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Abstract
Computational prediction yields efficient and scalable initial assessments of how variants of

unknown significancemay affect human health. However, when discrepancies between these pre-

dictions and direct experimental measurements of functional impact arise, inaccurate computa-

tional predictions are frequently assumed as the source.Here,wepresent amethodological analy-

sis indicating that shortcomings in both computational and biological data can contribute to these

disagreements. We demonstrate that incomplete assaying of multifunctional proteins can affect

the strength of correlations between prediction and experiments; a variant’s full impact on func-

tion is better quantified by considering multiple assays that probe an ensemble of protein func-

tions. Additionally, many variants predictions are sensitive to protein alignment construction and

can be customized to maximize relevance of predictions to a specific experimental question. We

conclude that inconsistencies between computation and experiment can often be attributed to

the fact that they do not test identical hypotheses. Aligning the design of the computational input

with the design of the experimental output will require cooperation between computational and

biological scientists, but will also lead to improved estimations of computational prediction accu-

racy and a better understanding of the genotype–phenotype relationship.
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1 INTRODUCTION

In order to achieve a vision of personalized medicine in which whole-

exome sequencing data is used to both explain and to predict pheno-

types in a comprehensive manner, it is necessary to know with a rea-

sonable level of accuracy the effects of each variant at the protein

and organismal levels. Given that the latest publication from the 1000

Genomes Project reported 84.7 million unique single-nucleotide vari-

ations (SNVs) in a cohort of just over 2,500 individuals (1000Genomes

Project Consortium et al., 2015) and dbSNP144 claims over half a

billion submissions (Sherry et al., 2001), individually assaying every

mutation in the population for its effect on protein function would

prove a herculean task. Instead, computational inference has taken

a leading role as a more practical alternative. Since the debut of the
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classic SIFT algorithm for mutation impact prediction 15 years ago

(Ng & Henikoff, 2001), dozens of tools have been developed that use

protein structure (Dehouck et al., 2009; Schymkowitz et al., 2005;

Zhou&Zhou, 2002),machine learning (Adzhubei et al., 2010;Yates, Fil-

ippis, Kelley, & Sternberg, 2014), or evolutionary considerations (Kat-

sonis & Lichtarge, 2014; Stone & Sidow, 2005; Tavtigian et al., 2006) to

predict the impact of SNVs and serve as a reasonable stand-in for time-

consuming experimental assays. Already, these tools appear in clini-

cal reports related to Mendelian disorders as well as some complex

diseases like hearing loss and intellectual disability (Rabbani, Tekin, &

Mahdieh, 2014) and gather thousands of citations in studies that aim

to bridge the gap between genotype and phenotype.

Still, the ability of computational tools to produce accurate and

meaningful predictions at the protein level is not yet sufficient (Sun
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et al., 2016). For example, one recent study (Miosge et al., 2015)

expands upon previous work (Hicks, Wheeler, Plon, & Kimmel, 2011)

to point out that some of the most popular predictors of mutational

impact have weak specificity, not just in vivo where incomplete

penetrance and epigenetic modification may explain disagreement

(Lehner, 2013) but also in vitro. Their conclusions suggest that diag-

nosis via clinical genome sequencing necessitates direct experimental

measurement of putative impactful mutations. An alternative expla-

nation for their results, touched upon briefly in Itan and Casanova

(2015), could be that genotype/phenotype prediction discrepancies

are not always due to inaccurate computational prediction, but rather

inadequate experimental testing to detect the true functional impact

of themutations.

Currently, the most useful approach to assess the performance

of these computational predictions objectively is through indepen-

dent evaluations. One such benchmark is the Critical Assessment

of Genome Interpretation (CAGI), which uses new and unpublished

experimental data as a gold standard in order to quantify the accuracy

of blinded SNV impact predictions on a variety of statistical measures.

From these types of comparisons between computational prediction

and experimental validation, it is clear that not all computational

approaches are equally accurate when applied to a new problem,

which may lead to the impression among users that all computational

tools are unreliable. However, even top-performingmethods are often

unable to resolve the genotype to phenotype relationship completely,

that is, someof the experimental data refute someof thepredictions. In

these cases, it becomes unclearwhether this residualmismatch results

fromalgorithmic design limitations, experimental design limitations, or

both. Understanding the driving forces behind these discrepancies is

critical to not only ensuring a robust and accurate venue to benchmark

tools but also to predicting and understanding human disease.

Using Evolutionary Action (EA) (Katsonis & Lichtarge, 2014), the

consistently top-performing variant impact prediction method for

multiple CAGI challenges (2011, 2013, 2015), we explore several

sources of potential discordance between predicted and experimen-

tally assessed variant impact: data quality, protein multifunctionality,

and input alignment design.We probed the genotype–phenotype rela-

tionship for several proteins and found evidence that testing and inte-

grating multiple, diverse parameters of functional impact can improve

correlation with in silico predictions. We conclude that the success of

predicting phenotype from genotype depends heavily on the computa-

tional model and the experimental model testing the same initial bio-

logical question in a comprehensive fashion. Moreover, a lack of con-

cordancebetweenpredictedandassayedphenotype should lead to the

re-examination of both in order to search for possible computational

and experimental limitations.

2 MATERIALS AND METHODS

2.1 Impact prediction using EA

EA calculations are described at length in the original publication of

themethod (Katsonis & Lichtarge, 2014). In summary, the actionΔ𝜙 of

an SNV is calculated as the product of the evolutionary gradient 𝜕f/𝜕ri

and the perturbationmagnitude of the substitution,Δri,X→Y. The evo-

lutionary gradient is measured by importance ranks of the evolution-

ary trace (ET) method and the perturbation magnitude by amino acid

substitution odds. Computing the evolutionary gradient of a position in

a protein using ET involves retrieving homologous sequences, aligning

sequences with MUSCLE (Edgar, 2004), accounting for resulting gaps

in the query sequence, and maximizing spatial clustering among top-

ranked residues and their rank information. The perturbation magni-

tude of the substitution is derived using the BLOSUM amino acid sub-

stitution log odds methodology computed over bins that account for

the evolutionary gradient, solvent accessibility, and secondary struc-

ture of the substituted position. We normalized both terms and their

product to become percentile scores for each protein, with higher

action scores indicating a larger predicted impact. For the evaluation

of SUMO ligase SNVs in particular, potential gain-of-function variants

were identified as substitutions resulting in an amino acid that was

more common in the alignment than the query amino acid at that site;

these variants were scored as -1*EA.

2.2 Characterization ofADRB2mutants

Twenty-six mutations were designed within ADRB2 (MIM# 109690)

to interrogate the functionality of eight structural positions within

the GPCR transmembrane region. The functional effect of each

mutation was measured using five assays. Three of these assays

measured interaction between ADRB2 and three downstream bind-

ing partners: G𝛼 i, G𝛼s, and 𝛽-arrestin, whereas the two remaining

assays measuredmore global downstream cellular phenotypes: recep-

tor endocytosis and cAMP concentration. The receptor was stimu-

lated with varying concentrations of isoproterenol to generate a dose

response curve for each assay. These dose response curves were

reduced to five representative quantitative values: EC50, maximal

response, minimal response, ligand-induced response (max–min), and

Log (T/Ka). Combined with cell surface expression for each assay, this

resulted in six measures for each assay and therefore 29 phenotypic

measures total for eachmutant (𝛽-arrestin response wasmissingmini-

malmeasurements). Total deviance of a variant fromwild typewas cal-

culated as 𝚺(|i𝐰𝐭 − i𝐦𝐮𝐭 |) for all 29 measures. Each measure was first

standardized to be between 0 and 1 so as to contribute equally to this

sum despite the scale differences within the original values for each

measure.

2.3 Testing sensitivity ofADRB2 EA predictions to

alignment input

To test the sensitivity of ADRB2 variant predictions to alignment

input, we used the differential ET approach described in Lichtarge,

Yamamoto, & Cohen (1997), modified to consider the EA scores of

the variants rather than the ET scores of the residues. The FASTA

sequence for ADRB2 was obtained from Uniprot and blasted against

the Uniref90 database of human proteins (Suzek et al., 2015) using

the method described in Wilkins, Erdin, Lua, & Lichtarge (2012). The

results were limited to E-value cutoffs of 0 and 0.5 but no thresholds
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for sequence identity. Additionally, blast results were required to be

at least 75% the length of the ADRB2 query sequence. The result-

ing homolog list was aligned using MUSCLE (Edgar, 2004) and the

neighbor-joining tree was extracted with PFAAT (Caffrey et al., 2007)

using percentage identity of all columns for all sequences. In refer-

ence to the initial query sequence, this tree was pruned into a smaller

subdivision encompassing only close homologs to the query sequence.

Each alignment was used to generate EA scores specific to that level

of evolutionary divergence, for all 19 possible substitutions at every

sequence position ofADRB2. The abovemethodologywas repeated for

additional proteins of interest.

2.4 Quantifying andmapping EA prediction

differences ontoADRB2

Comparing EA scores for all of Class A GPCRs to the narrow ADRB2

alignment, we calculated the EA score differences for all 19 possi-

ble amino acid substitutions at each residue and produced a distri-

bution representing these differences. Our narrow alignment, based

on sequence similarity, consisted of genes ADRB1 (MIM# 109630),

ADRB2, ADRB3 (MIM# 109691), HTR4 (MIM# 602164), DRD1 (MIM#

126449), and DRD5 (MIM# 126453) from several species, in agree-

ment with prior analyses of GPCR phylogeny (Lin, Sassano, Roth, &

Shoichet, 2013). We averaged all 19 substitutions for each residue;

residues with an average EA greater than or less than 1 standard devi-

ation from the mean of the distribution were grouped as either more

important to ADRB2, or to Class A receptors, based on which align-

ment produced the higher EA score. These residues were mapped

onto the 2RH1 crystal structure of ADRB2 and shown as spheres using

PyMOL. Sphere size was scaled based on the equation Size = 2 ∗
( ΔEAsubstitutionΔEAmax

)whereΔEAmaxwas the largest change in either the red

or blue group. In this way, the largest change in EA was given a sphere

size of 2 and each smaller change was scaled linearly. Significance of

structural clustering was calculated using a chi-square test measuring

the number of residues in the two groups within 4 Å compared with

the expected number derived from the adjacency matrix of the 2RH1

structure.

2.5 Human protein blast search

Following the method outlined in Wilkins et al. (2012), we analyzed

all human proteins within the Uniprot_Sprot database and further

used the FASTA sequences available from the same location to per-

form a customized Blastp (Altschul, Gish, Miller, Myers, & Lipman,

1990) search for each protein using the NCBI Blastp tool and the

Uniref90 database (Suzek et al., 2015) as a search space. We limited

the results to all homologs at least 75% in length compared with the

query sequence, and having an E-value between 0 and 0.5. No restric-

tions were placed on sequence identity or on the maximal number of

proteins allowed in an individual blast result.

2.6 Quantifying computational and experimental

biological collaboration

We searched research articles on Scopus for abstracts that explic-

itly mention one of six commonly used variant impact predictors:

SIFT (Ng & Henikoff, 2001), Polyphen (Ramensky, Bork, & Sunyaev,

2002), Polyphen2 (Adzhubei et al., 2010), MutationTaster (Schwarz,

Rodelsperger, Schuelke, & Seelow, 2010), Provean (Choi & Chan,

2015), and PANTHER (Thomas et al., 2003). We then compared these

numbers with those produced when an additional filter was added to

require that one of the tool designers be attributed as an author.

3 RESULTS

3.1 Evaluating computational prediction accuracy

requires robust, high-quality experimental data

In order to gauge the accuracy of variant impact predictions, the

experimental measurements of the functional effects of these variants

should themselves be reliable, precise, and performed on a sufficiently

large scale to be meaningful. These conditions are not trivial and may

require repetitive measurement with a given assay, testing the same

single phenotype with multiple different assays, or gathering infor-

mation on multiple phenotypic outcomes of the same mutation. As a

result, in most practical instances, it is challenging to evaluate whether

the data that are available are acceptably robust and complete, and to

assesswhether the experimental design choices affect the relationship

with computational prediction.

To quantify the extent to which increasing robustness of experi-

mental testing improves concordance with phenotypic prediction, we

first look at the value of repeated measures of the same phenotypic

assay. In a recent study of UBE2I (SUMO ligase) (MIM# 601661), 682

SNVs were evaluated experimentally using a yeast-based complemen-

tation assay in which thousands of barcoded UBE2I clones represent-

ing nearly 2,000 combinations of amino acid changes were pooled

and transformed into a yeast strain carrying a mutant, temperature-

sensitive homolog of UBE2I (CAGI, 2015). Half of the experimen-

tal replicates were grown at a permissive temperature, where there

should be no selection for or against variant function, whereas the

other half were grown at a restrictive temperature where growth

was dependent on the human protein function. Protein fitness in the

presence of the variant was represented as the ability of the human

protein to rescue SUMO ligase function, and was computed as the

ratio of growth between these two conditions. In this experiment,

some amino acid changes were represented by multiple, indepen-

dent clones with unique barcodes, and the resulting data were split

into two groups based on whether the fitness score for the vari-

ant was an average across at least three independent clones (“high-

accuracy” subset) or fewer than three clones. We found that the cor-

relation with EA prediction scores increased substantially (R2 = 0.5 to

R2 = 0.9) when the measure of experimental function was an aver-

age across a larger number of independent clones (Fig. 1A and B).

Evenamong the “high-accuracy” variant subset, variability in data qual-

ity affected concordance between experimental and computational

estimations of impact; the power of EA predictions to prioritize the

variants increased exponentially as the standard error of the mean

for experimental fitness decreased (Fig. 1C). These examples highlight

that even very basic improvements in data quality, in this instance
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F IGURE 1 Influence of experimental data quality on correlation to computational predictions.A: “High-accuracy” subset of 219 SNVs in SUMO
ligase, from the 2015 CAGI challenge. “High-accuracy” variants are defined as those that had at least three independent barcoded clones in the
complementation screen, providing internal experimental replicates. Variants were binned in deciles according to their Evolutionary Action (EA),
and themean and standard error of themeanwas plotted for each bin. Gain-of-function variantswere grouped into a single bin and plotted at their
average EA value. B: Remaining 463 SNVs in SUMO ligase. Variants were binned in deciles according to their Evolutionary Action (EA), and the
meanand standarderror of themeanwereplotted for eachbin.C: Relationshipbetweenexperimental standarderror of themeanandprioritization
accuracy of EA for the “high-accuracy” subset of 219 SNVs in SUMO ligase. Variantswere ordered by their standard error of themean, and the area
under the receiver operating curve (AUROC) was calculated for sliding windows with a window size of 50 variants and a slide of 10 variants, using
variants with at least a 50% decrease in fitness as a positive set. The AUROC and average standard error for each window was plotted and fitted
with an exponential decay function

using at least triplicates, can lead to a greater agreement between

phenotype prediction and experimental assessment. However, the

complexity of protein biology further necessitatesmoving beyond sim-

plistic definitions of robustness to consider not just how many repli-

cates or independent runs create a robust dataset, but additionally

how many assays accurately characterize the breadth of protein func-

tionality.

3.2 Formany proteins, a single assaymay result in

an incomplete characterization of overall impact

For any protein, multiple assays may be necessary to get a complete

picture of how a variant has affected function. Even for a protein

with a single well-defined role, there are many individual phenotypes

that may be affected distinctly: expression, localization, binding, or

enzymatic activity, for some examples. In addition, over one-quarter

of proteins are likely to be multifunctional (Pritykin, Ghersi, & Singh,

2015), and these proteins are of particular interest because they are

significantlymore likely to be involved in human disease (Pritykin et al.,

2015). To emphasize the importance of assaying all relevant functions

that could be affected by a variant, we repurposed recent variant

assessment studies for two multifunctional proteins: prokineticin

receptor 2 (PROKR2, MIM# 607123) and dopamine D2 receptor

(DRD2, MIM# 126450) (Peterson et al., 2015; Sbai et al., 2014). In the

analysis of 21 coding SNVs of PROKR2, initial phenotypic testing for

cell surface expression indicated normal expression for almost half of

the variants. After more extensive testing of five other phenotypes,

including three signaling pathways, over 95% of the variants were

determined to affect function (Fig. 2A). Similarly, in the assessment

of 41 coding SNVs from DRD2, all of which were computationally

predicted by EA to equally and significantly affect function, 32% of

the variants could only be detected as impactful in the G-protein

signaling assay, whereas 10% of the variants could only be detected

as impactful in the 𝛽-arrestin signaling assay (Fig. 2B). The few remain-

ing variants in both studies that did not display abnormal behavior

on any assay may yet affect other, untested functions. These data

show that selective assaying can underestimate a variant’s impact on

function.

3.3 Integrative approaches to experimental impact

improve concordancewith computational prediction

In order to test whether amore holistic, integrative phenotype charac-

terization would increase agreement with computational predictions

of variant impact, we next repurposed data collected for a different

study by the authors, which analyzed the functional effects of 26 SNVs

onADRB2 signaling (Schoenegge, submitted). Protein fitness perturba-

tionwas computedusing sixmeasures of performance across five func-

tional impact assays that were chosen to reflect the primary expected

functions of the receptor while additionally capturing the complex-

ity of receptor functionality. When the phenotypic impact of each

SNVwas calculated to consider total deviance fromwild-type function

across all assays and measures, the relationship between the compu-

tationally predicted impact and experimentally measured phenotypic

impact was extremely strong (R2 = 0.73, P< 0.0001) (Fig. 3A). We also

found that the ability of computational prediction to distinguish func-

tional effects of variantswashighly accurateeven for variants affecting

the same protein residue (Fig. 3B). These variantswere correctly prior-

itized87%of the time, and those thatwerenothad significantly smaller

differences both in computationally predicted impact (P = 0.008) and

experimentally measured impact (P = 0.03), indicating that errors

were both infrequent and of small magnitude. However, when the
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F IGURE 2 Diversity in functional effect caused by different variants in a protein. A: PROKR2 mutational data adapted from Sbai et al. (2014),
testing functional effects of 21 total variants. Initial assessment of cell surface expression left 10 variants with wild-type phenotype; five addi-
tional assays revealed a spectrum of affected function for the remaining variants.B:DRD2mutational data adapted fromPeterson et al. (2015). All
SNVs with high predicted impact (defined as top 20% of all possible DRD2 variants, EA>80) were assessed for phenotypic impact. Axes represent
log(mutant function/WT function) values for G protein (x axis) and 𝛽-arrestin (y axis) signaling. Signalingwas considered to be affected if therewas
at least a 50% decrease in signaling function for themutantDRD2 comparedwith wild type (dotted lines)

correlation between computationally predicted impact and measured

phenotypic effect of the ADRB2 variants was calculated considering

only one phenotypic measure at a time, every single measure per-

formedworse than the integrative approach, andmany individualmea-

sures in fact performed extremely poorly indeed (Fig. 3C). The integra-

tive approach was able to account for over 10% more variability than

the best performing individual measure, and over 30%more variability

than the median performing individual measure. In addition, the aver-

age performance of the integrative approach increased as a greater

number of phenotypic measures was incorporated, showing a clear

advantage to approaching phenotype from a holistic perspective and

making experimental models more robust throughmultiple assays and

measures. The importance of this integrative approach is highlighted

furtherwhenexamining theperformanceof anygivenphenotypicmea-

sure across different functional assays (Fig. 3D). No one phenotypic

measure produces either the best or the worst results in all assays,

and in some cases a measure that is relatively uninformative in one

assay has a strong relationshipwith predicted impact in another. These

data show that to choose only one assay, or one phenotypic measure,

could easily lead to the impression of genotype/phenotype discrepan-

cies when the predicted phenotypic effect was simply not detected

by the experimental setup. Furthermore, given the differing effects of

individual variants, it would be challenging to preemptively predict the

single most relevant assay to utilize. A thorough characterization com-

pensates for this uncertainty.

Next, we assessed whether the value of an integrative approach to

experimental impact can be seen even when multifunctional signaling

is not a major concern for a protein and when experimental reporting

is not on a continuous scale. To do so, we examined the relationship

between EA and experimental assessment for the 28 coding SNVs in

MLH1 (MIM#120436) reported byRaevaara et al. (2005). The variants

of MLH1, a DNA mismatch repair gene involved in hereditary colon

cancer, were assessed using five separate assays of function (expres-

sion, localization to nucleus, repair efficiency, localization with binding

partner, and interaction with binding partner). For each variant, the

study authors reported each category as normal or abnormal and then

provided an “overall interpretation” of impact. We found that priori-

tization of the variants based on their EA scores was most predictive

of the “overall interpretation” (AUC = 0.91, P = 0.0004) (Fig. 4). While

the assay measuring the primary function of MLH1, mismatch repair,

was the best performing individual assay (AUC = 0.86), an integrative

approach to defining experimental impact was still able to increase

concordance with computational prediction. These data show that

the principle of improving experimental robustness through multiple

assays is likely to apply broadly, and may benefit the interpretation of

other disease genes likeMLH1.
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F IGURE 3 Holistic characterization of SNVperturbation ofADRB2 function.A: Correlation between predicted SNV impact (Evolutionary Action
[EA]) and overall experimentally assessed impact for 26 variants in ADRB2, quantified using 29measures across five biological assays. B: Ability to
correctly rank the impact of amino acid substitutions at the same residue. Left y-axis representsΔEAbetween twomutations at same residue, right
y-axis represents themeasured biological difference betweenmutations. Substitution pairs at the same residue are shown in blue if in silico and in
vitro approaches agreeon their relative impact ranking, and in red if theydonot.C: Correlation (R2) betweenEAscores and29phenotypicmeasures
for ADRB2 variants. Each phenotypic measure individually (1), all phenotypic measures integrated as a whole (All), and different combinations of
the 29measures (2–28) are represented on the x-axis. For combinations of sixmeasures through combinations of 23measures, a random sample of
300,000 possibilitieswas assessed. The performance of all phenotypicmeasures integrated as awhole is also represented as a solid line at y= 0.73.
D: Relative performance of phenotypic measures is inconsistent across assays. For each assay, performance of each phenotypic measure (EC50,
maximal response, etc.) is shown as a relative value comparedwith best performingmeasure for the assay

3.4 Computational input design affects impact

prediction scores formany variants, andmust reflect

the same underlying hypothesis as the experimental

design

Holistic experimental phenotyping improves correlation in the exam-

ples above largely because evolutionary impact prediction methods

are designed to consider the “global” impact of a variant on a protein.

Within these tools, variant predictions are derived from analyses of

theprotein’s evolutionary lineageusing alignmentsof homologouspro-

teins.Wehypothesized that these “global predictions” likely stem from

a global input and that alterations to this alignmentmay result in varia-

tions in the output predictions, withmore divergent alignments result-

ing in greater differences in impact predictions. If impact predictions

varied depending on the specificity of the input, we further hypothe-

sized that input selection could be used to tailor predictions to specific

biological questions, and that incorrect selection of protein alignments

could result in discordance between computation and biology.

To quantify the variance in EA predictions resulting from devia-

tions in the alignment input, we first generated EA scores for ADRB2

from a broad, class-specific alignment (Class A GPCRs), and a narrow

alignment composed only of very close homologs. Using these two

alignments, we observed how the evolutionary time scale of the align-

ment affected EA scores of ADRB2 variants. For every possible amino

acid change in ADRB2, we compared the predictions produced using

different alignments as inputs (Fig. 5A). We then averaged all 19 sub-

stitutions for each residue; residueswith an averageEAgreater thanor

less than 1 standard deviation from the mean of the distribution were

grouped as either more important to ADRB2 or to Class A receptors,

respectively, whereas residues with an average EA within 1 standard

deviation were considered “robust.” Residues within functional motifs

such as the DRY, NPXXY, and PIF domain showed minimal variation

between the two alignments, in agreement with prior biological char-

acterization indicating their conserved functionality throughout Class

A GPCRs (Katritch, Cherezov, & Stevens, 2013). Mapping additional

robust residues onto the ADRB2 structure demonstrates that many of

these predictions are located at inward facing core residues.

To test whether the deviations (ΔEA >±1STD) resulting from dif-

ferent evolutionary time scales of the alignments reflected genuine

differences in biology, rather than noise or a nonrobust methodol-

ogy, we separated substitutions into two groups based on whether

the substitution was more impactful in the narrow (ADRB2) alignment

or the broad (Class A) alignment and then mapped these positions

onto the ADRB2 structure (Fig. 6). Of the 110 residues with an EA
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F IGURE 4 Assessment of MLH1 variants using multiple assays.
MLH1 mutational data were adapted from Raevaara et al. (2005),
in which 28 SNVs were measured for performance on five separate
assays of protein function. The ability of EA to rank the functional
impact of the variants within each individual assay is displayed in gray,
whereas the ability of EA to prioritize “overall” variant effect is dis-
played in black

F IGURE 5 Relationship between scope of input alignment and EA
predictions. A: Identification of alignment-sensitive variant predic-
tions. Alignment input was varied to reflect narrow and broad defi-
nitions of ADRB2 homology and fluctuations in the resulting EA pre-
dictions were quantified. The x-axis represents EA scores from a very
narrow alignment using only close homologs to ADRB2, whereas the y-
axis represents EA scores from a broad alignment of ADRB2 homologs
spanning all of Class A GPCRs. Color represents point density, with
red representing the highest possible density. B: Application of nar-
row versus broad alignment analysis to identify input-sensitive vari-
ants in othermultifunctional proteins related to disease: CHK2 (MIM#
113705), TP53 (MIM#191170), PTEN (MIM#601728), and RAD51
(MIM# 179617). ΔEA reflects the EA score produced using the broad
(Class A) alignment subtracted from the EA score produced using the
narrow (ADRB2) alignment

F IGURE 6 Structural locations of residues sensitive to scope of
alignment input. PositionswithΔEA>1 standard deviationwhen com-
paring broad to narrow alignment inputs are shown as spheres where
size denotes the magnitude of the ΔEA difference. Red spheres =
ADRB2EA>ClassAEAandBlue spheres=ClassAEA>ADRB2EA. Par-
tial inverse agonist Carazolol shown as orange sticks. Roman numerals
identify the GPCR helices

difference larger than 1 standard deviation, mutations at 60 residues

were predicted to be more impactful to ADRB2 alignment, and 50

residues were predicted to be more impactful in the full Class-A align-

ment. Of these, 12 residues and five residues had an EA difference

larger than 2 standard deviations (ADRB2 and Class A, respectively).

Both groups (ΔEA >±1STD) demonstrated significant structural clus-

tering (P < 0.00001), and these clusters were found at sites of par-

ticular relevance to GPCRs. Residues identified as higher scoring and

of greater importance when using the narrow ADRB2 alignment clus-

tered near the predicted dimerization interfaces of close homologs

(Lee, O’Dowd, Rajaram, Nguyen, & George, 2003; Milligan, 2004), as

well as the ligand-binding pocket, with several residues (F290, Y308)

previously shown to be in direct contact with the ligand of ADRB2

(Plazinska, Plazinski, & Jozwiak, 2015; Rosenbaumet al., 2007). On the

other hand, residues that weremore important to the rest of the Class

A GPCRs clustered significantly (P < 0.00001) around the extracellu-

lar loop structure, which directly binds ligand in more distant Class

A GPCRs like Rhodopsin but which evolved to interact indirectly and

be less essential in ADRB2 (Wheatley et al., 2011). These data show

with ADRB2 that the majority of EA predictions are robust to input

variability reflecting the conserved functionality of essential biological

residues throughout protein homologs. However, by using alignments

tailored to a specific biological question, EA further demonstrates the

sensitivity to capture functionalities unique to that protein in ques-

tion. While not all variants could benefit from a customized align-

ment to improve accuracy, 2,112 of the possible 7,828 substitutions,

including many substitutions to residues involved in specific functions

like ligand binding, demonstrate some sensitivity to choices in the

computational input (ΔEA >±1STD), with 417 having significant alter-
ations in EA score (ΔEA>±2STD).

To test whether other proteins are similarly sensitive to the evolu-

tionary time scale of the alignment used, we conducted the same anal-

ysis on four other multifunctional, disease-related proteins (Fig. 5B).
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F IGURE 7 Variable evolutionary history of human proteins. A: Number of Blastp homologs, from Blastp search with E-value between 0 and
0.5, for all human proteins. B: Relationship between alignment depth and variant prioritization accuracy for a set of 28 SNVs in MLH1. For each
alignment depth, 50 alignments were created by randomly selecting without replacement from the set ofMLH1 homologs with E-values between
0 and 0.5. Variant EA scores were derived from each alignment and variants rankings were assessed using the experimental “overall interpretation
of impact” as a gold standard and quantified using the area under the receiver operating curve (AUROC). For each box plot, the center line indicates
the median, the box indicates quartiles, and the whiskers indicate the range. Alignment depths were compared statistically using a Kruskal-Wallis
test. C: E-value distributions of homologous proteins from 20,000 protein blasts. Bins were chosen such that the occupancy of each bin is equal
when considering all homologs produced by Blastp searches of human proteins. The y-axis represents the binned E-value distribution of the Blastp
search for each human protein (x-axis). Shade represents the percent of all homologs from the protein blast result that fall into that E-value bin.
Proteins were organized into six clusters using non-negative matrix factorization

Similar to the 𝛽2 adrenergic receptor, the majority of the predic-

tions in these proteins were consistent in both the specific and broad

alignments, whereas some variants showed a marked variance in EA

predictions. These data show that this phenomenon is generalizable

and that customized alignments can help refine results for many pro-

teins. A broad alignment emphasizes global characteristics represent-

ing conserved biological function across an entire class of proteins,

whereas a customized narrow alignment highlights features unique

to a specific protein that have diverged from more distant homologs.

A similar analysis investigating rare oncogenic kinase mutations fur-

ther concluded that the evolutionary depth of the mutated residue

was a strong predictor of themutation’s “oncogenic effect” (ManChon,

Talevich, Katiyar, Rasheed, & Kanaan, 2014). In the same way that

experimental assays must be optimized to the specific biological ques-

tion of interest, we find that computational experimental design also

has a profound effect on the interpretation of predictions for many

variants and requires careful consideration.

3.5 Robustness of homolog availability and

distribution varies by protein andmay affect

computational prediction confidence

Havingdemonstrated that evolution-based impact predictions are sen-

sitive to intentional changes in the depth and diversity of the homolog

tree used for the protein alignment, we next hypothesized that there

may be unintentional biases in generic predictions stemming from

inherent variability in the availability and evolutionary divergence

of homologs for individual proteins. To test this hypothesis, we first

acquired, for each human protein, all available homologs from the

Uniref90 database (Suzek et al., 2015) using NCBI Blastp and quanti-

fied how both the number of homologs and the evolutionary distribu-

tion of the homologs varied among proteins. The overall distribution of

homolog availability for humanproteins fits a power lawdecay (Fig. 7A)

with 50% of all proteins having fewer than 100 homologs and 5,234

proteins having fewer than20homologs, indicating that theyarebelow

or nearing the lower bounds of appropriate alignment depth recom-

mended in order to produce reliable results (Mihalek et al., 2004). To

test how limited homolog availability may affect impact prediction, we

randomly sampled the original alignment to generate different align-

ments of between 1 and 100 homologs forMLH1, calculated EA scores

for each alignment, and compared the EA scores of the same set of 28

variants explored earlier with an experimental gold standard (Fig. 7B).

Prediction accuracy varied significantly (P< 0.0001) depending on the

number of sequences in the alignment (depth), with increasing align-

ment depth rapidly leading both to higher average accuracy scores and

smaller variance in the accuracy scores until finally reaching a plateau

around 20 homologs. These data indicate that the large variability in

available data when creating alignments of human proteins is likely to

prove highly relevantwhen attempting to translate computational pre-

dictions to experimentally validated results.

Because the current pool of reference sequences is biased to exten-

sively studied species (Zhou et al., 2014), the number of homologs is

not necessarily identical to the coverage of the phylogenetic tree or

the span of evolutionary history captured by the sequences. To investi-

gate the depth and distribution of evolutionary information captured

for each protein, we considered the representation of E-values pro-

duced by each protein blast search (Fig. 7C). For each human protein,

we converted the number of homologs within an E-value range into a

percentageof all homologs fromthat blast search. In thisway,we calcu-

lated the balance between highly diverged (larger E-value) and highly

similar (smaller E-values) homolog matches. We found that the evolu-

tionary distribution of available homologs varied by protein, and used
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non-negative matrix factorization of the binned E-value distributions

to group proteins with similar E-value distributions for ease of visual-

ization (Fig. 7C). Blast homolog results for proteins within groups 1, 3,

and 6 were composed predominantly of highly similar, very significant

matches (E-value < 1e−23) with few homologs exhibiting more exten-

sive divergence from the query. For proteins in group 4, the majority

of homologs fell into intermediate E-values (1e−23 < E-value < 2e−08),

whereas proteins in groups 2 and 5 had disproportionately more dis-

tantly related homologs (E-value > 3e−08). These data indicate that

human proteins have broad diversity in both the depth and breadth

of the evolutionary information present in their available homologs,

which can create challenges in computing impact predictions from

alignments that sample from these homologs. Differences in the qual-

ity and specificity of the alignment between proteinsmay unknowingly

influence impact predictions.

4 DISCUSSION

The usage of computational methods to identify and predict harm-

ful variants in both a clinical and laboratory setting is dependent

on their ability to accurately and reliably represent biology. Stud-

ies demonstrating disagreements between prediction and validation

have assumed inaccurate computational prediction to be the driver,

and suggested that clinicians might be better served by forgoing

computational analysis entirely and proceeding directly to testing in

vitro function. Here, we presented a methodological analysis explor-

ing several possible reasons beyond inaccurate prediction for why

these disagreements may occur, and conclude that disagreements are

likely to occur when the computational tool and validation assays are

not testing the same underlying hypothesis. We find that improved

agreement between prediction and validation can be achieved when

experimental testing reflects a holistic definition of function that is

attuned to the computational methodology. Furthermore, many vari-

ant predictions depend heavily on an appropriate alignment choice

and require a set of sequences that, by virtue of their evolution-

ary span, reflect the functional features that best match the bio-

logical question and the subsequent experimental validation. There-

fore, an increased collaboration between computational biologists

and experimentalists would improve the biological relevance of the

predictions.

A call for more extensive experimental validation poses a large

task both for biologists and for gold standard prediction competitions

that use biological assays to benchmark the ability of computational

tools to score SNV impact on protein function. Yet, as we have shown

here, both the quality and the thoroughness of biological characteriza-

tion can profoundly influence the final conclusions. Mutations with no

effect in certain assays may result in constitutive activation or loss of

function in other tests. Consequently, variants predicted to be impact-

ful are sometimes initially deemedas “false positives” basedon existing

literature (Bromberg, Overton, Vaisse, Leibel, & Rost, 2009), only to be

confirmed years later after additional testing (He & Tao, 2014). More-

over, the same experimental assay may reveal variant pathogenic-

ity only in a particular environment; in a study of 10 BRCA1 (MIM#

113705) variants assayed for transactivation activity in both yeast and

mammalian cells, 20% of the variants could only be verified as loss-of-

function causative variants, consistent with observed pedigrees, when

using the mammalian system (Vallon-Christersson et al., 2001). An

exhaustive assessment of the impact is especially crucial for proteins

known to be multifunctional; though with estimates of multifunction-

ality ranging from 25% to 65% of human proteins (Ekman, Bjorklund,

Frey-Skott, & Elofsson, 2005; Pritykin et al., 2015), this group is hardly

a minority. Beyond testing more functions, higher reproducibility for

experimental determination of impact also has a tangible benefit; we

described above how averaging experimental replicates improved cor-

relation between prediction and validation, but other predictionmeth-

ods have also found that when multiple studies agree on the experi-

mental interpretationof a variant, agreementwith prediction also rises

markedly (Bromberg et al., 2009).

However, even best efforts to maximize experimental rigor are

unlikely to resolve these issues entirely. In reality, there are many

ways in which a variant’s behavior may be altered by environmen-

tal conditions: cell line variations, in vitro versus in vivo context,

temperature, and cell composition, on top of variations within the

spatiotemporal factors in these systems. These considerations create

a formidable task for experimentalists to design a rigorous panel of

tests that is not prohibitively cost and time-intensive. Furthermore,

while computational methods predict global impact, often clinical and

biological relevance may be directly linked to a specific functionality.

Although it is often not possible to know a priori which tests will be

most efficient in this regard, it is necessary to find a balance between

rigor and practical value.

Moreover, there are challenges to validation that would not be

easily resolved by additional or repetitive testing. Even well-studied

proteins may have currently unknown functions, limiting a satisfac-

tory reconciliation of predicted and assayed variant impact. In addi-

tion, one recent study indicates that current state-of-the-art experi-

mental methodologies used for measuring fitness effects do not ade-

quately reproduce constraints found in nature and can cause many

impactful mutations to falsely appear benign in the laboratory setting

(Rockah-Shmuel et al., 2015); more realistic mutation conditions dra-

matically increased the fraction of mutations assessed experimentally

to be deleterious. These possibilities highlight how the positive predic-

tive value of computational methods may be underestimated by cur-

rent approaches to validation, and can perhaps explain why studies

like Miosge et al. (2015) found the false-positive rate for computa-

tional predictionmethods to be two to five times higher than the false-

negative rate, which was generally quite low (3%–5%). For these rea-

sons, bypassing computational prediction and proceeding directly to

testing would not necessarily improve clinical diagnosis, as inconsis-

tencies between prediction and testing can be driven by the experi-

mental setup as well as by prediction errors.

Of course, prediction errors should not be ignored as a potential

source of disagreement.We, like others (Adebali, Reznik,Ory, &Zhulin,

2016; Hicks et al., 2011), find that alignment choice plays an impor-

tant role for evolutionary-based prediction methods. In ADRB2, we

found that nearly half of potential variants were sensitive to compu-

tational input. However, changes to the variant prediction scores did
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not reflect a nonrobust methodology, but rather a different underlying

hypothesis. By using a narrow alignment for close homologs of ADRB2,

we identified biologically relevant clusters of residues within the

structure that were predicted to be more or less important to ADRB2-

like GPCRs than the rest of the Class A GPCRs, and even more pre-

cision could be gained by using advanced tools for alignment subdi-

vision in order to predict positions essential for even smaller align-

ments. By tailoring the computational approach to the specific bio-

logical question in this way, predictions can be customized to better

reflect variant effect in a specific functional context. Yet while method

developers can and do create bespoke predictions, this level of knowl-

edgeable refinement may be out of reach for an average user who

has downloaded one of the many accessible predictor tools for per-

sonal use (Katsonis et al., 2014). There is a great deal of opportunity

for collaboration between computational biologists and experimental

biologists in this area that remains to be harnessed; across more than

1,000 researcharticleswitha reference toanyof six popular prediction

methods in their abstract, less than 2% of articles appeared to involve

a direct collaboration between study authors and the tool developers.

Ideally, communication across disciplines would increase to the point

that when a user finds that default alignments or parameters for a tool

produce results inconsistent with experimentation, both groupswould

begin the process of troubleshooting together.

Naturally, just as there are some challenges in experimental design

that cannot be addressed by additional testing, there are computa-

tional challenges to prediction that cannot be addressed by alignment

optimization. In particular, nonuniform homolog availability across

proteins as well as the evolutionary age of a functional region in a pro-

tein canaffect prediction confidence. Limitedevolutionary information

can lead to less certain or even inaccurate predictions in these cases,

with variant impact on very newly emergent or divergent functional

properties most likely to be missed by standard approaches to pre-

diction (Ng & Henikoff, 2006). In addition, the vast majority of vari-

ant impact prediction tools predict the effect of each variant indepen-

dently, and none are currently able to consider the full genomic con-

textof thevariant and factor in themagnitudeanddirectionof epistatic

modulation. These modifications may not be too far in the future—EA

and other methods have demonstrated strong predictive ability when

considering the impact of multiple concurrent variants within a pro-

tein (CAGI, 2016), so the incorporation of genetic or even multiomic

information from outside the protein in question (Raimondi, Gazzo,

Rooman, Lenaerts, Vranken, 2016) is a logical next step. Furthermore,

given thepractical andbiological limitations to comprehensively assay-

ing a protein, computational prediction may need to take on the chal-

lenge of developing advancedmethods to predict a variant’s impact on

a specific protein function, thereby increasing applicability when guid-

ing precise biological investigation.

The ultimate goal of computational prediction is to integrate exten-

sive variant information into a single measure that accurately repre-

sents the presentation of a complex, multigenic phenotype. Although

this type of modeling is still a work in progress, one notable success

in yeast came when the protein alignments were optimized through

collaboration with tool developers before variant impact prediction,

20 different growth conditions were considered when testing func-

tionality, and the group of genes responsible for the phenotype was

well-delineated (Jelier, Semple, Garcia-Verdugo, & Lehner, 2011). This

study demonstrates a successful union of biological investigation and

computational prediction and further shows how active cooperation

between the two fields leads to more accurate estimations of compu-

tational prediction accuracy and a better understanding of the rela-

tionshipbetweengenotypes andphenotypes.An increasedadoptionof

the type of approachwill enable an increased personalization of future

computational methods.
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