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Abstract

Accuracy of glioma grading is fundamental for the diagnosis, treatment planning and prog-

nosis of patients. The purpose of this work was to develop a low-cost and easy-to-implement

classification model which distinguishes low-grade gliomas (LGGs) from high-grade gliomas

(HGGs), through texture analysis applied to conventional brain MRI. Different combinations

of MRI contrasts (T1Gd and T2) and one segmented glioma region (necrotic and non-enhanc-

ing tumor core, NCR/NET) were studied. Texture features obtained from the gray level size

zone matrix (GLSZM) were calculated. An under-sampling method was proposed to divide

the data into different training subsets and subsequently extract complementary information

for the creation of distinct classification models. The sensitivity, specificity and accuracy of

the models were calculated, and the best model explicitly reported. The best model included

only three texture features and reached a sensitivity, specificity and accuracy of 94.12%,

88.24% and 91.18%, respectively. According to the features of the model, when the NCR/

NET region was studied, HGGs had a more heterogeneous texture than LGGs in the T1Gd

images, and LGGs had a more heterogeneous texture than HGGs in the T2 images. These

novel results partially contrast with results from the literature. The best model proved to be

useful for the classification of gliomas. Complementary results showed that the heterogene-

ity of gliomas depended on the MRI contrast studied. The chosen model stands out as a

simple, low-cost, easy-to-implement, reproducible and highly accurate glioma classifier.

Importantly, it should be accessible to populations with reduced economic and scientific

resources.

Introduction

Gliomas are tumors formed by the glial cells of nervous tissue. These can be benign or malig-

nant. Malignant gliomas represent about 80% of all malignant brain tumors [1], and can be

classified as low-grade gliomas (LGGs; grade II, according to the World Health Organization,

WHO) or high-grade gliomas (HGGs; grades III and IV, according to the WHO) [2]. LGGs
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are usually slow-growing and infiltrative tumors. Treatment consists of a complete resection of

the tumor and subsequent follow-up with the patient. In some cases, chemotherapy and radio-

therapy may be necessary. On the other hand, HGGs evolve rapidly and immediate treatment

is necessary, including complete resection, chemotherapy and radiotherapy [3]. HGG patients

have a low life expectancy (approximately 1 to 2 years), while LGG patients have a longer life

expectancy (approximately 5 to 10 years) [4]. The 2016 WHO Classification of Tumors of the

Central Nervous System showed that molecular characteristics are of greater importance, com-

pared to histological characteristics, for the diagnosis and management of each patient [2].

However, as in other medical classification problems, a single approach is usually not sufficient

to provide all the information necessary for the understanding of a disease and the accuracy of

its diagnosis [5]. On the other hand, the latest advances in disease diagnosis are not always

accessible to the entire population, as is the case in developing countries. Therefore, the crea-

tion of low-cost and relatively easy-to-implement diagnostic methodologies is useful and

necessary.

Different imaging techniques, such as computed tomography (CT), positron emission

tomography (PET), single-photon emission computed tomography (SPECT), magnetic reso-

nance imaging (MRI), infrared spectroscopic imaging, or a combination of these, have been

used for the study and classification of gliomas [6–14]. However, intracranial tumors are best

evaluated on MRI [15] and conventional MRI is traditionally employed in many works whose

objective is to distinguish LGGs from HGGs [16]. Moreover, MRI is first utilized clinically

when, after a general medical examination, the presence of a brain tumor is suspected. Once

its existence is confirmed, conventional and advanced MRI can be used to delimit the tumor,

to follow its evolution, and to obtain some evidence about its type and malignancy grade [17].

However, the characterization of gliomas using imaging is difficult, since they can present a

mixture of low-grade and high-grade characteristics. Currently, the standard diagnosis of glio-

mas is performed by histopathological tests after performing a surgical resection or a stereotac-

tic biopsy (which can be guided by MRI) [18]. These procedures are invasive and can be risky

due to the location of the tumor. Moreover, due to the heterogeneity of gliomas, a biopsy pres-

ents problems such as taking samples that are not representative of the complete tumor as well

as variability in the interpretation [19]. Therefore, there is a need in the clinical community to

develop new non-invasive and preferably automatic diagnostic methodologies, so that the

diagnosis, treatment planning and prognosis of glioma patients can be improved.

To date, various computational methodologies have been developed for the classification of

gliomas. Some of them study conventional (anatomical) [7, 20] or advanced MRI (perfusion

or diffusion weighted imaging, spectroscopy, etc.) [5, 21–23]. They use qualitative, semiquanti-

tative or quantitative variables, or a combination. Some variables are obtained from a specific

MRI submodality (for example, diffusion variables). However, there are quantitative analytical

methodologies that allow measuring variables from all MRI. One of the most-used is texture

analysis [20, 23, 24], wich consists of quantifying the spatial distribution of pixels (2D images)

or voxels (3D images) with different gray levels intensities, and extracting information through

statistical variables (for example, correlation, homogeneity, contrast, entropy, etc.) [25]. Color

images with red/green/blue format can be analyzed by separating their three components as

gray level images. Thus, texture analysis is versatile for any type of MRI [26]. In this type of

analysis, texture features are extracted from the calculation of texture matrices. Among these

are, for example, the so-called gray level size zone matrix (GLSZM). The GLSZM measures the

number of gray level zones, i, and their sizes, j [27]. It calculates the number of times that gray

level voxels i were grouped to form a set (zone) of j voxels, considering all possible directions

(26 in 3D). Since its invention, the GLSZM has proven to be useful when the main characteris-

tic under study is heterogeneity [27]. Since different glioma grades are characterized by having
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different levels of heterogeneity [28], characterizing gliomas through texture features obtained

from the GLSZM is convenient.

Simple mathematical methods (linear regression, logistic regression, etc.) and complex

mathematical methods (fuzzy modeling, artificial neural networks, etc.) have been used for gli-

oma grading [29]. Although the most complex models tend to be the most flexible, the compu-

tational cost is also higher [30]. On the other hand, the utility of any model is usually measured

after validation. For classification models, this commonly consists of using training samples to

create the model and testing samples to ratify its results. However, because the available data-

bases tipically contain small samples, it is not always possible to validate the results [19, 21–

23]. Moreover, many of the databases used in different studies are private, or were acquired

using specific protocols, which does not always allow their results to be extrapolated or repro-

duced through independent studies. Also, a common problem present in many databases is

the so-called “class imbalance”, which occurs when one or more classes have a greater or lesser

number of samples than the others. The consequence is that a classifier will be biased towards

the classes with the highest number of samples [31]. There are several strategies to deal with

this problem, such as under-sampling (elimination of samples from major classes), over-sam-

pling (replication of samples from minority classes), cost-sensitive learning (taking into

account misclassification costs), and others [32].

The objective of the present work was to develop a non-invasive, semi-automatic, simple

and reproducible method to differentiate low-grade and high-grade gliomas, with the benefit

that it can be used in developing countries with limited access to technology. This was achieved

by studying different conventional MRI contrasts, applying texture analysis (which is low-cost

and easy-to-implement) and finally reporting explicitly the best classification model. In addi-

tion, since an imbalanced database was studied, an under-sampling approach was proposed, in

which different subsets of gliomas with balanced classes were first created, and then comple-

mentary information from each of them was extracted in order to create a variety of classifica-

tion models.

Materials and methods

Patient database

The patient database belonging to the Multimodal Brain Tumor Segmentation (BRATS) Chal-
lenge 2018 [33–36] was used in this work. It was available online via a data request on the chal-

lenge page [33]. The database was comprised of routine, clinically acquired 1.0 T, 1.5 T and 3.0

T pre-operative multimodal MRI scans of 210 glioblastoma (GBM/HGG) and 75 LGG

patients, with pathologically confirmed diagnosis. There was information about the age and

overall survival of 168 of the 210 HGG patients, who had an average age of 60.33 ± 12.08 years

and an average overall survival of 423 ± 349 days. The scans consisted of four conventional

MRI contrasts: native (T1) and post-contrast T1-weighted (T1Gd), T2-weighted (T2), and T2

Fluid Attenuated Inversion Recovery (FLAIR). Images of the tumors were segmented and

manually labeled in different regions: Gd-enhancing tumor (ET), necrotic and non-enhancing

tumor core (NCR/NET) and peritumoral edema (ED). The manual segmentation was per-

formed by one to four raters, and their annotations were approved by experienced neuroradi-

ologists. The database was grouped into three sets, identified as BRATS 2013 (from the 2013

challenge database), with 10 LGGs and 20 HGGs; TCIA (The Cancer Imaging Archive), with

65 LGGs and 102 HGGs; and CBICA (Center for Biomedical Image Computing and Analyt-

ics), with 88 HGGs (S1 Table). However, the scans came from 19 different institutions and

were acquired with different clinical protocols as well as various scanning systems.
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Pre-processing

The scans from the database were already pre-processed [34]. Each patient’s image volumes

were co-registered rigidly to the T1Gd MRI and all images were resampled to 1 mm isotropic res-

olution in a standardized axial orientation with a linear interpolator. A rigid registration model

was used with the mutual information similarity metric, through the Insight Segmentation and

Registration Toolkit (ITK) software [37] (“VersorRigid3DTransform” with “MattesMutualIn-

formation” similarity metric and three multi-resolution levels). All images were skull-stripped.

As the features of interest in the texture analysis describe different properties, based on the

gray level intensity of the images, two extra pre-processing steps were performed before the

analysis: intensity inhomogeneity correction and intensity normalization. Intensity inhomoge-

neities are mainly produced by imperfections in the radiofrequency coils and object-depen-

dent interactions; in the images they are observed as a low frequency variation of the intensity

across the image [38]. In any quantitative image analysis, a tissue is considered to be repre-

sented by similar gray level intensities, so that intensity inhomogeneities have a large influence

on the results obtained. Therefore, it was necessary to include inhomogeneity correction in the

pre-processing for this work. Besides, as images were obtained through different clinical proto-

cols and scanning systems, their intensity ranges were different. Thus, to be able to compare

the images, intensity normalization was necessary.

Inhomogeneity correction was carried out using the FreeSurfer Software Suite version 6.0

in Linux (Ubuntu 14.04) [39], through the tool “nu_correct”, which applies the N3 (nonpara-

metric non-uniformity intensity normalization method) algorithm developed by the Montreal

Neurological Institute (MNI). This analyzes the image intensity distribution in order to find

the smooth intensity non-uniformity field that maximizes its frequency content [40]. For each

patient, this pre-processing was applied to whole brain images (including the glioma region).

Intensity normalization was performed with an algorithm developed in MATLAB and avail-

able online [41, 42]; it was based on the method proposed by Nyul et al [43], in which landmarks

are adjusted on different histograms. This process of normalization required a set of reference

volumes, whose selection was arbitrary. The selection criterion used exclusively for this work

consisted of the following: considering that the range of intensities of each patient volume was

different, then those with the lowest and highest ranges were chosen. This was done by averaging

the intensities of their voxels excluding the region corresponding to the tumor; since the tumor

environment is highly heterogeneous, it had to be excluded from the reference volumes used for

normalization. For each of the available MRI contrasts (T1, T1Gd, T2 y FLAIR), glioma grades

(LGG and HGG) and datasets in the database (BRATS 2013, TCIA and CBICA), two reference

volumes were chosen: one with the lowest mean intensity and the another with the highest. Thus,

a total of 40 reference volumes were chosen (since CBICA did not have LGGs). Then, to normal-

ize the rest of the T1 volumes, all reference T1 volumes were used, and so on with the other MRI

contrasts. The normalization range was selected to vary between 0 and 255 in steps of 1 (0 corre-

sponded to the absence of a value). Gliomas whose volumes were employed for normalization

were excluded from further work. Although in total there were 40 reference volumes (16 LGGs

and 24 HGGs), some of them corresponded to the same gliomas (for example, for more than one

MRI contrast, the same glioma had the lowest or highest average intensity). Thus, the volumes of

11 different LGGs and 19 different HGGs were used for normalization (S2 Table). In the end, 64

LGGs and 191 HGGs were available, this being a database with imbalanced classes.

Database division

Low-grade and high-grade gliomas were divided into two classes: training gliomas and testing

gliomas. As the first part of the proposed under-sampling approach, a unique and independent
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subset formed by testing gliomas (testing subset) and different subsets formed by training glio-

mas (training subsets) were created. In each subset the same number of LGGs and HGGs was

chosen. Classifiers were created from the training subsets and then these were applied to the

testing subset.

To form subsets with balanced classes the following was done. From the 64 LGGs and 191

HGGs, 34 LGGs and 34 HGGs were randomly chosen to form the testing subset (S3 Table).

Then, of the remaining 157 HGGs, 30 were chosen randomly, and this was repeated 100 times.

Then, along with the remaining 30 LGGs (after having chosen the testing LGGs), 100 training

subsets were formed (S4 Table; Fig 1), to extract different but complementary information

from different training subsets, even though the training LGGs were the same in each one.

Texture features

In this work the so-called gray level size zone matrix (GLSZM) was calculated within the

tumor regions of interest, and 13 standard texture features were obtained from it [27, 44]. This

was taken as a first study approach, using a small set of texture features in order to simplify the

analysis and models. Besides, other texture matrices were not used, since the results obtained

with the GLSZM were good. Names and notation for the 13 features are shown in Table 1;

their definitions and descriptions can be found in the literature [45].

The calculation of the GLSZM and the texture features, in addition to all work that will be

described below, were completed through computational algorithms developed in the lab

using MATLAB version 8.5.0.197613 (R2015a), on a normal computer system (Intel Core i7-

4790 CPU at 3.60 GHz, 16 GB RAM, Windows 7).

MRI contrasts and tumor regions

For simplicity, and in order to reduce the time consumed by the computational algorithms

developed, only two of the four MRI contrasts (T1Gd and T2), and two of the three tumor

regions (NCR/NET and ED), were analyzed. The reason for choosing these MRI contrasts was

that, in initial versions of the work, better results were obtained when those contrasts were

analyzed, compared to the rest. On the other hand, since the Gd-enhancing tumor region was

not present in all LGGs, it was excluded from the work.

All possible combinations of MRI contrasts and tumor regions were studied. Thus, the total

number of combinations was 15, varying from one MRI contrast and one tumor region

(MRIreg) on their own, to all of them together. In each combination, 13 texture features were

calculated for each MRIreg. Therefore, as can be seen in Table 2, for the first four combinations,

13 features were calculated; for combinations 5 to 10, 26 were calculated; for combinations 11

to 14, 39 were calculated; and for combination 15, 52 were calculated.

Classification models

Once the data division was made, the proposed under-sampling approach continued as fol-

lows. For each of the 15 combinations, different classification models were created. In general

terms, the models were constructed from the training subsets that had the same texture fea-

tures with the higher significant differences in an ordered manner (according to the p-values

obtained after applying statistical tests). Then, different models were created and averaged.

Thus, unique models of classification using from one to more texture features were obtained.

The procedure for the creation of models considering some particular combination is

described below. This same procedure was followed for all 15 combinations.

Features with significant differences. In each of the 100 training subsets, the texture fea-

tures (13, 26, 39 or 52, depending on the combination) of the respective 30 LGGs and 30
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HGGs were compared. The comparison was made by applying the Wilcoxon rank-sum test.

The features were ordered according to their p-value, putting in first place the one with the

lowest p-value and putting in last place the one with the highest p-value. Then, in each subset,

only the features that presented significant differences (p< 0.05) were considered. The num-

ber of these features was called Di, with i = 1, 2, . . ., 100. Afterward, the minimum of these

Fig 1. Division of data and under-sampling. From the available 64 LGGS and 191 HGGs, one testing subset and 100 training subsets with balanced

classes were created by randomly choosing gliomas.

https://doi.org/10.1371/journal.pone.0228972.g001
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values was calculated, and called d (i.e., d = min{Di}). Thus, a set of features {Xis} was obtained,

with i = 1, 2, . . ., 100 (indicating the training subset) and s = 1, 2, . . ., d (indicating the order).

Subsequently, d histograms were created, each of them formed from the features located in the

same place (from the 100 training subsets; Fig 2). That is, one histogram with all features

located in the first place, another with those located in the second place, and so on until the

one with those located in the position d. From each of these histograms, the highest frequency

feature was chosen. Then, a set {xs}, with s = 1, 2, . . ., d, of ordered highest frequency features

Table 1. Studied texture features.

Texture feature Notation

Small Zone Emphasis Fszm.sze

Large Zone Emphasis Fszm.lze

Gray-Level Nonuniformity Fszm.glnu

Zone-Size Nonuniformity Fszm.zsnu

Zone Percentage Fszm.z.perc

Low Gray-Level Zone Emphasis Fszm.lgze

High Gray-Level Zone Emphasis Fszm.hgze

Small Zone Low Gray-Level Emphasis Fszm.szlge

Small Zone High Gray-Level Emphasis Fszm.szhge

Large Zone Low Gray-Level Emphasis Fszm.lzlge

Large Zone High Gray-Level Emphasis Fszm.lzhge

Gray-Level Variance Fszm.gl.var

Zone-Size Variance Fszm.zs.var

Names and notation for the thirteen texture features [45].

https://doi.org/10.1371/journal.pone.0228972.t001

Table 2. Combinations studied, and numbers of calculated features.

Number Combination Total calculated features

1 T1Gd
1 13

2 T1Gd
2 13

3 T2
1 13

4 T2
2 13

5 T1Gd
1-T1Gd

2 26

6 T1Gd
1-T2

1 26

7 T1Gd
1-T2

2 26

8 T1Gd
2-T2

1 26

9 T1Gd
2-T2

2 26

10 T2
1-T2

2 26

11 T1Gd
1-T1Gd

2-T2
1 39

12 T1Gd
1-T1Gd

2-T2
2 39

13 T1Gd
1-T2

1-T2
2 39

14 T1Gd
2-T2

1-T2
2 39

15 T1Gd
1-T1Gd

2-T2
1-T2

2 52

Fifteen different combinations of MRI contrasts and glioma regions are listed. For MRI contrast (T1Gd and T2), the

region (reg) of the tumor studied is indicated by a superscript. Superscript 1 corresponds to the NCR/NET region,

while superscript 2 corresponds to the ED region. For each MRIreg, thirteen different texture features were calculated.

The total number of calculated features in each combination is indicated.

https://doi.org/10.1371/journal.pone.0228972.t002
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was obtained. In the case that a histogram had the same chosen features as a previous histo-

gram, then the next highest frequency feature was selected, so that in the end d different fea-

tures were obtained.

Creation of unique classification models. For some t, with t� d, training subsets whose

t first ordered features coincided with the t first ordered highest frequency features, were cho-

sen. The total number of subsets that complied with the above was called w. In each of the w
training subsets a multiple linear regression was carried out, employing the set of t features. In

the regressions, the independent variable was chosen arbitrarily to be equal to -10 for the

LGGs and equal to 10 for the HGGs. Hence, w individual regression models were obtained in

the form:

b1;1x1 þ b1;2x2 þ . . .þ b1;txt þ b1;tþ1 ¼ ŷ
1b2;1x1 þ b2;2x2 þ . . .þ b2;txt þ b2;tþ1

¼ ŷ2
..
...
.
bw;1x1 þ bw;2x2 þ . . .þ bw;txt þ bw;tþ1 ¼ ŷw

in which the β’s were the coefficients obtained after performing the linear regression, x’s were

the variables or ordered highest frequency features, and ŷ’s were predictions of the models.

Then, in order to obtain a single model from the w created, coefficients associated with the

same variable (including the constant-term coefficient) were averaged. Thus, a unique classifi-

cation model of t variables was obtained and expressed as:

�b1x1 þ
�b2x2 þ . . .þ �btxt þ

�btþ1 ¼ ŷ ð1Þ

where the �b’s were the averaged coefficients. The above was repeated for all possible values of t
(from 1 to d). Then, for the combination under consideration, d different models were

obtained using from 1 to d variables; i.e., one model used only the ordered highest frequency

feature located in the first place, another model used the two features located in the first and

second places, and so on until the model using all d features.

Application of models

Unique models created from all combinations were applied to the testing subset (34 LGGs and

34 HGGs). If the prediction ŷ of some model was less than sero, then the glioma was classified

as LGG; and if it was greater than 0, then the glioma was classified as HGG. Sensitivity,

Fig 2. Obtaining the ordered highest frequency features. Considering the d first ordered features (according to their p-value) of each training subset,

histograms of the features located in the same place were created. Then, from the histograms, the highest frequency features were obtained.

https://doi.org/10.1371/journal.pone.0228972.g002
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specificity, accuracy and mean absolute error (mae) were calculated for all the models. How-

ever, before calculating the mae of each model, the following was done. For any testing LGG, if

its prediction ŷ was less than -10, then this was equalized to -10, while for any testing HGG, if

its prediction ŷ was greater than 10, then it was equalized to 10. This was done because a value

greater than 10 for some testing HGG, or a value less than -10 for some testing LGG, was not

considered a bad result; however, the mae of the respective model would has been negatively

influenced by this. Thus, there was only interest in the prediction errors of LGGs above -10

and HGGs below 10. It should be mentioned that, in the results section, the actual predictions

of each glioma were shown graphically. From all unique models created, in this work only the

one that obtained the best results was reported.

Reduced models

Assuming that the best model was created from more than one variable, reduced models were

created using all possible combinations of those variables. This was done with the objective of

knowing if any of the variables could be left out while still obtaining good results. To under-

stand how training subsets were chosen (among the 100 available) in order to create the

reduced models, the following example can be considered. Suppose that the best model used

three variables. Then, considering their order, the possible combinations of variables were 1, 2,

3, 1-2, 1-3, 2-3 and 1-2-3. For combination 1, the training subsets whose first ordered variable

was variable 1 were chosen; for combinations 2 and 1-2, the subsets whose first two ordered

variables were variables 1 and 2 were chosen; and for combinations 3, 1-3, 2-3 and 1-2-3, the

subsets whose first three ordered variables were variables 1, 2 and 3 were chosen. Once the var-

iables and their respective training subsets were considered, a procedure similar to that

explained in the previous sections was completed, creating individual reduced models and

obtaining unique reduced models. These latest models were applied to the testing subset and

their sensitivity, specificity, accuracy and mae were calculated. From all unique reduced mod-

els, the one that obtained the best results with the fewest variables and lowest mae value was

chosen. Its mathematical expression was then explicitly reported. Further, boxplots of the vari-

ables used in the best model and obtained from the testing subset were created, and the Wil-

coxon rank-sum test was applied.

With the best classification model established, the duration of the entire classification pro-

cess for each testing glioma was measured and averaged. This consisted of the following proce-

dures: inhomogeneity correction, intensity normalization, calculation of the GLSZM,

calculation of the texture features, application of the model and classification (Fig 3).

Results

After calculating the texture features for the training HGGs and LGGs (S5, S6, S7 and S8

Tables), the minimum number of features (called d) with significant differences (p< 0.05) of

two MRIreg, T1Gd
2 and T2

2 (numbers of combinations 2 and 4, respectively, in Table 2), whose

study region was ED (indicated by the superscript 2), was equal to zero. That is, when the only

glioma region studied was ED, in some of the 100 training subsets there were no texture fea-

tures with significant differences between LGGs and HGGs. Therefore, it was decided to

exclude from the subsequent work those combinations that included the two mentioned

MRIreg. Then, of the total of 15 combinations between MRI contrasts and tumor regions, only

three continued to be studied: T1Gd
1, T2

1 and T1Gd
1-T2

1 (numbers of combinations 1, 3 and 6,

respectively, in Table 2), whose study region was NCR/NET (indicated by the superscript 1).

For combination 1, the value of d was equal to 5; for combination 3, it was equal to 7; and for

combination 6, it was equal to 16. Thus, for combination 1, models with one to five variables
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were created; for combination 3, models with one to seven variables were created; and for the

combination 6, models with one to sixteen variables were created. Therefore, in total 28 differ-

ent unique classification models were created (S9 Table).

Fig 4a, 4b and 4c show the results obtained after applying the classification models of com-

binations 1, 3 and 6 to the testing subset, respectively. The percentages of sensitivity, specificity

and accuracy reached are indicated. Fig 4d, 4e and 4f indicate the mae of all the models cre-

ated. The model that showed the best results (signaled in Fig 4 with black arrow-heads) corre-

sponded to combination 6 (T1Gd
1-T2

1) using the first five ordered highest frequency features.

In order, the five features or variables of the models were Fszm.z.perc, Fszm.zs.var, Fszm.zs.lzlge, Fszm.

zs.lze and Fszm.zsnu. The first four were measured in T2
1 and the fifth one in T1Gd

1.

Following the methodology for the creation of reduced models, 30 models were created

using different combinations among the five variables of the aforementioned best model (S10

Table). Fig 5a shows the sensitivity, specificity and accuracy obtained by the 30 models when

they were applied to the testing subset. Their respective mae values are shown in Fig 5b. As it

can be seen in Fig 5a, the model that used only the three ordered variables 1-2-5 obtained the

same results as the model that used all five variables (1-2-3-4-5). This reduced model obtained

a sensitivity of 94.12%, a specificity of 88.24%, an accuracy of 91.18% and a mae of 5.03.

Table 3 shows information regarding the three variables (1-2-5) or texture features.

Fig 3. Flow diagram. Complete process proposed for the classification of low-grade and high-grade gliomas.

https://doi.org/10.1371/journal.pone.0228972.g003

PLOS ONE A simple model for glioma grading

PLOS ONE | https://doi.org/10.1371/journal.pone.0228972 May 15, 2020 10 / 19

https://doi.org/10.1371/journal.pone.0228972.g003
https://doi.org/10.1371/journal.pone.0228972


Taking Eq 1 as reference, the mathematical expression of the three-variable reduced model

was:

�b 0
1
x1 þ

�b 0
2
x2 þ

�b 0
5
x5 þ

�b 0cte ¼ ŷ ð2Þ

and considering the data shown in Table 3, Eq 2 became:

13:693Fszm:z:perc � 0:410Fszm:zs:var þ 31:842Fszm:zsnu � 19:500 ¼ ŷ ð3Þ

being the mathematical expression for the best classification model.

In Fig 6, the predictions made by this model when Eq 3 was applied to the testing subset are

presented graphically.

In Fig 7, boxplots made from the three variables of the testing LGGs and HGGs are shown.

These variables presented significant differences when both study groups were compared

(p = 1.21x10−7 for Fszm.zsnu, and p = 1.58x10−7 for Fszm.z.perc and Fszm.zs.var). In addition, it can

be seen that the testing LGGs had relatively higher values of Fszm.zs.var compared to the testing

HGGs, and the testing HGGs had relatively higher values of Fszm.zsnu and Fszm.z.perc compared

to the testing LGGs.

After having obtained the best model, the computation time of the complete classification

process on the testing subset was measured and averaged. The individual processes carried out

were: inhomogeneity correction and intensity normalization of the T1Gd and T2 contrasts;

Fig 4. Results of models. Three graphs are shown with the results of combinations 1 (a), 3 (b) and 6 (c), using different numbers of variables

(horizontal axis). These results consist of the percentages (vertical axis) of sensitivity, specificity and accuracy obtained after applying the models to the

testing subset. Three further graphs (d, e and f) indicate the values (in arbitrary units, au) of the mean absolute errors (mae) obtained in each model.

The best classification results were obtained in combination 6 by the model with five variables (▼, ▲).

https://doi.org/10.1371/journal.pone.0228972.g004
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calculation of two GLSZM, one from T1Gd and another from T2, considering only the NCR/

NET region in both; calculation of the three texture features, one being obtained from the

GLSZM of T1Gd and two from the GLSZM of T2; application of the model (Eq 3); and classifi-

cation of gliomas according to the criteria described above. The average time for classification

was 2 min 4 s ± 46 s.

Fig 5. Results from reduced models. a. Percentages of sensitivity, specificity and accuracy (vertical axis), obtained by the 30 reduced models, in

addition to the combination of variables utilized in each one (horizontal axis), using the following numbering: 1, Fszm.z.perc; 2, Fszm.zs.var; 3, Fszm.lzlge; 4,

Fszm.lze; and 5, Fszm.zsnu. The first four were measured in T2 contrasts and the fifth in T1Gd contrasts. All features were measured in the NCR/NET

region. b. Values (in arbitrary units, au) of the mean absolute errors (mae) obtained in each reduced model. The reduced model that obtained the best

results with the lowest number of variables and the smallest error corresponded to the one that combined variables 1-2-5 (▼, ▲).

https://doi.org/10.1371/journal.pone.0228972.g005

Table 3. Data for the best reduced model.

Order (i) Variable (xi) MRIreg
Coefficient (�b

�0
i)

pmin pmax

1 Fszm.z.perc T2
1 13.693 1.47x10−7 8.66x10−5

2 Fszm.zs.var T2
1 -0.410 1.47x10−7 8.66x10−5

5 Fszm.zsnu T1Gd
1 31.842 1.02x10−5 1.02x10−5

cte -19.500

This model used only three variables (1-2-5) obtained from the texture features employed in the five-variable (1-2-3-4-5) model of combination number 6. The order of

the variables used is shown, in addition to the MRI contrast and the glioma region from which they were measured. The average coefficient and the minimum and

maximum p-values (pmin and pmax, respectively) corresponding to each variable are indicated. The coefficient of the constant term is also shown.

https://doi.org/10.1371/journal.pone.0228972.t003
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Discussion

Through an under-sampling approach to create testing and training subsets with balanced

classes, various classification models were created using the highest frequency texture features

obtained from the different training subsets. The best model used only three texture features

(studying two conventional MRI contrasts and only one glioma region), obtaining good classi-

fication results. Thus, this model was characterized by its simplicity, in addition to the reduced

average computation time needed to classify an individual glioma. Furthermore, as the

Fig 6. Predictions made by the best reduced model, when applied to the testing subset. Testing gliomas (34 LGGs and 34 HGGs; vertical axis) and

their predictions (in arbitrary units, au; horizontal axis) are presented. A solid vertical line at zero indicates the chosen threshold. Dotted vertical lines at

-10 and 10 indicate the ideal prediction of the LGGs and HGGs, respectively. The filled circles and squares correspond to the true HGGs and true

LGGs, respectively, and the empty circles and squares correspond to the false LGGs (or HGGs misclassified) and false HGGs (or LGGs misclassified),

respectively.

https://doi.org/10.1371/journal.pone.0228972.g006

Fig 7. Boxplots of the texture features or variables 1-2-5, calculated from the testing gliomas. The grades of the testing gliomas (horizontal axis) and

their texture values (in arbitrary units, au; vertical axis) are presented. a. Boxplot of feature number 1, Fszm.z.perc (measured in the T2
1 contrast). b.

Boxplot of feature number 2, Fszm.zs.var (measured in the T2
1 contrast). c. Boxplot of feature number 5, Fszm.zsnu (measured in the T1Gd

1 contrast).

https://doi.org/10.1371/journal.pone.0228972.g007
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methodology is thoroughly described and the database studied is publicly available, it is possi-

ble to reproduce and corroborate the model reported. Finally, the features used in the model

presented significant differences between the testing LGGs and HGGs.

Regarding the interpretation of the variables used in the best model, feature Fszm.z.perc (cal-

culated from T2
1) was a measurement of the coarseness of the texture, such that higher values

of this feature corresponded to a finer (or more homogeneous) texture [46]. On the other

hand, feature Fszm.zsnu (calculated from T2
1) measured the variability of zone size volumes

across the image, with a higher value indicating more heterogeneity in zone size volumes [46],

while feature Fszm.zs.var (calculated from T1Gd
1) measured the variance of the zone sizes, with

higher values indicating a more heterogeneous texture [27]. From the interpretation of the fea-

tures and the results described above, it could be deduced that LGGs had a more heteroge-

neous texture than HGGs, specifically in the T2 contrasts; and HGGs had a more

heterogeneous texture than LGGs, specifically in the T1Gd contrasts, with both cases studying

the NCR/NET region. Several works have reported models whose main classification variable

was heterogeneity of gliomas [18, 23, 25, 47–49]. For example, through texture analysis applied

on diffusion tensor imaging [25, 49] and diffusion kurtosis imaging [49] maps, diverse features

that characterized the heterogeneity of gliomas indicated an increased heterogeneity for

higher-grade gliomas compared to lower-grade gliomas. Moreover, Kin et al. [47] studied the

texture matrix called the grey level co-occurrence matrix (GLCM) on contrast-enhanced T1

MR and ADC maps, and reported higher values of entropy (or non-uniformity) as well as

reduced values of homogeneity for HGGs, when these were compared to LGGs. Also, Skogen

et al. [48] applied texture analysis on post-contrast spoiled gradient echo (SPGR) sequences

using a filtration histogram technique in order to obtain features from fine to coarse, and

quantified the heterogeneity of gliomas through the standard deviations of the histograms.

They reported results that showed a higher heterogeneity for the HGGs compared to the

LGGs. Hence, diverse studies have related higher heterogeneity to higher-grade glioma. How-

ever, the present work showed that one glioma grade had a more heterogeneous texture than

the other, depending on the studied MRI contrast. Therefore, this result is complementary to

what is usually reported, since it was more specific after having included the MRI contrast as a

variable in the models.

One of the objectives of this work was to present one classification model explicitly, and

then apply it on a single and independent testing subset as a validation process. Because of

this, the database was divided between different training subsets and one testing subset, creat-

ing the models from the first and applying them to the last one. The number of 30 LGGs and

30 HGGs was chosen to form the training subsets, because 30 was the minimum number of

gliomas per study group such that there were no significant differences in the results obtained

by the created models (data not reported). In addition, the same number of LGGs and HGGs

were chosen to avoid the problem of so-called “class imbalance” using an under-sampling

approach. Later, as part of this approach, complementary information obtained from different

training subsets was used to create the classification models.

The main contribution of this work, in addition to the proposed under-sampling approach

already mentioned, is the simplicity of the best classification model (which obtained high val-

ues of accuracy) compared to others recently reported. For instance, Wang et al. [5] analyzed a

combination of advanced and conventional MRI (diffusion-weighted, contrast-enhanced

T1-weighted and axial T2-weighted images) of 26 LGGs and 26 HGGs divided into a training

and validation set. A total of 654 radiomic features were extracted for each subject. Through a

LASSO regression 15 features were chosen, from which a nomogram was created. Then, the

classification capacity of the nomogram was evaluated using the Harrell’s concordance index

(C-index), obtaining a C-index of 0.971 and 0.961 on training and validation data, respectively.
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In another work, Khawaldeh et al. [7] studied 2D slide images from conventional MRI

(FLAIR) of 128 subjects including LGGs, HGGs and healthy subjects. The authors proposed a

modified version of the convolutional neural network known as AlexNet [50] in 2D, which

reached an accuracy of 91.16% by differentiating the three study groups. On the other hand,

Tian et al. [24] analyzed conventional (T1-weighted images before and after contrast-enhance-

ment, and T2-weighted images) and advanced (multi-b-value diffusion-weighted and 3D arte-

rial spin labeling images) MRI of 42 LGGs and 111 HGGs by extracting texture features and

histogram parameters. SVM-based recursive feature elimination was used to choose the best

features for the classification of gliomas, and then create different SVM classifiers by cross-vali-

dation. Using 30 texture features they reached an average classification accuracy of 96.8%.

Also, Gupta et al. [20] analyzed conventional MRI (T1-weighted images before and after con-

trast-enhancement, T2-weighted and FLAIR images) of 80 LGGs and 120 HGGs to perform

three tasks: detection, location and identification of gliomas. For the third task (identification),

they used geometric parameters such as area, solidity, perimeter and orientation of the tumor,

in addition to consultations with radiologists. They obtained an accuracy for classifying LGGs

and HGGs of 94.4% and 94%, respectively, when T1-weighted images before and after con-

trast-enhancement were studied, and 96.5% and 97% when they studied T2-weighted and

FLAIR images. Therefore, in this work conventional MRI (T1Gd and T2 contrasts) was studied,

while others have analyzed advanced MRI or a combination of both [5, 21–24, 51–54]. The

model was created from a simple mathematical method (a multiple linear regression), in com-

parison to others in which mathematical tools of higher complexity were utilized [7, 52–54].

The best model was found to use only three variables of a single type (quantitative, being also

only texture features), instead of a combination of different classes and types of variables [21,

24, 51, 53]. A texture analysis was performed (which is easy to implement for any type of MRI)

and a single texture matrix was used instead of different matrices [24], with the chosen one

(GLSZM) being a suitable texture matrix when heterogeneity is a predominant characteristic

of the object of study. In addition, since the studied database is publicly available and the math-

ematical expression of the best model has been explicitly reported, the reproducibility of the

methodology presented and the corroboration of the results by other independent studies is

feasible. In general, any classifier model has a very strong dependence on the database and

image acquisition protocol used to develop them. Usually an institutional database and proto-

col are used for this purpose. In contrast, the BRATS database was obtained from 19 study cen-

ters with different clinical protocols and various scanners. This makes the database

heterogeneous and therefore it better approximates a realistic scenario of what could be found

in a clinical environment. Hence, there is a possibility that the reported model could be tested

on other databases without being limited to a specific clinical protocol. In addition to the sim-

plicity of the reported classification model, since conventional MRI and texture analysis were

studied, the diagnostic model presented is low-cost and easy-to-implement, so that it is acces-

sible to populations with reduced economic and scientific resources.

Among the limitations of the work presented, the following should be mentioned. Since

there was only a single independent testing subset (randomly chosen), there is a possibility

that the results may vary according to the chosen subset. Also, the number of gliomas that

made up the training and testing subsets were relatively small. It is always preferable and desir-

able to have a database with a greater number of samples, such that the results obtained have a

higher reliability. On the other hand, images of manually segmented gliomas were used, so

that the proposed classification method was supervised (not fully automated). Moreover, the

criterion for the choice of the texture features was limited to use only statistical tests. This was

not enough to ensure good results in all models, even though the texture features used in them

showed significant differences. Moreover, the molecular characteristics of the tumors have
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shown to be more useful than the histological characteristics in the diagnosis, treatment and

prognosis of the patients. Taking all of this into account, future work should consider applying

the reported classification methodology to other independent databases. An automatic seg-

mentation method must be developed or an existing one must be implemented, such that the

glioma classification methodology becomes fully automated. Besides, other criteria for the

extraction (principal component analysis, linear discriminant analysis, etc.) and selection (fil-

ter approach, wrapper approach, etc.) of texture features should be considered. Also, other tex-

ture matrices (gray level co-occurrence matrix, grey level run length matrix, etc.) and

conventional MRI contrasts (T1, FLAIR, etc.) could be studied. Finally, the work performed

here, and the characteristics studied, are intended to complement other analysis techniques,

such as those that study molecular characteristics, so that future work can include correlation

and combination of results from different approaches.

In conclusion, the methodology proposed has proven to be useful for the classification of

low-grade and high-grade gliomas, obtaining high levels of accuracy. The main objective of

the authors is that the model can be implemented as a complementary technique in the clinical

diagnosis environment for this type of brain tumors.
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