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Abstract

With the advances in high-throughput biotechnologies, high-dimensional multi-layer omics data become increasingly available. They
can provide both confirmatory and complementary information to disease risk and thus have offered unprecedented opportunities
for risk prediction studies. However, the high-dimensionality and complex inter/intra-relationships among multi-omics data have
brought tremendous analytical challenges. Here we present a computationally efficient penalized linear mixed model with gen-
eralized method of moments estimator (MpLMMGMM) for the prediction analysis on multi-omics data. Our method extends the
widely used linear mixed model proposed for genomic risk predictions to model multi-omics data, where kernel functions are used
to capture various types of predictive effects from different layers of omics data and penalty terms are introduced to reduce the impact
of noise. Compared with existing penalized linear mixed models, the proposed method adopts the generalized method of moments
estimator and it is much more computationally efficient. Through extensive simulation studies and the analysis of positron emission
tomography imaging outcomes, we have demonstrated that MpLMMGMM can simultaneously consider a large number of variables
and efficiently select those that are predictive from the corresponding omics layers. It can capture both linear and nonlinear predictive
effects and achieves better prediction performance than competing methods.
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Introduction
Accurately predicting disease risk, which can facili-
tate the delivery of tailored treatments, plays a key
role toward precision medicine [1]. Recent emerging
high-dimensional multi-layer omics data (e.g. genome,
transcriptome, methylome and proteome data) has pro-
vided unprecedented opportunities to comprehensively
investigate the role of a deep catalog of predictors
in disease risk prediction [2]. However, the complex
relationships among multi-layer omics data and their
high dimensionality have brought tremendous analytical
and computational challenges [3–5].

Existing integrative methods are mainly designed for
discovering coherent patterns among multi-omics data
[4–7]. For example, the non-negative matrix factorization
method [8] projects multi-omics data onto a common
basis space so that their consistent information can be
captured. Canonical correlation analysis, an exploratory
multivariate analysis tool, finds linear combinations
of all variables within each omics data that maximize
the correlations between each canonical variate pair.
Therefore, the most expressive elements of canonical
vectors reflect the relationships among omics data.
Partial least squares utilizes a similar idea, but considers

covariance rather than correlation [9]. To further con-
sider prior biological knowledge, Bayesian models have
been introduced for the integrative analysis of omics
data [7, 10]. For example, Integrative Bayesian Analysis of
Genomics developed by [10], integrates gene expression
and methylation data in the Bayesian framework to
explore their associations with clinical outcomes. [11]
proposed the integrative risk gene selector, a Bayesian
framework that integrates multi-omics data and gene
networks, to select risk genes from genome wide associ-
ation studies. Recently, network-based methods, which
can reflect complex inter-relationships in a network
and facilitate model interpretation, have been used in
the integrative analysis [7, 12]. For example, similarity
network fusion method proposed by [13] constructs
a sample-by-sample similarity matrix from each data
type and then uses a graph diffusion algorithm to fuse
these similarity matrices into a comprehensive network
that is further used for patient detection. Lemon-
Tree, an integrative multi-omics network analysis, first
finds co-expressed gene clusters and then reconstructs
regulatory programs that include a set of regulator genes
as network modules by fuzzy decision trees. Finally,
a probabilistic score is calculated for each regulatory
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program, and the ones with high probabilistic scores are
selected as potential disease drivers [14]. Although the
existing integrative analysis has facilitated the detection
of coherent patterns embedded in multi-omics data,
they usually focus on a particular gene/pathway and
thus cannot be directly applied to the analysis of high-
dimensional multi-omics data.

Complex human diseases/traits manifest themselves
at various molecular levels and they are usually regu-
lated by a number of pathways [15]. Therefore, jointly
modeling a large number of predictors at various
molecular levels while accounting for their complex
inter-relationships is a critical step for an accurate
prediction model [4]. While high-dimensional multi-layer
omics data has provided the essential information, their
ultra-high dimensionality has made it computationally
challenging to jointly analyze them. Existing integra-
tive methods usually only focus on specific genes or
pathways, and they are mainly designed for detecting
disease-associated variables. For example, [16] integrated
transcriptomic and proteomic data in the NCI-60 cancer
cell line panel and found that the leukemia extravasation
signaling pathway is highly related to metastasis in
leukemia cell lines. [17] showed that the estrogen-
and ErbB2-related pathways are associated with breast
cancer through integrating copy number variations, gene
expression and DNA methylation data. While existing
integrative methods have shed light on the underlying
disease etiology, they can only model a limited number
of variables (e.g. one specific pathway) and thus cannot
directly be applied for prediction analyses. This is mainly
because an accurate risk prediction model requires
the joint consideration of a large number of predictors
from multiple candidate pathways, and only utilizing
information from one disease-associated pathway is
unlikely to produce an accurate prediction model. For
example, immune response, lipid metabolism and cell
differentiation pathways are all associated Alzheimer’s
disease (AD). Using information from immune response
pathway itself is not enough to accurately predict
AD risk. Therefore, an integrative method that can
simultaneously model a large number of variables from
different layers of omics data is urgently needed for
prediction research.

Linear mixed models (LMMs) have great potential in
modeling high-dimensional multi-omics data. Indeed,
LMMs have already long been used for prediction analy-
sis on high-dimensional genomic data [18–21]. For exam-
ple, the genomic best linear unbiased prediction (gBLUP)
method uses a single random effect term to model cumu-
lative predictive effects from all measured genetic vari-
ants [19]. Both MultiBLUP and multi-kernel LMM adopt
multiple random effect terms to estimate the joint pre-
dictive effects from multiple genetic regions with each
harboring many variants [20, 21]. Recently, to account for
non-linear predictive effects, [22] introduced a penalized
multi-kernel LMM, where kernel functions are used to
model complex jointly predictive effects from multiple

genetic variants and penalization is used to select
predictive regions. The basic rationale for these LMM-
based models is that genetically similarly individuals
can have similar phenotypes. Therefore, instead of esti-
mating effect sizes for each genetic variant, LMMs aim
at capturing cumulative predictive effects from a large
number of predictors through their estimated genetic
similarity, which can substantially reduce the number of
model parameters, making it applicable for the analysis
of genome-wide data. A similar idea can be applied
for the prediction analysis of multi-omics data, where
genetic similarities are replaced by omic-similarities that
can be measured by various kernel functions.

While LMM-based models are promising for the anal-
ysis of high-dimensional multi-layer omics data, they
can have limited predictive power if a large amount of
noise are present. Recent work has shown that excluding
noise when estimating genetic similarities can not only
facilitate model interpretation, but also improve the
robustness and accuracy of a prediction model. Adding
an L1 penalty to the objective function is a commonly
adopted approach to reduce the impact of noise. For
example, [22] proposed a penalized multi-kernel LMM to
predict phenotypes based on high-dimensional genomic
data, and [23] extended this method for the prediction
analysis on multi-omics data. While these methods
have improved the accuracy of prediction models, their
parameter estimation can be extremely computationally
demanding. This is mainly because for penalized LMMs,
obtaining the maximum likelihood estimator (MLE) or
the restricted maximum likelihood estimator (REML) [21,
22], which are usually estimated by Newton–Raphson or
expectation-maximization algorithms, is computation-
ally expensive. Generalized method of moments (GMM)
is a promising alternative for the estimation of variance
components for penalized LMMs, as it can change the
objective function into a quadratic form that is much
easier to optimize [24–26]. For example, [27] used the
minimum norm quadratic unbiased estimation method
to estimate variance components for maternal and
paternal effects in a bio-model for diallel crosses. We
recently developed a GMM-based LMM for the prediction
analysis of genomic data, where we showed that the
GMM-based estimators can accurately detect prediction
genetic regions and improve the prediction accuracy of
LMM-based prediction models [28].

In this paper, we propose a penalized LMM with GMM
estimators (MpLMMGMM) for the prediction analysis of
multi-omics data. The proposed MpLMMGMM model can
(1) account for complex inter/intra-relationships among
multi-omics data; (2) detect predictive biomarkers and (3)
substantially reduce the computational cost of penalized
LMMs. In the following sections, we first present the
MpLMMGMM method and then compare its prediction
accuracy with commonly used methods (i.e. OmicKrig)
through simulation studies. Finally, we use the proposed
method to analyze the multi-omics data obtained from
Alzheimer’s Disease Neuroimaging Initiative (ADNI) [29].
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Methods
Linear mixed model for prediction analysis using
multi-omics data
Suppose we have a sample of n individuals. Let YYY be
the n × 1 outcome vector and XdXdXd be a n × Pd matrix of
demographic variables (e.g. age and gender). We split the
genome into R sets that can be defined by various criteria
(e.g. gene and pathway annotations) and use OiOiOi to denote
the joint predictive effects from all predictors in the ith
set. We model the outcomes as

YYY = XdXdXdβdβdβd +
R∑

i=1

OiOiOi + εεε, with εεε ∼ N(0, σ 2
0 InInIn) (1)

For notation simplicity and without loss of general-
ity, we use the gene annotation to define the set and
only consider gene expression, genomic and methylation
data. Correspondingly, equation 1 can be written as

YYY = XdXdXdβdβdβd +
R∑

i=1

eieiei +
R∑

i=1

gigigi +
R∑

i=1

mimimi +
R∑

i=1

Ointer
iOinter
iOinter
i + εεε (2)

where εεε ∼ N(0, σ 2
0 InInIn). eieiei, gigigi, mimimi, and Ointer

iOinter
iOinter
i are predictive

effects of gene expression data, genomic data, methy-
lation data and their interactions in set i. Similar to
LMM-based models designed for the analysis of genomic
data [21], we assume individuals with similar molec-
ular profiles have similar phenotypes, and model the
joint predictive effects from a large number of predic-
tors within each omics layer using random effect terms,
where gigigi ∼ N(0,Kg,iKg,iKg,iσ

2
g,i), mimimi ∼ N(0,Km,iKm,iKm,iσ

2
m,i) and Ointer

iOinter
iOinter
i ∼

N(0,Kinter,iKinter,iKinter,iσ
2
inter,i). Here Kg,iKg,iKg,i, Km,iKm,iKm,i and Kinter,iKinter,iKinter,i, respectively,

measure the similarities among genomic data, methyla-
tion data and their interactions for the set i. While the
predictive effects from gene expression data can also
be modeled in a similar fashion, we propose to use the
fixed effect defined as eieiei = EiEiEi × γi instead, where EiEiEi

represents the gene expression level for the set i and
γi is the corresponding effect. This is mainly because
when the number of predictors within the set is very
limited, using fixed effect term is more efficient than the
corresponding random effect model. Therefore, equation
2 can be written as

YYY = XdXdXdβdβdβd +
R∑

i=1

EiEiEiγi +
R∑

i=1

gigigi +
R∑

i=1

mimimi +
R∑

i=1

Ointer
iOinter
iOinter
i + εεε, (3)

where εεε ∼ N(0, σ 2
0 InInIn), gigigi ∼ N(0,Kg,iKg,iKg,iσ

2
g,i), mimimi ∼ N(0,Km,iKm,iKm,iσ

2
m,i),

and Ointer
iOinter
iOinter
i ∼ N(0,Kinter,iKinter,iKinter,iσ

2
inter,i).

The proposed modeling framework is very flexible and
can accommodate various disease model assumptions.
For example, if only linear effects from all omics lay-
ers are considered, then both genomic and methylation
similarities can be measured using linear kernels, Kg,iKg,iKg,i =
GiGiGiGiGiGi

T/pg,i and Km,iKm,iKm,i = MiMiMiMiMiMi
T/pm,i, ∀i ∈ {1, · · · , R}, where GiGiGi

and MiMiMi are n × pg,i genotype and n × pm,i methylation
matrices for set i, respectively. By using linear kernels, our
proposed model is equivalent to

YYY = XdXdXdβdβdβd +
R∑

i=1

EiEiEiγi +
R∑

i=1

pg,i∑
j=1

GijGijGijγ
g
ij +

R∑
i=1

pm,i∑
j=1

MijMijMijγ
m
ij + εεε,

where γ
g
ij ∼ N(0, σ 2

g,i/pg,i), γ m
ij ∼ N(0, σ 2

m,i/pm,i), εεε ∼
N(0, σ 2

0 InInIn), GijGijGij (MijMijMij) is the jth column of Gi (Mi), and
γ

g
ij (γ m

ij ) is their corresponding effect. Similarly, if only
pairwise interaction between genomic and methylation
is considered, then we can set Ointer

iOinter
iOinter
i = Kg,iKg,iKg,i ◦ Km,iKm,iKm,i, where ◦

is the hadamard product.

Penalized linear mixed model with the GMMs
estimator
Recent work has indicated that not all measured vari-
ables from multi-omics data are predictive [22, 23, 30],
and thus, variable selection can be of great importance
for the robustness and accuracy of a prediction model
[31]. Adding an L1 penalty into the objective function is a
commonly adopted approach for simultaneous variable
selection and parameter estimation [22, 23, 32]. For high-
dimensional multi-omics data, it is essential to perform
variable selection at each omics layer. Therefore, we
proposed to add an L1 penalty on both the fixed effect
(e.g. for the selection of gene expression data) and ran-
dom effect terms (e.g. for the selection of genomic and
methylation data). While REML is widely used to esti-
mate parameters for LMMs [18–20], it is computationally
expensive, especially for LMMs with a large number of
random effects. Indeed, it is computationally prohibited
to consider a large number of random effects for REML
and MLE. Therefore, following a similar idea in [28], we
proposed to use the GMMs to estimate model parameters,
and thus, the objective function for model 3 can be
written as:

(β̂ββddd, γ̂γγ , σ̂σσ222
) = argmin

βdβdβd,γγγ ,σ2σ2σ2
1
2

||ZZZZZZT −
R∑

i=1

∑
j∈(g,m)

Kj,iKj,iKj,iσ
2
j,i − σ 2

0 InInIn||2F

+ λ1

R∑
i=1

∑
j∈ (g, m)

σ 2
j,i + λ2

R∑
i=1

|γi|, (4)

where γγγ = (γ1, · · · , γR); ZZZ = YYY − XdXdXdβdβdβd − ∑R
i=1 EiEiEiγi; σ 2σ 2σ 2 =

(σ 2
0 , σ 2

g,1, · · · , σ 2
g,R, σ 2

m,1, · · · , σ 2
m,R); and λi > 0, i ∈ {1, 2} is the

penalty.
We used an iterative procedure to estimate parameters

in the random (i.e. σ 2σ 2σ 2) and fixed effects (i.e. βdβdβd and γγγ ).
During iteration step t + 1, we first updated the random
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effect term as,

σ̂σσ
2,t+12,t+12,t+1 = argmin

σ2σ2σ2≥0

1
2

||ZZZtttZZZ
T
ttt −

R∑
i=1

∑
j∈(g,m)

Kj,iKj,iKj,iσ
2
j,i − σ 2

0 InInIn||2F

+ λ1

R∑
i=1

∑
j∈ (g, m)

σ 2
j,i, λ1 > 0, (5)

where ZtZtZt = YYY − XdXdXdβ
t
dβt
dβt
d − ∑R

i=1 EiEiEiγ
t
i . Given the parameter

estimates for the random effect term during step t + 1,
we updated the parameters associated with fixed effects
as

(β̂ββ
t+1t+1t+1
ddd , γ̂γγ t+1t+1t+1

) = argmaxβdβdβd,γγγ −1
2

log |�t+1�t+1�t+1| − 1
2

ZZZT���−1
t+1t+1t+1ZZZ

− λ2

R∑
i=1

|γi|, λ2 > 0, (6)

where �t+1�t+1�t+1 = ∑R
i=1

∑
j∈(g,m) Kj,iKj,iKj,iσ

2,t+1
j,i + σ

2,t+1
0 InInIn. The details

of the proposed estimation procedure is shown in
algorithm 1.

Compared with penalized LMMs that rely on REML
estimators, our proposed objective function during each
of the iteration step is much easier to optimize. Therefore,
our proposed algorithm is computationally efficient. As
opposed to existing LMMs that can only consider a lim-
ited number of random effects (i.e. usually ≤ 10 [28]), our
proposed method can jointly consider a large number of
regions (i.e. random effects) and efficiently detect those
that are predictive.

Let YaYaYa = (YpYpYp,YYY), where YpYpYp is np × 1 vector of outcomes
to be predicted. Given the parameter estimates for σ 2σ 2σ 2, βdβdβd

and γγγ , the variance of YaYaYa can be directly derived as ���YaYaYa =∑R
i=1

∑
j∈(g,m) Kj,iKj,iKj,iσ

2
j,i+σ 2

0 InInIn. The variance of YaYaYa can be further
written as:

�Ya�Ya�Ya =
[
�pp�pp�pp �po�po�po

�op�op�op �oo�oo�oo

]
,

where �pp�pp�pp and �oo�oo�oo, respectively, denote the variance of
testing and training samples, and �po�po�po is their covariance.
Using the conditional distribution formula of the multi-
variate normal distribution, the predictive values for the

testing samples can be calculated as:

YpYpYp = Xd,pXd,pXd,pβ̂ββddd +
R∑

i=1

Ei,pEi,pEi,pγ̂i + �po�po�po���
−1
oooooo

(
YYY − XdXdXdβ̂ββddd −

R∑
i=1

EiEiEiγ̂i

)

Xd,pXd,pXd,p (XdXdXd) and Ei,pEi,pEi,p, i ∈ {1, · · · , R} (EiEiEi) denote the demographic
variables and gene expression levels in testing (training)
samples, respectively.

Simulation studies
We conducted extensive simulation studies to evaluate
the performance of MpLMMGMM, and further compared
it with OmicKrig, a commonly used method for predic-
tion analysis of multi-omics data [33], under its default
setting. OmicKrig is very similar to BLUP-based meth-
ods, which have better prediction performance across
a range of traits and combinations of omics [34–36].
For all simulation studies, we considered three types of
omics data, including gene expression, DNA methylation
and genotypes. For our proposed method, we grouped
genetic variants and methylation levels according to the
gene annotation and modeled their effects using the
random effect terms according to equation 3. For gene
expression data, since it is summarized at the gene level
(i.e. one expression level per gene), we modeled them
using the fixed effects. For all simulation scenarios, we
used the 1000 Genome Project [37] to generate genomic
data and randomly selected 30 single nucleotide poly-
morphism (SNPs) that are within 75 Kb in each region.
In addition, 30 methylation levels were also included in
each region. Both gene expression and methylation levels
were simulated using the uniform distribution. We set
the first three regions as associative and the remaining
as noise. We considered sample sizes of 500 and 1000,
where 70% samples are used for model training and
the rest for model evaluations. The prediction accuracy
is gauged according to both Pearson correlations and
mean square errors (MSEs). For our proposed method,
we also calculated the probability of correctly selecting
predictive regions from each layer of omics data. Note
that OmicKrig, an extension of Kriging that is similar
to BLUP-based methods as demonstrated in the animal
breeding and quantitative genetics [33], lacks the capac-
ity to perform variable selection. Therefore, no variable
selection results are reported for OmicKrig.

Scenario I: the impact of the number of noise
regions
Converging evidence has suggested that a large number
of variables collected from multi-omics data is noise.
To evaluate their impact, we set three regions to be
associative and gradually increased the number of noise
regions from 7 to 97. We considered a disease model
where three levels of omics data contributed to disease
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risk independently:

YYY =
3∑

i=1

EiEiEiγi +
3∑

i=1

30∑
j=1

GijGijGijγ
g
ij +

3∑
i=1

30∑
j=1

MijMijMijγ
m
ij + εεε, (7)

where εεε ∼ N(0, σ 2
0 InInIn). For region i, EiEiEi is its gene expression

data, and GijGijGij, j ∈ {1, · · · , 30} is its genotypes, and MijMijMij is the
methylation levels. For region i, γi, i ∈ {1, 2, 3} is the effect
sizes of gene expression data; γ

g
ij ∼ N(0, σ 2

g,i/pg,i), ∀j is the

effect size of genetic variants; and γ m
ij ∼ N(0, σ 2

m,i/pm,i), ∀j
is the effect size of methylation levels. The details of the
simulation settings are shown in Supplementary Table
S1. It is straightforward to show that equation 7 is equiv-
alent to

YYY ∼ N

⎛
⎝ 3∑

i=1

EiEiEiγi,
3∑

i=1

∑
j∈(g,m)

Kj,iKj,iKj,iσ
2
j,i + InInInσ

2
0

⎞
⎠ ,

where Kj,iKj,iKj,i, j ∈ (g, m) is a kernel matrix calculated based
on the linear kernel. Therefore, we simulated outcomes
based on the multivariate normal distribution. For each
model setting (i.e. different number of noise), we ran 1000
Monte Carlo replicates and reported the average of Pear-
son correlations and MSEs calculated from the testing
samples. We further calculated the average probability
of correctly detecting associative predictors.

Pearson correlations and MSEs for sample sizes of
500 and 1000 are shown in Figure 1 and Supplementary
Figure S1, respectively. Among all the scenarios con-
sidered, MpLMMGMM performs better than the OmicK-
rig method. Of particular note, as the number of noise
regions increases, the prediction accuracy of OmicKrig
drops substantially, whereas it remains relatively stable
for our proposed method. For example, the mean of
Pearson correlations dropped from 0.642 to 0.345 for
OmicKrig, whereas it only changed from 0.757 to 0.712 for
our method. Similarly, the MSEs increased from 3.043 to
4.502 for OmicKrig, whereas they barely changed for our
method. In terms of the variable selection, our proposed
method can choose the associative regions at a high
probability while maintaining a low false positive rate,
regardless of which layers of omics data we are exploring
(Table 1 for n = 500 and Supplementary Table S2 for n =
1000). This clearly indicates that our proposed method
can significantly reduce the impact of noise and thus
can maintain robust performance as the amount of non-
relevant variables increases. We consider the robustness
against noise important, especially for the analysis of
high-dimensional multi-layer omics data, as only a small
proportion of measured variables are associative and
they are usually unknown in advance.

Scenario II: the impact of disease models
Complex human diseases manifest themselves at var-
ious molecular levels [38], and thus, we evaluated the
impact of disease models in this set of simulations. We

set three regions to be associative and generated the out-

comes as YYY ∼ N
(∑3

i=1 EiEiEiγi,
∑3

i=1

∑
j∈(g,m,gm) Kj,iKj,iKj,iσ

2
j,i + InInInσ

2
0

)
.

We considered seven disease models (Table 2), ranging
from the simplest model where only one layer of omics
data is associated with the outcomes to complex models
where multiple layers of omics data jointly contribute
to disease risk. The corresponding effect sizes under
each disease model are summarized in Supplementary
Table S3. For all disease models, we considered a total of
50 regions and generated 1000 Monte Carlo replicates for
each model setting. Similar to simulation 1, we first used
Pearson correlations and MSEs to gauge the prediction
accuracy and then calculated the probability of correctly
detecting predictive markers. For comparison purposes,
in addition to OmicKrig that models all layers of omics
data, we also analyzed each simulated data using our
proposed method, where only one layer of omics data
is considered. Specifically, when only gene expression
data is considered, our proposed method is equivalent
to lasso and we denoted this model as Transcriptome.
When only genomic or methylation data are considered,
MpLMMGMM is equivalent to the pLMMGMM model pro-
posed in [28], and we denoted the genomic data only and
methylation data only model using Genome and Methy-
lome, respectively.

Figure 2 and Supplementary Figure S2 summarize the
prediction accuracy for all methods under the sample
sizes of 500 and 1000, respectively. Our proposed method
outperforms OmicKrig under all disease models con-
sidered. It has higher Pearson correlation coefficients
and lower MSEs than OmicKrig. Although OmicKrig can
simultaneously consider all layers of omics data, it treats
all measured variables in a similar fashion, and thus, its
performance can be greatly impacted when not all layers
of omics data are predictive. On contrary, our proposed
method has the capacity in selecting predictive variables
at each omics layer and thus maintains better prediction
performance when a large number of noise is present
or not all layers of omics data are predictive. As shown
in Table 2 and Supplementary Table S4, our proposed
MpLMMGMM method has high sensitivity and specificity
for each omics data. For example, when only methylation
data are associated with the outcomes (i.e. disease model
M), it has 99.1% of chance to correctly identify the asso-
ciative factors from the methylation data. With regards
to the false positive, it only has 0.4%, 1.3% and 1.3% of
chance to mislabel noise variables as associative for gene
expression, genomic and methylation data, respectively.
Using our proposed method, we can identify specific
associative variants at each omics layer, providing a more
comprehensive view of the disease etiology. The pre-
cise identification of associative factors from the corre-
sponding omics layers can facilitate health practition-
ers to deliver tailed interventions. Furthermore, unlike
OmicKrig that assumes each omics contributes indepen-
dently to the traits, our proposed method can take the
contributions from interactions into consideration (i.e.
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Table 1. The chances of selecting associative regions as the number of noise regions increases (n = 500)

Regions Gene expression data Genomic data Methylation data

Numbers Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

10 0.999 0.919 0.928 0.901 0.924 0.969
25 1.000 0.971 0.924 0.917 0.923 0.968
50 0.998 0.984 0.895 0.929 0.911 0.975
75 0.996 0.987 0.906 0.940 0.899 0.977
100 0.995 0.990 0.887 0.948 0.894 0.979

Fig. 1. The impact of the number of noise regions (n = 500).

Table 2. The chances of selecting associative regions under different disease models (n = 500)

Disease Gene expression data Genomic data Methylation data

Models Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

S1 : Ea 0.996 0.980 – 0.946 – 0.937
S2 : Gb – 0.994 0.983 0.930 – 0.986
S3 : Mc – 0.996 – 0.987 0.991 0.987
S4 : GMd – 0.996 0.741 0.955 0.603 0.985
S5 : G + Me – 0.995 0.893 0.946 0.896 0.986
S6 : E + Gf 0.981 0.981 0.987 0.903 – 0.962
S7 : E + Mg 0.984 0.981 – 0.965 0.993 0.962

[a] Only gene expression data are associative. [b] Only genomic data are associative. [c] Only methylation data are associative. [d] Only the interaction between
genomic and methylation data is associative. [e] Both genomic and methylation data are associative. [f] Both gene expression data and genomic data are
associative. [g] Both gene expression data and methylation data are associative.

KgmKgmKgmσ 2
gm,i). As shown in Table 2, even for the models with-

out marginal effects (i.e. disease model GM), the average
chance for our method to correctly detect associative and
noise regions are 67.2% and 97.9%, respectively. When
building risk prediction models, our proposed method
uses a data-driven approach to accurately select predic-
tors from different omics layers and thus reduces the
impact of noise substantially. In addition, our proposed
method can not only jointly model predictors at each
omics layer, but also take the interaction effects among
different omics layers into consideration. It can achieve

robust and accurate prediction performance across a
range of disease models (Figure 2 and Supplementary
Figure S2).

Comparing to the single-layer-based methods, when
only one layer of omics data is associated with the
outcomes (i.e. disease models E, G and M), our proposed
method has similar performance to the models where
only relevant omics data that contributes to disease
risk is used. For example, when outcomes are only
influenced by gene expression data (i.e. disease model
E), our proposed method performs similarly to the
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Fig. 2. The impact of disease models (n = 500).

single-layer-based analysis where only gene expression
data is used (i.e. Transcriptome), and it significantly
outperforms the other single-layer-based methods
where either genomic or methylation data are modeled.
Similarly, when only genomic data are relevant to disease
outcomes, our model has similar level of performance to
Genome that only used genomic data, and it has much
better performance than Transcriptome and Methylome
where non-relevant layers of omics data are modeled.
When multiple layers of omics data jointly affect the
outcomes, as expected, our proposed method signifi-
cantly outperformed the single-layer based methods. For
example, for disease model G + M where both genomic
and methylation data are associated with the outcomes,
our method performs better than the ones where only
genomic or methylation data are used. This clearly
indicates the advantages of jointly modeling multi-
layer omics data, where predictors at various molecular
levels can affect the outcomes. As shown in Figure 2 and
Supplementary Figure S2, our method has better and
robust prediction performance, regardless of whether
only one layer of omics data contributes to disease risk
or multiple layers are relevant.

Real data application
We are interested in predicting baseline positron emis-
sion tomography (PET) imaging outcomes, including FDG
and AV45, using the whole-genome sequencing (WGS)
and gene expression data obtained from ADNI. ADNI is a
longitudinal study that collects biomarkers from control,
mild cognitive impairment and AD patients to investigate
the prevention and treatment strategies for AD [39].

The WGS data were collected and sequenced on
the Illumina HiSeq2000 at a non-Clinical Laboratory

Improvements Amendments (non-CLIA) laboratory [40].
DNA samples come from study subjects in ADNI 2,
which includes newly recruited subjects and ADNI 1/GO
continuing participants. After removing eight individuals
without sufficient consent and one that has quality
issues in the WGS data, a total of 808 subjects are kept
for genomic data. Gene expression data were collected
from subjects in ADNI 2 at baseline for newly recruited
subjects and 1st ADNI 2 visit for ADNO 1/GO continuing
subjects and then yearly. We annotated genetic variants
based on GRch37 assembly and selected 89 genes that
have been reported to be associated with AD based
on existing literature. We further filtered out genetic
variants with missing rate larger than 1%, and a total
of 59 666 variants remained in our final analyses. We
focused on the baseline data, and only kept individuals
with both genomic and gene expression data at the
baseline. Therefore, a total of 443 and 441 samples
were analyzed for FDG and AV45, respectively. The
distributions of FDG and AV45 for these samples are
shown in Supplementary Figure S3. We further randomly
split the samples into training and validation sets (n =
100), where models were built based on the training
samples and prediction accuracy is evaluated based on
the validation set. We replicated this process for 100
times to avoid chance finding.

The prediction accuracy for both FDG and AV45,
including Pearson correlations and MSEs, is shown in
Figure 3. Our proposed method has achieved better
prediction performance than OmicKrig, i.e. it has higher
Pearson correlations and lower MSEs than OmicKrig for
both FDG and AV45. This clearly indicates that filtering
out the impact of noise can improve the prediction
accuracy. Comparing our proposed models built with
multi-omics data and the ones built with single-layer
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Fig. 3. The prediction accuracy for FDG and AV45.

omics data, our method has a similar level of prediction
accuracy as the one built with genomic data only, but it
has much better performance than the one where only
gene expression data are modeled. This indicates that
genomic factors are the driving forces for the prediction
of both FDG and AV45. Indeed, for both FDG and AV45,
gene expression data have been rarely selected by our
method (Supplementary Table S5). Similarly, for the
single-layer-based method where only gene expression
data are modeled, only two genes are selected 1% for FDG
and eight genes are selected <7% for AV45.

The selection details for our proposed method are
shown in Supplementary Table S5. For transcrip-
tomic data, more than 88% of the genes have never
been selected among the 100 random replicates. For
those genes that have been selected at least once,
the chance of selecting them are extremely low (i.e.
2% on average). For genomic data, three genes (i.e.
APOC1, APOE and TOMM40) are selected more than
90%, whereas the others have less than 2% of chance
being selected, averagely. All of the highly selected
genes are well-known AD risk factors [41, 42]. For
example, the APOE ε4 highly affects the risk of AD [43].
The rs4420638 polymorphism on APOC1 can increase the
accumulation of homocysteine and thus influences the
risk of AD [44]. The rs10524523 on TOMM40 has also been
reported to be associated with late-onset AD [42].

Discussion
In this work, we proposed a penalized linear mixed model
with the GMMs estimator for prediction analysis on
multi-omics data. The proposed MpLMMGMM groups

multi-omics data into multiple regions that can be
defined based on various criteria (e.g. gene and pathway
annotations). It employs multiple random effect terms
to model cumulative predictive effects from predictors
at various molecular levels and captures both linear and
nonlinear predictive effects through adopting multiple
kernel functions. The proposed method uses a penalty
term to enable the selection of predictive regions and
omics layers, where the GMM estimator is used to
expedite its computation. Through extensive simulation
studies and the analysis of ADNI dataset, we have
demonstrated that our method (1) is robust against noise;
(2) has better prediction performance across a range
of disease models; (3) can accurately detect predictors,
including their interactions, from each layer of omics
data and (4) is computationally efficient.

Multi-omics data can be ultra-high dimensional, as
single layer omics data itself can already have millions of
potential predictors. For example, the WGS for genomic
and methylation data can each have millions of mea-
sured predictors. Treating variables obtained from all
layers of omics data as predictive can not only increase
the computational burden but also reduce the prediction
accuracy [31]. Therefore, variable selection is an essen-
tial step in the prediction analyses of multi-omics data.
Existing LMM-based methods either ignore the impact
of noise (e.g. gBLUP) or reply on empirical criteria to
perform variable screening (e.g. MultiBLUP and MKLMM)
[19–21], both of which can result in poor and unsta-
ble performance. On the contrary, our proposed method
can efficiently detect predictive variables at each omics
layer, and simultaneously model their joint predictive
effects. As the number of noise increases, MpLMMGMM
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maintains stable and accurate prediction performance,
whereas OmicKrig can be greatly affected (Figure 1 and
Supplementary Figure S1). Furthermore, as shown in
Table 1 and Supplementary Table S2, the sensitivity and
specificity for the proposed MpLMMGMM method are
relatively high, and they remain stable regardless of the
amount of noise. This clearly indicates that the proposed
method has achieved robust performance against noise,
which is of great importance for an accurate risk predic-
tion model.

Due to the advances in high-throughput biotechnolo-
gies, multi-omics data are becoming increasingly acces-
sible. For example, the Cancer Genome Atlas project
provides multiple molecular assays, including mRNA,
DNA methylation and proteomics data, by profiling thou-
sands of tumor samples [45]. Although existing integra-
tive methods have greatly facilitated our understanding
of complex biological systems [3–5], they mainly focus
on specific genes/pathways and thus can barely be used
for prediction research. This is mainly because complex
human traits/diseases are usually affected by multiple
genes/pathways at various molecular levels. Focusing on
only a few of them can overlook the contributions from
other predictors, leading to a model with low predic-
tion accuracy. Therefore, jointly considering all potential
predictors as well as their intra/inter-relationships is an
essential step toward an accurate prediction model. To
simultaneously model predictors at various omics layers,
we extended the LMM framework, a widely used model
for the analysis of genomic data, where kernel functions
are introduced to account for various types of predic-
tive effects (e.g. pairwise interaction) and penalization
is adopted to detect predictors from all omics layers.
As shown in the 2nd simulation studies (Figure 2 and
Supplementary Figure S2), the proposed method out-
performs the existing methods, especially when multi-
ple layers of omics data jointly contribute to disease
risk. In addition, the proposed method has much better
interpretation as compared with OmicKrig. As shown in
both Table 2 and Supplementary Table S4, our model can
correctly detect predictors and their interactions from
the relevant omics layers, and thus greatly facilitates
the understanding of disease mechanisms. For example,
when only one layer of omics data is predictive (e.g.
disease models E, G and M), the proposed method can cor-
rectly detect associative regions from the corresponding
omics layer and achieve a similar level of prediction accu-
racy as a model where only the disease-associated omics
layer is used. Even for the models without marginal
effects (i.e. disease model GM), our method can still
detect associative regions and achieve better prediction
performance than existing art.

Computational efficiency is one of the major chal-
lenges for penalized LMMs with a large number of
random effects [21–23]. While MLE and REML are widely
used in the parameter estimations for LMMs, it is com-
putationally demanding, especially when the number of
random effects is large. As shown in the Supplementary

Figure S6, the computational time grows at a much
higher rate for the REML estimators as the number of
random effects increases. This is mainly because the
objective function of penalized REML/MLE is non-convex,
and it has to repeatedly calculate the inverse of n × n
matrix. To expedite its computation, we adopted the
GMM estimators and the objective functions are in a
quadratic form, which is much easier to optimize. The
computational efficiency of GMM allows us to jointly
model a large number of regions and account for various
nonlinear effects. As shown in simulation 1, MpLM-
MGMM can simultaneously model 100 random effect
terms (e.g. the number of regions ≥ 50), whereas other
existing LMMs can only consider a limited number of
random effects (i.e. usually ≤ 10 [28]). The computational
time as the number of random effects increases for our
proposed method is shown in Supplementary Figures S4
and S5.

In the prediction analysis of PET imaging outcomes
based on genomic and gene expression data, our pro-
posed method has substantially improved the predic-
tion accuracy. Note that our proposed method still can-
not directly affect the clinical practice of treating AD
[46, 47], but it can facilitate disease management via
providing insights on the underlying etiology [48]. For
example, we have found that baseline FDG and AV45
are mainly predicted by the genomic data. Our method
consistently found that genotypes on APOC1, APOE and
TOMM40 are highly predictive. APOE has been identified
as a major genetic risk factor for AD. The apolipopro-
tein E is encoded by APOE gene on the chromosome
19, and it is involved in the cholesterol transport [49],
which affects the pathogenesis of AD [50]. The APOE
ε4 is also found to be a determinant risk factor for AD
[51, 52]. The APOC1 gene located on the chromosome 19
encodes apolipoprotein C1, which takes part in the brain
cholesterol metabolic. Researchers have found that the
deterioration of the brain cholesterol metabolic is asso-
ciated with AD [53]. In addition, the rs11568822 polymor-
phism on APOC1 increases the risk of AD in Caucasians,
Asians and Caribbean Hispanics [54]. TOMM40 encodes
a translocase (i.e. Tom40) that causes the accumulation
of 29 amyloid precursor protein during mitochondrial
biogenesis and thus affects the mitochondrial dysfunc-
tion in late-onset AD [42]. In addition, the rs2075650 and
rs10524523 polymorphisms on TOMM40 were found to be
associated with AD [44, 55].

While our proposed method has achieved better
prediction performance, there are several limitations.
Similar to existing literature [20, 21], MpLMMGMM
only focuses on continuous outcomes. It would be
of interest to develop a generalized LMM framework
for outcomes that come from the exponential family
(e.g. binary and Poisson). In addition, although our
method has substantially reduced the computational
cost, an efficient screening rule (e.g. sequential strong
rule and enhanced dual polytope projections rule) can
be incorporated to further simplify and expedite its
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computation, especially for ultra-high-dimensional data
with a large sample size. These will be the future
directions of our research.

In summary, we have developed a penalized LMMs
with GMM estimators for risk prediction analysis on
multi-omics data. Our method is robust against noise
and can capture predictive markers, including their inter-
actions, from relevant omics layers. It has better pre-
diction performance than the commonly used methods.
The R-package implementing the proposed method is
available at the GitHub (https://github.com/XiaQiong/
MpLMMGMM).

Key Points

• The existing integrative methods usually focus on
detecting coherent patterns and are not designed for the
prediction analysis on multi-omics data. In addition, they
generally suffer from the curse of dimensionality and are
not computationally efficient.

• We proposed a penalized linear mixed model with the
generalized method of moments estimator for the pre-
diction analysis on high-dimensional multi-omics data.
The proposed method is robust against noise. It can
efficiently detect predictive markers of various types
of effects and have better prediction accuracy across a
range of disease models.

• The proposed model relies on the generalized method of
moments estimator. Unlike existing linear mixed models
that can only consider very limited number of random
effects, the proposed method can simultaneously model
a large number of random effects. It is much more com-
putationally efficient than existing methods and has the
potential to be applied to genome-wide data.
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