = 2.5e-12)), which implies that TFs with low oy
values (i) tend to have high GC content PWMs and (ii) are
detected in regions that have high GC content. Indeed, re-
gions that harbored footprints for low «; TFs had higher
GC content than regions harboring footprints for high oy
TFs (Figure 4C for PBMC; Supplementary Figure S§B for
islet). This is likely due to the correlation between GC con-
tent and read counts (r = 0.54, P-value < e-16; Figure 4D
for PBMC; Supplementary Figure S11 for islet and EndoC-
BHT1), which might be related to the GC-specific cutting bias
of Tn5 transposase (37) or PCR amplification bias toward
GC-rich fragments (38). Due to this correlation between
GC content and read counts, GC-rich motifs are more fre-
quently detected in peaks with high read counts. Further-
more, since footprint detection rate is positively associated
with number of reads, GC-rich motifs are more frequently
detected in these analyses (Supplementary Figure S9D for
PBMC; Supplementary Figure S10D for islet). However,
we noted exceptions to this association between footprint
detection rate and high GC and high read counts of ge-
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Figure 4. The relation between TF motif features and footprint detection rate. (A) Distribution of read counts for peaks that have footprints for high oy TFs
(above 95th percentile of «y, red bars) and low «y values (below Sth percentile, blue bars) in PBMCs. Footprints for low o TFs were found in peaks with
high read counts, whereas footprints for high oz TFs were found in low read count peaks. (B) ax estimates obtained from PBMC footprint data correlate
significantly with oy estimates from islet footprint data in rank. The TFs that are PBMC-specific are colored red, those that are islet-specific are colored
blue, those that are both PBMC and islet-specific are colored green and those that are neither PBMC nor islet-specific are colored gray. (C) Distribution
of GC contents for the peaks that have footprints for high ax TFs (above 95th percentile, red bars) and low oy values (below 5th percentile, blue bars) in
PBMCs. (D) GC proportion of a region correlates significantly with the ATAC-seq read counts aligning to this location.

nomic regions. For example, footprints of certain TFs (e.g.
TEADI/3/4) were detected within peaks with high read
counts, but low-GC contents, suggesting they are more dif-
ficult to detect in open chromatin assays and require deeper
sequencing.

Sequence bias correction prior to footprint calling does not
eliminate biases

BiFET is a post-processing tool that is applied on footprints
obtained from sequencing BAM files to correct sequence
related biases both depth and GC content related. An in-
triguing question is whether a priori correction of position-
specific nucleotide biases mitigates biases associated with
footprint detection and enrichments. To address this ques-
tion, we used the sequence-bias-adjustment algorithm (39),
which outputs a bias-corrected BAM file on our PBMC
ATAC-seq samples. Bias-corrected BAM file is then used
for footprinting calling (instead of the original BAM file)
and detected footprints were analyzed using standard test
(HT) and BiFET. First, we compared read counts span-
ning ATAC-seq peaks used in our analyses before and after
sequence-bias correction and observed a positive and signif-
icant correlation (r = 0.56 in Supplementary Figure S12A).
We noted that this method significantly and disproportion-

ately affected a portion of ATAC-seq peaks, especially the
ones with high GC content (Supplementary Figure SI2A
and B). As expected, GC content and read counts became
less correlated after the correction compared to the original
data (r = 0.29 in Supplementary Figure S12B versus r =
0.54 in Figure 4D). Next, we studied how footprint calls are
affected by this adjustment using PIQ on corrected BAM
files. Even after the GC bias adjustment, footprint detection
rate was highly dependent on the number of reads spanning
peaks (r = 0.57 in Supplementary Figure S12C), which in-
troduces bias in enrichment analyses. Furthermore, we no-
ticed that similar to the original analyses, GC content of a
peak correlates significantly with the number of footprints
detected at this peak specifically for high-GC motifs (Sup-
plementary Figure S12D and E).

To quantify the agreement between footprints detected
before and after the GC bias correction for each TF, we
calculated the Jaccard Index (Number of overlapping foot-
prints detected for a TF before and after the adjustment di-
vided by the union of footprints detected for this TF be-
fore and after the adjustment). These scores varied widely
among different TFs, where the mean value of Jaccard In-
dex was 0.42 and standard deviation was 0.24. For certain
TFs, we observed a significant overlap (e.g. PAXS, GLIS1)
before and after the GC correction (hence a high Jaccard
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Index score) and for some other TFs we noted that GC
correction leads to major changes in detected footprints
(e.g. FOXC1, SOX10) and the Jaccard Index scores are low.
These analyses suggest that the GC bias correction affect
TF footprint detection for certain TFs more significantly
than others. However, the number of footprints detected per
TF was highly correlated before and after the adjustment (r
= 0.98). However, on average less footprints were detected
per TF and less footprints were captured within the peaks
after the adjustment (Supplementary Figure S12F and G).
For example, on average 389 948 footprints were detected
from ATAC-seq peaks used in our analyses in the original
BAM files, whereas this number has reduced to 340 690 af-
ter the adjustment.

We used the footprints obtained from the adjusted BAM
file to identify TFs enriched in PBMC-specific peaks. Sim-
ilar to the original analyses, PBMC-specific peaks had
higher read counts compared to the background peaks
(Supplementary Figure S13A), which contributes to the
bias in footprint enrichment results. Next, we applied
BiFET and HT on footprint calls from the adjusted data.
Similar to the results from original data, BiFET reduced
the number of significantly enriched TFs in PBMC-specific
peaks compared to the HT results (60 versus 174 in Supple-
mentary Figure S13B). The enrichment P-values from the
adjusted data were highly correlated with the P-values from
the original analyses both using BiFET and HT (Supple-
mentary Figure S13C and D). However, we observed that
when BIFET is used for enrichment analyses, the enrich-
ment P-values from adjusted and raw data are more com-
parable (i.e. less off-diagonal points in Supplementary Fig-
ure S13C and D). This suggest that since BIFET corrects for
the GC bias, BIFET P-values are more comparable between
the two analyses compared to HT, which produces more
variable results before and after the GC correction. Fur-
thermore, TFs identified on the adjusted data were mostly
captured from the original BAM file using both methods
(Supplementary Figure S13E). Together, these results sug-
gest that the bias-correction algorithm tested here dispro-
portionately affects certain peaks and, on average, reduces
the number of footprints called from the data. Furthermore,
even after these corrections, there is a large variation in how
reads are distributed across peaks and if target and back-
ground peaks have different read count distributions, simi-
lar biases arise in downstream footprint enrichment analy-
ses.

DISCUSSION

In this study, we established that previously reported bi-
ases in TF footprint detection related to chromatin acces-
sibility level (4) and the GC content of a genomic region
also exist in ATAC-seq data. This dependence is critical and
needs to be taken into consideration in enrichment analyses
while comparing target regions to background regions. For
this purpose, we developed BiFET, a novel enrichment test
that corrects for the differences in sequence and read counts
of target and background regions. We applied BiFET on
ATAC-seq data from the human beta cell line EndoC-BH]1
using TF footprints called with CENTIPEDE (5), HINT-
BC (25) and PIQ (6) as well as on ATAC-seq data from
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human PBMCs and islets to demonstrate that BIFET can
effectively identify potential regulators of cell-type specific
loci. Our study and analyses focused on ATAC-seq data,
since this technology has been increasingly applied to pro-
file primary human cells and tissues. However, BiIFET can
be applied on footprints detected from alternative assays
(e.g. DNase-seq), since it does not make any assumptions
specific to the chromatin accessibility assay used for foot-
print detection and similar biases have been observed for
other assays (4).

Our simulation results showed that BiFET is a robust al-
ternative to standard enrichment tests, e.g. HT (Table 1).
For footprinting data analyses, standard tests are very sen-
sitive to the choice of background regions and require these
regions to be comparable to target regions in terms of aver-
age read counts and GC content. If the background regions
are not properly selected in such analyses, which has its own
challenges (Table 2), they lead to high FPR and therefore
spurious associations between OCRs and TFs. BiFET on
the other hand does not require selecting background re-
gions as it accounts for any differences between target and
background loci in terms of GC content and read counts.
Overall, BiFET reduces FPR and provides a high detec-
tion power. Furthermore, we noted similar improvements
in enrichment analyses using BIFET with footprints called
via three different methods (CENTIPEDE, HINT-BC and
PIQ), suggesting that BIFET works effectively regardless of
the algorithm used for calling TF footprints.

The distribution of read counts across the genome is con-
founded with the cleavage bias of cutting enzymes used
in chromatin accessibility assays (3,16). For example, Tn5
transposase used in ATAC-seq libraries is biased toward
more frequently cutting GC-rich sequences, thus, regions
with high GC content tend to have more cleavages in such
assays (37), however very little is known about the impact
of this bias on TF footprinting data analyses (17). In agree-
ment with the reported sequence biases, we observed that
read counts and GC contents were positively associated in
all ATAC-seq datasets studied here regardless of the cell
types. Furthermore, we observed that TFs with GC-rich
motifs are detected more frequently in regions with higher
read counts, which also typically have high GC contents.
This observation further supports that it is necessary to ad-
just for the potential biases in the data in TF footprint en-
richment analysis.

Although TF footprinting provides an attractive and
cost-effective alternative to ChIP-seq assays, it is prone to
FP calls as also suggested by our analyses using the ran-
domly generated motifs. Therefore, an enrichment test that
can reduce FP associations between TFs and genomic re-
gions is critical to effectively analyze and interpret TF foot-
printing data. Footprint (and motif) enrichment analysis
cannot distinguish the activity of PWMs with very similar
recognition sequences. Therefore, some of the PWMs iden-
tified to be enriched in PBMC- and islet-specific peaks using
BiFET might be redundant and might map to the same TF.
Clustering of these PWMs based on their sequence similari-
ties can be informative in interpreting enrichment results es-
pecially when combined with the expression levels of iden-
tified TFs in the studied cell type (Supplementary Figure
S14). Another pitfall of TF footprinting analysis is the high
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false negative detection rate. It is known that some TFs leave
no footprints despite prominent binding to DNA (7,40).
Furthermore, we observed that some TFs with known cell-
specific functions were missed in the enrichment test due
to (i) missing PWMs or (ii) small numbers of footprints de-
tected for these TFs such as PDX1 and NKX6-1 for islets,
which both have AT-rich PWMs. We observed that HINT-
BC can improve TF footprint detection for AT-rich mo-
tifs since it corrects for sequence cleavage bias. Application
of HINT-BC to islet ATAC-seq data showed that although
HINT-BC detected fewer footprints than PIQ overall, it de-
tected more footprints for PDX1 and NKX6-1—two im-
portant TFs for islet biology. We uncovered more footprints
for these TFs among islet-specific peaks using HINT-BC
and these were significantly enriched when BiFET was used
for enrichment analyses.

In summary, we observed that there is a positive associ-
ation between read counts and GC content of a given lo-
cus and the number of TF footprints detected at this site. If
not taken into consideration, this association significantly
inflates the FPR in enrichment tests. By modeling this as-
sociation and accounting for this bias, BIFET reduces FPR
without compromising the TPR. This advanced and novel
test is more effective for the analyses and interpretation of
TF footprinting data that is inherent to biases and can dis-
tinguish the most probable regulators of cell- or disease-
specific functions from potentially spurious ones, which will
be an essential next step in genomic medicine studies that
are generating chromatin accessibility maps from clinically
relevant samples to study complex human diseases.
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