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Abstract: Magnaporthe oryzae, one of the most notorious plant pathogens in the agronomic ecosystem,
causes a destructive rice blast disease around the world. The blast fungus infects wide arrays of
cultivated and non-cultivated plants within the Poaceae. Studies have shown that host speciation
exerts selection pressure that drives the evolution and divergence of the M. oryzae population.
Population genetic relationship deducted by genome-wide single nucleotide polymorphisms showed
that M. oryzae differentiation is highly consistent with the host speciation process. In particular,
the rice-infecting population of M. oryzae is distinct from populations from other hosts. However,
how genome regions prone to host-mediated selection pressures associated with speciation in M.
oryzae, especially at a large-scale population level, has not been extensively characterized. Here, we
detected strong evidence of sweep selection throughout the genomes of rice and non-rice pathotypes
of M. oryzae population using integrated haplotype score (iHS), cross population extended haplotype
homozygosity (XPEHH), and cross population composite likelihood ratio (XPCLR) tests. Functional
annotation analyses of the genes associated with host-mediated selection pressure showed that
14 pathogenicity-related genes are under positive selection pressure. Additionally, we showed that
17 candidate effector proteins are under positive and divergent selection among the blast fungus
population through sweep selection analysis. Specifically, we find that a divergent selective gene,
MGG_13871, is experiencing host-directed mutation in two amino acid residues in rice and non-rice
infecting populations. These results provide a crucial insight into the impact of selective sweeping
on the differentiation of M. oryzae populations and the dynamic influences of genomic regions in
promoting host adaptation and speciation among M. oryzae species.

Keywords: Magnaporthe oryzae; population differentiation; host adaptation; selective sweep

1. Introduction

Rice is cultivated globally and feeds more than a half of the world’s people [1].
Magnaporthe oryzae, the causal agent of rice blast disease, is a pathogenic filamentous
fungus that causes a 10–30% loss of harvest each year [2,3]. M. oryzae is a multihost
pathogen that can infect approximately 50 species of both wild and cultivated plants,
especially cereals from the Poaceae family, such as rice, wheat, foxtail millet, and finger
millet crops [4], posing a huge threat to global food security [5,6]. Since the whole genomic
sequence of M. oryzae laboratory strain 70–15 was first deciphered in 2005 [7], many more
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isolates have been sequenced from different host plants, providing extensive resources
for further research. Although the M. oryzae complex consists of genetically distinct
lineages, divergence tends to be associated with host specialization [8]. In particular, the
rice-infesting isolates come from a single lineage distinct from the others.

The limitation of gene flow among the different host populations is also partly respon-
sible for M. oryzae’s host-specific subgroup divergence. For instance, it is clear that the
Oryza sativa population of M. oryzae is different from others due to the lack of gene flow
under asexual reproduction [9]. Nerveless, ancient recombination events and contempo-
rary sexual reproduction might possibly occur within the Oryza isolate population [10,11].
As a seed-borne pathogen, M. oryzae can cause novel infections following seed and grain
transportation both between and within countries. For instance, after wheat blast disease
caused by M. oryzae isolates was first discovered in southern Brazil [12], neighboring
countries such as Argentina, Bolivia, and Paraguay also detected it successively. Gene flow
between different hosts has also been proposed to occur between divergent cereal- and
grass-specific lineages of M.oryzae [8].

The rice blast pathogen M. oryzae engages in plant–pathogen interactions and a form
of host shift. Host jumping between distant hosts, host range expansion, and host track-
ing between wild and domesticated hosts are sophisticated mechanisms that drive the
evolutionary trend in plant pathogenic microbes [13–16]. Therefore, differentiation occurs
among populations of M. oryzae from a variety of hosts that contribute to the formation
of host-specific subgroups, including Oryza spp., Setaria spp., and Triticum spp. [17,18].
For instance, reports have shown that M. oryzae isolates from foxtail millet could also
infect wild Setaria spp., indicating that these wild grass species serve as an alternative host
that shelters the blast fungus during off seasons [19]. However, the inability of cultivated
rice-infecting isolates from M. oryzae populations to infect non-cultivated wild grasses
(ancestral rice species) gives credence to the postulations that M. oryzae experienced a host
jump along with rice domestication approximately 10,000 years ago [4]. Domestication
pressure appears to have narrowed the host range of rice-infecting M. oryzae isolates [11],
which makes them distant from the Setaria-infecting isolates regarded as the closest rel-
ative of rice-infecting M. oryzae isolates [17]. Additionally, gene gain and loss resulted
from the reshuffling of transposable elements throughout the individual genomes have
been proposed as crucial contributors to host divergence between Magnaporthe species
adapted to cultivated rice and Setaria [20]. Meanwhile, evolutionary relationship studies
of M. oryzae isolates from multiple hosts have confirmed that speciation among Magna-
porthe spp. coincides with the divergence of time-differing hosts [21]. To understand the
evolutionary mechanisms that support the adaptation of M. oryzae to different hosts, it is
crucially important to provide further insights into the sustainable management of rice
blast disease. Although the mechanism underlying M. oryzae harbored by diverse hosts is
still unknown, research on genomic regions that accelerate molecular evolution [22] and
gene expression differentiation [9] provides an enlightening way to interpret the pathogen’s
host adaptation.

Effector proteins secreted by the plant pathogen determine its pathogenicity or vir-
ulence. Therefore, there is an inevitable relationship between effector repertoire and
pathogen–host specialization. It has been concluded that the specific expression patterns of
effectors in three rice isolate lineages may be associated with the adaptation of M. oryzae to
rice [23]. Similarly, during the interaction between barley and various host-specific lineage
isolates, the effector PWT1 acts as the major host-specific gene involved in infection [24],
just as the PWL1 and PWL2 genes are involved in M. oryzae’s infection of weeping loveg-
rass [25]. However, the secreted effector AVR1-CO39 cloned from grass isolate 2539 can
be avirulence in rice with no such functional genes [26–28]. Directional selection induced
by the various hosts also acts as a major evolutionary force that results in the host speci-
ficity of M.oryzae [29]. Comparative genomic analysis of M. oryzae and M. penniseti has
suggested that the divergence of pathogenicity-related gene repertoires contributes to host
adaptation [30].
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Selective sweep is regarded as an essential genetic mechanism for enabling species
to successfully adapt to prevailing environmental conditions by fixing novel mutations
associated with beneficial phenotypic traits. This provides straightforward evidence of
the evolution of populations. Diverse statistical theories and tools have been developed
to identify genome-wide selection sweep events, such as F-statistics (Fst) [31], Tajima’s
D-test [32], the cross-population composite likelihood ratio (XPCLR) [33], the integrated
haplotype score (iHS) [34], and cross-population extended haplotype homozygosity test
(XPEHH) [35]. iHS was used in a single population (within-population method) to reveal
selection evidence according to the theory of linkage disequilibrium, which is effective
for regions containing sites with a rapidly increased frequency of the derived allele [36].
The XPEHH and XPCLR are widely used to detect the selection footprint between two
populations. Based on the difference in the multi-locus allele frequency of two popula-
tions, XPCLR shows sensitive performance regarding allele frequency fluctuations at loci
with random drift [33]; in contrast, XPEHH uses linkage disequilibrium to distinguish
the selection region [35]. The XPCLR, iHS, and XPEHH are widely employed to uncover
genome-wide selective sweep regions. For instance, a host-driven selective sweep was iden-
tified by the XPEHH, XPCLR, and iHS tests in populations of the fungal wheat pathogen
Zymoseptoria tritici from two different wheat cultivars [37]. Selective sweep throughout the
genome, as detected by iHS and the XPEHH, was considered a more potent contributing
force to barley scald pathogen Rhynchosporium commune through local adaptation [38]. It is
likely that for the rice pathogen Xanthomonas oryzae pv. oryzae, selective sweep also had
a substantial impact on the formation of the population structure [39]. The iHS, XPEHH,
and XPCLR were adopted to detect the selection footprint on the X chromosome in three
geographical pig breeds [40], and positive selection genes involving climate adaptation
were previously identified in African cattle populations with the XPEHH and XPCLR
tests [41]. The iHS, XPEHH, and XPCLR tests also revealed that positive or divergent
selection genes are associated with adaptive traits in weedy rice [42]. Although genetic
and environmental homogeneity in agricultural ecosystems imposes intense and uniform
selection pressures on plant pathogens, the impact on the genomic variation recorded
among M. oryzae populations is not fully understood.

To investigate the evolutionary mechanism that caused host adaption to emerge for M.
oryzae, we collected 197 whole-genome sequences of isolates from ten different hosts, includ-
ing rice, wheat, and cultivated and non-cultivated grasses. Above all, genome-wide evolu-
tion relationship analysis of M. oryzae populations revealed that host specialization crucially
impacts the population structure. We showed that M. oryzae populations from rice are dis-
tinct from isolates from non-rice hosts. Furthermore, a composite strategy including the iHS,
XPEHH, and XPCLR tests was adopted to identify the selective sweep within and between
rice and non-rice M. oryzae populations. The selected region, spanning genes with strong
positive selection signals, includes pathogenicity-related genes, such as glycosyl hydrolase,
glucanase, and cutinase. Meanwhile, population-specific selective effector candidates,
including MGG_15370, MGG_07993, MGG_00230, MGG_07352, MGG_06231, MGG_06234,
MGG_17666, MGG_15458, MGG_05538, MGG_14374, MGG_08214, MGG_16925, MGG_15106,
MGG_16938, MGG_07311, MGG_07246, and MGG_16953, were also identified in rice and
non-rice populations. This study expands our understanding of host-driven population
differentiation in plant–pathogen interactions.

2. Materials and Methods
2.1. Identification of Single Nucleotide Polymorphisms (SNPs)

Nucleotide sequences of 197 M. oryzae isolates previously sequenced from 10 different
hosts (Supplementary Table S1) were downloaded from the National Centre for Biotechnol-
ogy Information (NCBI). Subsequent comparative genomic analyses with the Mummer4
software (–maxmatch –c 100 –p) [43] identified SNPs between the 70-15 strain and the
individual isolates. The SnpEff [44] tool was used to precisely extract SNPs located in the
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exonic regions of the 70-15 strain. VCFtools was applied to filter the variants with the
following main options: –max-missing 0.50 –mac 3 –max-alleles 2 [45].

2.2. Phylogeny and Population Structure of the M. oryzae Species Complex

A neighbor-joining (NJ) tree was constructed using a Provesti’s distance [46] of
1000 bootstrap replication with the poppr package in R-3.6.1 [47]. A no-root tree with
bootstrap values was visualized with the ggtree package [48]. Next, the relationships be-
tween different host-derived isolate populations were analyzed with principal component
analysis (PCA) in the adegenet package [49]. The population structure was analyzed with
the discriminant analysis of the principal component method using the adegenet package
in R-3.6.1 [49].

2.3. Population Selective Sweep Detection

The iHS [36] and XPEHH [50] were calculated to detect the selective signature for
rice and other host populations in the rehh packages in R [51]. For a better comparison
of selection signals, |iHS| scores were transformed into −log10(2Φ(-|iHS|), in which
Φ (x) is the cumulative Gaussian distribution function. Selection pressure on rice- and
non-rice-infecting M. oryzae isolates at the individual population level was analyzed with
the iHS test [52]. A resulting iHS greater than 0 with a p-value of ≤0.01 indicated positive
selection. The XPEHH test was used to examine the comparative selection pressure between
populations of rice- and non-rice-infecting isolates. The XPCLR [33] was used to detect and
compare potential selective regions between rice- and non-rice-infecting populations. A
resulting XPEHH value greater than 0 indicated rice-infecting M. oryzae population with
selection pressure. On the contrary, values lower than 0 implied a selection in the non-rice
infecting population. For the iHS and XPEHH tests, p-values were computed using the
−log10 scale; thus, values greater than 2 were considered candidate selection sites. The top
1000 normalized XPCLR values for each window region in the XPCLR test represented a
selection region.

2.4. Candidate Genes and Functional Annotation

Each SNP and sliding window region with genomic position and selective scores were
calculated by the iHS, XPEHH, and XPCLR tests. According to the annotated reference
genome file from the NCBI database, the potentially selective SNPs were remapped to
the reference genomic genes. Amino acid sequences of candidate genes with significant
selective signal SNPs were submitted to the Pathogen Host Interaction (PHI) database [53],
the non-redundant (Nr) protein database (http://www.ncbi.nlm.nih.gov/ (accessed on
1 January 2021)), Gene Ontology (GO) (http://www.geneontology.org (accessed on
1 January 2021)), the Universal Protein Resourcce (UniProt) (https://www.uniprot.org
(accessed on 1 January 2021)), Protein family (Pfam) database (http://pfam.xfam.org/
(accessed on 1 January 2021)), and eggnog database (http://eggnogdb.embl.de/ (accessed on
1 January 2021)) for functional prediction.

2.5. Effector Candidate Prediction

Gene amino acid sequences under selection were also submitted to SignalP-5.0 [54],
TargetP 2.0 [55], and EffectorP [56] to predict potential effectors. SignalP-5.0 (http://www.
cbs.dtu.dk/services/SignalP/ (accessed on 1 January 2021)) was adopted to predict the
presence and location of signal peptide cleavage sites. The subcellular localizations of
putative candidate effector proteins identified in this study were predicted with TargetP 2.0
(http://www.cbs.dtu.dk/services/TargetP/ (accessed on 1 January 2021)). EffectorP 2.0
was trained to detect the effector candidates in fungi. As the threshold to filter the obscure
genes predicted, a 0.6 probability was used.

http://www.ncbi.nlm.nih.gov/
http://www.geneontology.org
https://www.uniprot.org
http://pfam.xfam.org/
http://eggnogdb.embl.de/
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/TargetP/
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2.6. Host Directional Mutation

The amino acid sequence of selection associated gene MGG_13871 was extracted
from each M. oryzae genome. Multiple sequence alignment was implemented in the
ClusterW program in MEGA X [57]. Multiple sequence alignment of MGG_13871 amino
acid sequences from rice- and non-rice-infecting populations was visualized by the ggmsa
package in R (https://github.com/YuLab-SMU/ggmsa (accessed on 1 January 2021)).

3. Results
3.1. Population Genomic Divergence Driven by Host Adaptation in the M. oryzae Species Complex

To evaluate the dynamics in the genomic structures of the 197 M. oryzae isolates col-
lected from 10 different hosts, we assessed the impacts of divergent genomic features on the
adaptation of M. oryzae isolates to different hosts. We identified a total of 366,502 bi-allelic
SNP loci in the exon regions within genomes. Phylogenetic analysis, principal component
analysis (PCA), and population structure component analysis unraveled the relationship
between different host-infecting M. oryzae populations. These analyses revealed signifi-
cant differences between populations of M. oryzae isolates from different host plants. The
evolutionary trend analyses revealed that the 197 M. oryzae isolates obtained from the
10 different hosts can be clustered in two major clades, with the first clade (clade-1) com-
prising rice-infecting isolates and the second clade (clade-2) containing non-rice-infecting
isolates (Figure 1A). Moreover, higher bootstrap values were obtained for isolates from
common host plants than isolates from distant host plants.

We also observed a lesser genetic distance within clades consisting of rice-infecting iso-
late clades compared to clades containing isolates capable of infecting multiple hosts. The
topological pattern obtained from the phylogenetic analysis further showed the aggregation
of selected isolates from rice-infecting population with lesser evolutionary separation into
distinct clusters, even under principal components 1 and 2 (PC1 and PC2) resolutions. The
isolates adapted to non-rice hosts showed distant and dispersed topological distribution
patterns (Figure 1B).

We examined the optimal number of clusters with the discriminant analysis of princi-
pal components (DAPC) based on the lowest associated Bayesian information criterion [58]
and linear discriminants analysis. These analyses showed that the best number of clusters
unambiguously correlated with the host preference of individual isolates within distinct
populations (Figure 2A,B). However, cluster number adjustments resulted in the formation
of marginal groups, with rice-infecting populations and non-rice-infecting populations
having two groups each. The first group of the non-rice-infecting population predomi-
nantly consisted of isolates from Bromus spp., Digitaria spp., Lolium spp., and Triticum spp.,
while the other non-rice-infecting population comprised isolates that infect Eleusine spp.,
Eragrostis spp., and Stenotaphrum secundatum (Figure 2C). Regardless, an admixture of
genetic signatures was present among the distinct M. oryzae populations.

3.2. Selective Sweep Signatures in the Genomic Sequences of M. oryzae Populations

To exhaustively mine the selective region of beneficial genes, we performed iHS,
XPEHH, and XPCLR analyses to identify the candidate region by scanning the whole
genome within and between populations. In terms of population structure, we assumed
that natural selection acted differently on the rice- and non-rice-infecting M. oryzae pop-
ulations in accordance with their host differences. Further examination of individual
SNPs or window regions with selection signals from three independent tests revealed a
nearly uniform distribution of the selective regions across each chromosome (Figure 3).
Although most of the SNPs and window regions identified within the respective popu-
lations’ genomes were under neutral selection, outliers in each test were detected that
were considered the selective sweep region. A single population-based iHS analysis re-
vealed 263 and 412 genes with −log10 p-values of >2 in rice- and non-rice-infecting isolate
populations, respectively, along with 1277 SNP sites that mapped to the exon regions of
97 genes (Supplementary Tables S2 and S3). Similarly, XPEHH analyses between rice-

https://github.com/YuLab-SMU/ggmsa
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and non-rice-infecting populations identified 6632 SNPs located in the exon regions of
102 genes with −log10 p-values >2 (Supplementary Table S4). Furthermore, whole-genome
sliding window analysis records obtained from XPCLR tests identified a total of 321 genes
as the top 1000 normalized cross-population composite likelihood ratios between the two
populations (Supplementary Table S5).
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3.3. Selective Genes Associated with Host Speciation—Functional Annotation

We performed comparative functional annotation analyses of genes located within
selective sweep regions on Nr, Pfam, Uniprot, eggnog, and PHI platforms to retrieve
selection-associated genes. Although most of the genes recovered from selection prone
regions of the genome have not been functionally characterized in rice blast fungus, our
investigations revealed that 14 pathogenicity or virulence-associated genes, including the
effector protein (Avr-Pita1) coding gene (MGG_15370) [59], had undergone positive selec-
tion in the non-rice-infecting population (XPEHH = −2.77) (Table 1). Positive selection of
genes (MGG_07528 and MGG_07312) is likely an essential genetic phenomenon that drives
host-shift among non-rice-infecting populations (iHS = 2.83 and iHS = 3.19, respectively).

Furthermore, we observed that in the rice-infecting population, positive selection
acted upon MGG_04842 along with genes for pathogenicity and survival of the rice blast
fungus (iHS = 2.92). Additionally, functional analyses showed that pathogenicity-related
genes, including MGG_14061, MGG_05464, MGG_10730, MGG_14767, MGG_02916, and
MGG_17278, were positively selected in both rice- and non-rice-infecting populations
(Table 1). These investigations also showed that seven members of glycosyl hydrolase
family encoded by MGG_09738, MGG_09608, MGG_02911, MGG_00050, MGG_05489,
MGG_16377, and MGG_07101, along with mixed-linked glucanase (MGG_07306) [60,61],
cell wall glycosyl hydrolase (MGG_04305) [62], and cutinase (MGG_11091) [63], are posi-
tively selected exclusively in non-rice-infecting population.
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Table 1. Significantly selected pathogenicity-related genes identified in M.oryzae through iHS, XPEHH, and XPCLR analyses.
PHI, Pathogen–Host Interaction database.

Gene
iHS (Non-Rice) iHS (Rice) XPEHH

XPCLR PHI Description Identity (%)
Score −log p Score −log p Score −log p

MGG_15370 −2.77 2.25 PHI:2150 effector 99.5

MGG_07528 2.83 2.34 PHI:121 Lost pathogenicity 100.0

MGG_04842 2.92 2.45 PHI:362
/PHI:2520

Lost pathogenicity
/lethal 68.9

MGG_07312 3.19 2.85 PHI:2200
/PHI:3163

Lost pathogenicity
/reduced_virulence 100.0

MGG_02916 3.03 2.61 2.81 2.31 PHI:4962 reduced_virulence 100.0

MGG_02986 2.69 2.15 PHI:893 reduced_virulence 100.0

MGG_03087 2.62 2.06 PHI:6409 reduced_virulence 91.3

MGG_07514 2.73 2.20 PHI:5440 reduced_virulence 100.0

MGG_09396 7.01 11.62 PHI:1097 reduced_virulence 67.5

MGG_14061 2.73 2.19 PHI:4509 reduced_virulence 66.1

MGG_05464 3.60 PHI:2208 reduced_virulence 100.0

MGG_10730 2.82 PHI:2095 reduced_virulence 100.0

MGG_14767 2.94 PHI:2049 reduced_virulence 100.0

MGG_17278 2.29 PHI:200 reduced_virulence 67.1

3.4. Candidate Effectors Experiencing Positive Selection

Effectors play a key role in host identification for M. oryzae, so it is essential to discover
potential effectors harbored in the selective sweep region. Effector candidates were pre-
dicted within genes selected with SignalP 5.0, TargetP 2.0, and EffectorP2.0 based on amino
acid sequences. Integrated prediction analysis identified 20 candidate effector proteins
with probability scores above 0.6 (Table 2). Remarkably, only candidates MGG_17666,
MGG_15458, MGG_05538, MGG_00230, MGG_07352, and MGG_15370 showed positive
selection status in non-rice-populations with iHS values of 2.63, 3.10, 3.91, 3.19, and
3.13 and an XPEHH score of −2.77, respectively. For rice-infecting population, candi-
dates MGG_08214, MGG_07993, MGG_06231, MGG_16925, MGG_15106, MGG_07246,
MGG_16953, and MGG_14374 were under positive selection with an iHS of 5.15; XPCLR
values of 2.26, 2.71, 2.70, 3.45, 2.73, and 2.31; and an XPEHH score of 3.08, respectively
(Table 2). Meanwhile, MGG_06234, MGG_16938, and MGG_07311 were selected for the
rice- and non-rice-infecting populations. Additionally, diversified selection acted on the
genes shared between rice- and non-rice-infecting populations. We also found that a hypo-
thetical protein lacking the secretion signal motif selective gene (MGG_13871) experienced
differential selection pressure in rice- and non-rice-infecting isolates. For instance, it was
positively selected in the non-rice-infecting population (XPEHH = −3.14) but negatively
selected in rice-infecting M. oryzae population (iHS = −2.97).

3.5. MGG_13871 Experienced Host Directional Mutation

Furthermore, to uncover the fixed mutations in genes associated with specific phe-
notypes that contributed to population differentiation under natural selection, we further
extracted the amino acid sequence of MGG_13871 from each genome of M. oryzae isolates
in this study, because MGG_13871 underwent divergent selection in the rice- and non-rice-
infecting M. oryzae populations. Multiple alignments of MGG_13871 amino acid sequences
displayed host-directional mutations in two residues (Figure 4). At the 44th amino acid
residue position, the amino acid was asparagine (N) in the rice-infecting population, but
aspartic acid (D) in the non-rice-infecting population. Likewise, the lysine (K) in the
rice-infecting population was substituted with lysine (K) in the non-rice-infecting popu-
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lation at the 102nd position. Taken together, we concluded that MGG_13871 experienced
host-directed mutation in rice- and non-rice-infecting populations.

Table 2. Dynamic characteristics of putative effector proteins identified in selective regions of the genomes.

Gene iHS (Non-Rice) iHS (Rice) XPEHH
xpclr_norm SignalP

Subcellular
Localization EffectorP (%)

Score −log p Score −log p Score −log p

MGG_15370 −2.77 2.25 + extracellular 96.7
MGG_07993 2.26 + extracellular 94.0
MGG_00230 3.19 2.84 + extracellular 91.7
MGG_07352 3.13 2.75 + extracellular 90.2
MGG_06231 2.71 + extracellular 88.2
MGG_06234 2.97 2.53 2.25 + extracellular 88.1
MGG_17666 2.63 2.06 + extracellular 85.7
MGG_15458 3.10 2.71 + extracellular 79.1
MGG_05538 3.91 4.03 + extracellular 78.1
MGG_14374 3.08 2.68 + extracellular 77.9
MGG_08214 5.15 6.57 + extracellular 76.2
MGG_16925 2.70 + extracellular 73.9
MGG_15106 3.45 + extracellular 73.3
MGG_16938 3.80 3.85 6.23 + extracellular 72.8
MGG_07311 3.17 2.82 2.84 + extracellular 69.1
MGG_07246 2.73 + extracellular 67.7
MGG_16953 2.31 + extracellular 60.8
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4. Discussion

In this study, whole-genome SNPs were used to resolve the population structure
and composition in M. oryzae populations derived from 10 various host plants, including
rice, wheat, and grass. This study further confirmed previous research, in that reshuffling
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pathotypes from multiple lineages favored the formation of identical isolates with no
common cryptic lineages [8]. Host specificity is a noticeable genetic characteristic that has
been the focus of whole-genome sequencing and multi-locus analysis in previous studies
to decipher the genomic parameters of the host diversity of isolates within the M. oryzae
species complex [17,21].

This study demonstrated that rice-infecting M. oryzae isolates constitute a mono-
phyletic clade with closer evolutionary distance than non-rice hosts. These results partly
showed that rice-infecting isolates are under an almost uniform selection pressure from
rice hosts due to limited genetic diversity or genomic reshuffling among rice cultivars.
Furthermore, we asserted that rice-infecting isolates originated from a recent common
ancestor through asexual reproduction. However, a small number of isolates within the
non-rice-infecting population with an identical host form unique discrete clusters with
a relatively wider phylogenetic distance. We deduced that more genetic diversity in the
non-rice hosts exerts tremendous selection pressure or induces higher incidences of gene
flow among non-rice-infecting isolates, especially in clusters containing mixtures of iso-
lates from Bromus spp. and Lolium spp. These observations support previous research
suggesting that genetic exchange is a crucial contributor to the minimization of divergence
between lineage-specific Magnaporthe isolates from non-rice hosts [8].

Additionally, the population structure analysis conducted in this study showed that
wheat-infecting isolates belong to the M. oryzae species complex. These findings further
confirm previous positions that the divergence of wheat blast isolates does not qualify
them as new species. Although rice-infecting isolates are phylogenetically distant from
Magnaporthe isolates from other hosts, they share relatively closer evolutionary ties with
isolates from Setaria [17]. Herein, we demonstrated the grouping of Magnaporthe isolates
into two distinct groups: rice-infecting populations and non-rice-infecting populations [64].

Furthermore, the evaluation of gene flow patterns in rice-infecting M. oryzae popula-
tions within Asia identified mainland China as the primary source of gene flow. We also
observed that genetic material of M. oryzae populations from mainland China and Japan
possibly first converged in Taiwan, China, and later served as the gene pool for Korean
isolates (Supplementary Figure S1). This may be attributed to the fact that mainland China
is the origin of wild and domesticated rice [65]. We posited that rice-infecting Magnaporthe
isolates possibly evolved along with their rice host in mainland China and were later
introduced to subsequent regions, including Taiwan, China, and Korea. Although the
gene flow was from mainland China to Taiwan, isolates from Taiwan display relatively
greater evolutionary distance from isolates sampled from the neighboring Fujian province
in China [64]. For the rice-infecting isolates, rice varieties also have a significant impact
on M. oryzae population structure. Most of the isolates are from Japonica growing areas
such as Taiwan, the north of China, and Japan, which are close to one another. In contrast,
isolates sampled from indica growing areas, including the Fujian and Yunan provinces in
China and India, frequently assembled into the same cluster (Supplementary Figure S2).

Host shift, host jump, and host expansion are adaptation characteristics that allow
M. oryzae to successfully co-evolve to match agronomic changes (blast resistance) associated
with the domestication of rice [4]. Previous studies have speculatively proposed that the
blast fungus possibly undergoes accelerated genome reshuffling to support adaptive evo-
lution, which enables it to experience host shift, host jump, or host expansion [22,24]. We
identified, for the first time, credible selection-prone genomic regions containing protein-
coding genes in rice- and non-rice-infecting populations through the integrated application
of the iHS, XPEHH, and XPCLR tests. To eliminate bias resulting from high-frequency trans-
posons in the genome of Magnaporthe spp., we only considered and compared mutations
occurring in the exonic regions of individual isolates within the respective populations.
Generally, pathogens retain survival or beneficial mutations during host adaptation in-
duced speciation. Therefore, positively selected genes likely include genes that play crucial
roles in the progression of host–pathogen interactions [66]. Effector proteins are small
secreted proteins from fungal pathogens that have been shown to play dynamic roles in the
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progression of host–pathogen interactions by either facilitating host identification or acting
as pathogenicity and/or virulence factors [67]. Additional studies have shown that candi-
date effector proteins in blast fungus undergo rapid evolution to yield new pathotypes of
M. oryzae with broader host ranges or adaptations for specific hosts [68].

We showed that 17 candidate effector proteins undergo differential selection sweep
in rice- and non-rice-infecting M. oryzae populations and speculatively concluded that
the differential selection sweep of pathogenesis-related candidate effector proteins within
and between rice- and non-rice-infecting M. oryzae populations likely accounts for host
divergence and host specificity among Magnaporthe spp. We also showed that selection-
prone genes, including MGG_13871 and MGG_07815, experience differential host-specific
mutations between rice- and non-rice-infecting populations. These two candidate se-
lectable genes experienced uniform and synonymous amino acid substitution in rice- and
non-rice-infecting populations. The site, amino acid, and type of selection pressure experi-
enced by MGG_13871 and MGG_07815 varied between the two populations. For instance,
MGG_13871 experienced positive selection in non-rice-infecting populations and negative
selection in rice-infecting populations. We accordingly concluded that MGG_13871 likely
constitutes a host specificity determiner in Magnaporthe spp. [69].

Meanwhile, specific selection prone candidate effectors in rice- and non-rice-infecting
populations, including MGG_17666, MGG_15458, and MGG_08435, could also play ad-
ditional roles in modulating population differentiation and host specificity between the
distinct Magnaporthe populations reported in this study. Moreover, we also identified a
cutinase gene, MGG_11091, in the selective sweep region, an essential enzyme required to
degrade the host cuticle to support the successful invasion of blast fungus into host tissues.
MGG_05489 and MGG_16377 experienced positive selection in rice-infecting populations.
These two genes are members of the glycosyl hydrolase family that were previously impli-
cated in the pathogenesis of Magnaporthe spp. However, when compared to rice-infecting
isolates, wheat-infecting M. oryzae isolates seemingly favor the seed; therefore, positive
selection of mixed-linked glucanase MGG_07306 is possibly a host adaptation mechanism
acquired by M. oryzae.

In summary, our results provide the crucial insight that selective sweeping plays a
role in driving M. oryzae population differentiation associated with host adaptation, and
we revealed potential genomic regions of interest to understand the genetic mechanisms of
host specialization in M. oryzae.
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