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Background: Alzheimer’s disease (AD) is a heterogeneous pathological disease

with genetic background accompanied by aging. This inconsistency is present

among molecular subtypes, which has led to diagnostic ambiguity and

failure in drug development. We precisely distinguished patients of AD at the

transcriptome level.

Methods: We collected 1,240 AD brain tissue samples collected from the GEO

dataset. Consensus clusteringwas used to identifymolecular subtypes, and the

clinical characteristics were focused on. To reveal transcriptome di�erences

among subgroups, we certificated specific upregulated genes and annotated

the biological function. According to RANK METRIC SCORE in GSEA, TOP10

was defined as the hub gene. In addition, the systematic correlation between

the hub gene and “A/T/N” was analyzed. Finally, we used external data sets to

verify the diagnostic value of hub genes.

Results: We identified three molecular subtypes of AD from 743 AD samples,

among which subtypes I and III had high-risk factors, and subtype II had

protective factors. All three subgroups had higher neuritis plaque density, and

subgroups I and III had higher clinical dementia scores and neurofibrillary

tangles than subgroup II. Our results confirmed a positive association between

neurofibrillary tangles and dementia, but not neuritis plaques. Subgroup I

genes clustered in viral infection, hypoxia injury, and angiogenesis. Subgroup

II showed heterogeneity in synaptic pathology, and we found several essential

beneficial synaptic proteins. Due to presenilin one amplification, Subgroup III

was a risk subgroup suspected of familial AD, involving abnormal neurogenic

signals, glial cell di�erentiation, and proliferation. Among the three subgroups,

the highest combined diagnostic value of the hub genes were 0.95, 0.92,

and 0.83, respectively, indicating that the hub genes had sound typing and

diagnostic ability.

Conclusion: The transcriptome classification of AD cases played out the

pathological heterogeneity of di�erent subgroups. It throws daylight on the

personalized diagnosis and treatment of AD.
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Introduction

Alzheimer’s disease (AD) is the most common type

of dementia in the elderly. In 2019, the United States

officially announced that AD had become the sixth leading

cause of death in the United States. According to statistics,

the average service cost paid by medical insurance for

patients with AD and dementia is more than three times

that of other older adults. The fee paid by Medicaid is

23 times (1). AD has become a significant challenge to

public health.

It is always a great challenge to identify the risk population

and diagnose the pathological course of AD in the preclinical

stage. The Nincds-Adrad core symptom scale, introduced in

1984, has been widely used in studies with an accuracy of 65–

96% but can only distinguish AD from other dementias with

a specificity of 23–88% (2). In 2011, the National Institute

on Aging and the Alzheimer’s Association developed a new

research framework combining biomarkers as an auxiliary

diagnostic basis for the pathological process of AD (3). Amyloid

deposition, tau protein disease, and neurodegeneration are

described as an “A/T/N” system. AD is defined by its underlying

pathologic processes that can be confirmed by postmortem

examination of amyloid and tau pathologies. A patient that

has a clinical phenotype of dementia, but does not have

plaques and tangles, is categorized into other suspected AD-

related dementias or non-Alzheimer. The identification of

additional biomarkers may help categorize participants ante-

mortem into AD vs. other dementias. The associated biological

markers can be dynamically monitored by cerebrospinal fluid

and special imaging (4). Recently, reliable blood detections

of plaque and tangle pathology have been further developed,

suggesting that blood markers may be of value in the

preclinical screening of AD (5). Another possible fact is

that the measures of neuron damage commonly used in

AD studies, such as magnetic resonance imaging (MRI),

fluorodeoxyglucose (FDG) PET, and total cerebrospinal fluid

tau (T-tau), are general indicators of damage that can be

caused by a variety of causes such as cerebrovascular injury

(6). The 2019 Canadian Consensus Conference (CCCDTD)

recommended adding other pathological factors such as vessel,

inflammation, synuclein, and TDP-43 to the biological definition

and questioned the significance of brain amyloid and/or tau

protein (7). Between 10 and 30% of individuals clinically

diagnosed with AD showed no AD-like neuropathological

changes at autopsy and had normal PET-CT findings or

CSF Aβ42 levels (3). The limitation of biomarkers in

AD studies is that they can only indicate a subset of

patients. Existing diagnostic techniques cannot achieve accurate

individualized medicine at the genetic level, and molecular

subtypes can provide a bridge for individually markedmolecular

target drugs.

Since the discovery of AD, only Selegiline, Galantamine,

Rivastigmine, Memantine, Donepezil, and Aduhelm were

approved by the Food and Drug Administration (FDA).

However, current treatments for AD are only intended to

relieve symptoms, without a cure. More early treatment

may result in a more significant benefit for patients. Early

diagnosis is the basis for early treatment and could contribute

to AD treatment. Early diagnosis may be more benefiter

to AD patients. In addition, the performance of each

AD stage is affected by gene mutations and epigenetic

changes, and the response to drugs also shows biological

heterogeneity. The etiology and clinical heterogeneity of AD

complicates the diagnosis and treatment of AD and the

design and testing of new drugs (8). However, current

genetic research has not yet provided preventive treatment

strategies or clinical guidance for carriers of specific AD-

related genetic variants (9). At present, the classification

criteria based on the severity of neurological symptoms or

pathological markers cannot well indicate the genetic differences

among AD patients. Tumor samples distinguish subtypes by

gene expression patterns, revealing the heterogeneity between

tumors, guiding treatment, and predicting clinical endpoints

(10). Molecular subtypes are also crucial in revealing the

heterogeneity of AD. However, current studies have focused

on differential gene expression between AD and non-AD

(11). There are few studies on differential expression among

AD patients.

In recent years, the development of high-throughput

genome sequencing has enabled us to quickly analyze the

genomic polymorphism of thousands of subjects, which will

help us better understand AD. Yan et al. (12) systematically

identified 16 co-expressed gene modules associated with

AD development using WGCNA and identified six hub

genes as possible biomarkers. The largest GWAS in Europe

identified 20 susceptibility sites for AD (13). In the context of

transcriptomics, gene network analysis can identify concurrent

(or co-expressed) genes and significantly differentially

expressed genes. The object of this study was to find more

precise biomarkers to facilitate the early diagnosis of the

disease based on transcriptomics. In this study, according

to the characteristics of the gene expression profile, we

divided AD cases into three subgroups. These subgroups

showed different functional and clinical features. Finally,

we identified the core genes of each subset, which have

good diagnostic value and may provide a new strategy for

treating AD.

Methods

The technical strategy of this research is shown in Figure 1.
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FIGURE 1

Technical strategy.

Date collection

Three AD datasets of GSE1297 (14), GSE29378 (15), and

GSE84422 (16) were acquired from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/),

GSE84422 includes three subsets which named GSE8442201,

GSE8442202, and GSE8442203, respectively. We only apply

“NO-AD (ND)” and “identified AD” in GSE84422. After data
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cleaning and format transposing, the files consisted of the gene

expression matrix and clinical characteristics.

Removal of the batch e�ect

The Intersection genes from five datasets (GSE84422

includes three subsets) were obtained and merged. We chose

ComBat to normalize the expression values (17), which were

log2-transformed before the cross-platform normalization.

Details of ComBat normalize:

Step 1: Standardize the data

Zijg =
Yijg − α̂g − Xβ̂g

σ̂g

Step 2: Estimated batch effect parameters

Step 2.1:Assume the parametric forms for prior distributions on

the batch effect

γig ∼ N
(

Yi, τ
2
i

)

and δ2ig ∼ Inverse Gamma (λi, θi )

Step 2.2:Calculate batch effect estimates

γ
∗

ig =
niτ̄

2
i γ̂ig + δ2

∗

ig γ̄i

niτ̄
2
i + δ2

∗

ig

and δ2
∗

ig =

θ̄i +
1
2

∑

j

(

Zijg − γ
∗

ig

)2

nj
2 + λ̄i − 1

Step 3: Adjust the data for batch effects

γ
∗

ijg =
σ̂g

δ̂
∗

ig

(

Zijg − γ̂
∗

ig

)

+ α̂g + Xβ̂g .

The principal component analysis was introduced to check out

whether the batch effect was removed.

Comparing the clinical characteristics
and di�erential genes between AD and
ND

Based on the datasets to the definition of disease states, the

samples were distinguished as AD or ND. The differences in

Clinical dementia score (CDR), Braak, neurofibrillary tangles

(NFT), CERAD, Neuritic Plaque Density (NPD), and pH

between AD and ND were used pairwise Wilcoxon’s rank-sum

test. Benjamini-Hochberg adjusted P < 0.05 and the absolute

difference of means >0.2 as thresholds, Wilcoxon’s-sum rank

test was used to test the differential expression. It is noted

that the difference in means was calculated by subtracting the

mean of expression in ND samples from that in samples of the

AD samples.

Consensus clustering

We use consensus clustering (18) to classify the AD samples

into different subgroups. The maximum cluster number was set

to 10, and the cluster consensus score >0.8 was determined to

filter adjustment. All operations are performed in R4.03.

Comparing the clinical characteristics of
each subgroup

The differences in CDR, Braak, NFT, CERAD, NPD, pH, and

age between subgroups and ND groups were used pairwise to

Wilcoxon’s rank-sum test. Furthermore, the pairwise proportion

test was used to compare the proportion of women in four

groups. In addition, the correlation between CDR, CERAD,

Braak, NFT, NPD, Age, Gender, and pH was focused on by

“Spearman” correlation analysis.

Subgroup di�erential genes and gene set
enrichment analysis

Benjamini–Hochberg adjusted P < 0.05 and the absolute

difference of means >0.2 as thresholds, Wilcoxon’s-sum rank

test was used to test the differential expression. It is noted

that the difference in means was calculated by subtracting the

mean of expression in ND samples from that in samples of

the subgroup. By comparing gene expression in each subgroup

with other subgroups, subgroup-specific upregulated genes were

identified. Moreover, the gene expression in subgroups was

also compared with ND cases. We use GSEA4.1.0 software to

implement gene set enrichment analysis (GSEA). Subgroup-

specific genes as subgroup-specific databases. P-values for

Student’s t-test were calculated by comparing each subgroup

with ND samples. Furthermore, the gene list for each subgroup

was ranked by P-values.

GO enrichment and KEGG enrichment of
subgroup

GO analysis and KEGG analysis were performed for each

module. In R software, the function “enrich GO” was used for

GO enrichment analysis, and the database was org.Hs.eg.db

(doi: 10.18129/B9.bioc.org.Hs.eg.db). Moreover, the “enrich

KEGG” function was applied for KEGG enrichment analysis

(https://www.kegg.jp/). As for the parameters of the two

functions, species were set to “has,” and the q-value was set to

0.05. The gene expression heatmap in the pathways we were

interested in was also analyzed.
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Subgroup hub gene screening and
clinical correlation analysis

Based on RANK METRIC SCORE in GSEA, the Top10

gene in each subgroup was screened for subsequent

analysis. Vioplot, which uses the Kruskal–Wallis test

described the expression of hub genes in different

groups. We noted hub genes function using uniport

(https://www.uniprot.org/), GeneCards (https://www.

genecards.org/), and published literature. Heat maps

of gene-gene correlations for the same subgroup were

created by “Spearman.” The module eigengenes (MEs)

based WGCNA algorithm was used to evaluate the

correlation of gene subgroups with clinical traits, and

the subgroups’ gene expression-trait heatmaps were

mapped. Furthermore, a correlation analysis between

gene expression and clinical characteristics was conducted

by “Spearman.”

Diagnostic value evaluation

GSE5281 (19–22) was used to verify the diagnostic

value. Boxplot, which uses the Wilcoxon’s rank-sum test to

verify the expression of hub genes in an external dataset.

Receiver operating characteristic (ROC) curve analysis

was used to investigate the value of hub genes and genes

union in diagnostic efficiency to differentiate among

AD and ND patients. The area under the curve (AUC)

was quantified with packages (“pROC”) and packages

(“glmnet”). When an AUC value was higher than 0.9, the

hub genes were regarded as having outstanding specificity

and sensitivity. When an AUC value was in the range of

0.7–0.9, the hub genes were regarded as having specificity

and sensitivity.

Results

Characteristics of datasets

Clinical features and gene expression data were fetched

from the GEO database, and a total of 1,240 brain samples,

including 743 AD samples and 497 ND samples from three

independent studies were analyzed. It covered GSE1297 (14),

GSE29378 (15), and GSE84422 (16), which were processed by

Affymetrix Human Genome U133A Array, Affymetrix Human

Genome U133B Array, Illumina HumanHT-12 V3.0 expression

bead chip, and Affymetrix HumanGenomeU133 Plus 2.0 Array.

CDR, Braak, NFT, CERAD, NDP, pH, age, and gender were

provided in terms of clinical features.

Removal of di�erent datasets batch
e�ect

Three thousand seven hundred forty-five genes were

detected after the intersection of genes from different datasets

was obtained and merged. The ComBat method was used

to remove batch effects between datasets, which root in

different platforms and batches. We adopted principal

component analysis (PCA) to verify the effect of removing

batch effects. The five datasets (GSE84422 includes three

subsets) were separated, which shows significant differences

between them (Figure 2A). In contrast, the scatter plot

based on PCA shows a random distribution of samples,

which indicates that the batch effects were successfully

removed (Figure 2B).

Analysis of clinical characteristics and
genetic di�erences between AD and ND

Compared with the ND group, the CDR, CERAD, Braak,

NFT, and NPD were significantly increased in the AD group

(P < 0.001; Figures 3A–E). Furthermore, the pH of the AD

group was significantly decreased (P < 0.001, Figure 3F).

The clinical characteristics of each sample are shown in

Supplementary File 1. With Benjamini–Hochberg adjusted P <

0.05 and the absolute difference of means >0.2 as the filtering

condition, we performed differential expression analysis by

comparing gene expression profiles between two groups, and 26

different genes were found (Supplementary File 2).

Subtypes of AD samples

Consensus clustering, an unsupervised method, was used

to classify 743 AD samples’ gene expression profiles after

removing batch effect into subgroups. We divided them into

two to nine subgroups (Supplementary Figure 1). The cluster

consensus score suggested that compared with other subgroup

classifications, the three-subgroup classification was robust.

Each subgroup score was higher than 0.8 (Figure 4A). While

the two-subgroup scores were also higher than 0.8, on a stable

basis, more subgroups can make the analysis more detailed.

Therefore, the classification of three-subgroups was selected for

subsequent analysis. Moreover, based on the consensus matrix,

three subgroups with 223, 391, and 129 samples in subgroups

I, II, and III had highly similar gene expression patterns within

each subgroup and significantly different expression patterns

between each subgroup (Figure 4B). The sample clustering was

shown in Supplementary File 3. Furthermore, the distribution

of samples from the different GEO datasets into the three

subgroups was shown in Supplementary Figure 2.
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FIGURE 2

Principal component analysis (PCA) of the gene expression datasets, di�erent colors represent specific samples. (A) Samples were visualized

before removing the batch e�ect. (B) Samples were visualized after removing the batch e�ect. GSE1297, n = 31; GSE29378, n = 63;

GSE8442201, n = 542; GSE8442202, n = 542; GSE8442203, n = 62.

FIGURE 3

Di�erent clinical characteristics between AD and ND. (A) Di�erent CDR between AD and ND. (B) Di�erent CERAD between AD and ND. (C)

Di�erent Braak between AD and ND. (D) Di�erent NFT between AD and ND. (E) Di�erent NPD between AD and ND. (F) Di�erent pH between AD

and ND. ND, n = 456–489; AD, n = 690–739. vs. ND, Wilcoxon’s rank-sum test. ***P < 0.001.

Clinical characteristics of AD subgroups

The three subgroups’ CDR, CERAD, Braak, NFT, NPD,

and age were significantly increased in the AD group (P <

0.001 or P < 0.01; Figures 5A–F). Furthermore, the proportion

of women in Subgroup I and Subgroup II were significantly

higher than in ND group (P < 0.001 or P < 0.05 );

subgroup III had no difference from the ND group (Figure 5G).

The pH of the three subgroups was lower than the ND

group (P < 0.001, Figure 5H). Compared with subgroup II,
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FIGURE 4

Consensus clustering analysis of gene expression profiles for AD samples. (A) The bar plots represent the consensus scores for subgroups with

cluster counts ranging from 2 to 10. Cluster count was most stable in three subgroups, and consensus scores for subgroups >0.8. (B) The heat

map represents the consensus matrix with a cluster count of 3.

the CDR, Braak, and NFT were high in subgroup I and

subgroup III (P < 0.001; Figures 5A,C,D), and the NPD

was increased in subgroup I (P < 0.05; Figure 5E). As for

the CERAD, the proportion of women, and pH, there was

no difference between the three subgroups (Figures 5B,G,H).

The people in subgroup I and subgroup II were older

than subgroup III (P < 0.05; Figure 5F). In addition, the

correlation between CDR with NFT and NPD was focused

on. We found that CDR was positively correlated with NFT

while CDR was not correlated with NPD (Figures 6A,B).

Supplementary Figure 3 showed the collection between CDR

with CERAD, Braak, Age, Gender, and pH. The correlations

of CDR with Braak and NTF persist, and no correlation

between CDR and NPD in the individual subgroups. The

relevant results can be obtained in Supplementary Figure 4.

Furthermore, the clinical characteristics of each sample are

shown in Supplementary File 1.

Gene set enrichment analysis

With Benjamini–Hochberg adjusted P < 0.05 and the

absolute difference of means >0.2 as the filtering condition,

we performed differential expression analysis by comparing

gene expression profiles between every two subgroups. One

thousand forty-three subgroup-specific upregulated genes

were found, there were 149,403 and 491 subgroup-specific

upregulated genes in subgroup I, subgroup II, and subgroup

III, respectively (Supplementary File 2). Furthermore, each

subgroup with normals was also compared. There are 403,

144, and 945 different genes in subgroups, respectively

(Supplementary File 2). But compared with result 3.3, in

which there were only 26 differentially expressed genes

between the AD and ND groups, after distinguishing

subgroups, there were more different genes that appeared.

This indicated that several essential genes might be ignored
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FIGURE 5

Clinical characteristics of subgroups. (A) Comparison of CDR between each group. (B) Comparison of Braak between each group. (C)

Comparison of NFT between each group. (D) Comparison of CERAD between each group. (E) Comparison of NPD between each group. (F)

Comparison of pH between each group. (G) Proportion of women. (H) The proportion of women in each subgroup and ND group. ND, n =

456–497; Sub I, n = 202–223; Sub II, n = 368–391; Sub III, n = 120–129. Wilcoxon’s rank-sum test, nsP > 0.05; *P < 0.05; **P < 0.01; ***P <

0.001.

FIGURE 6

Correlation analysis of clinical features. (A) Correlation between CDR and NFT. (B) Correlation between CDR and NPD. Spearman correlation

coe�cient. n = 1,146.

in previous studies that merely compare normal and disease.

GSEA revealed that each subgroup specificity upregulated

genes differed significantly in the ND group comparisons

(FDR < 0.001, Figures 7A–C). This indicates that the

subgroup-specific upregulated genes can distinguish the

subgroup well and distinguish the subgroup from the

ND group.

GO and KEGG enrichment analysis

GO enrichment analysis illustrates gene function on

biological process (BP) levels. BP in subgroup I mainly involves

nuclear-transcribed mRNA catabolic process, nonsense-

mediated decay, SRP-dependent cotranslational protein

targeting to membrane, and cotranslational protein targeting
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FIGURE 7

Gene Set Enrichment Analysis of subgroup-specific upregulated genes. (A) Compared to the ND group, specific genes in subgroup I was

significantly upregulated, n = 149. (B) Compared to the ND group, specific genes in subgroup II were significantly upregulated, n = 403. (C)

Compared to the ND group, specific genes in subgroup III were significantly upregulated, n = 491. FDR < 0.001.

FIGURE 8

Functional characterization of a subgroup. (A) BP enrichment for each subgroup. (B) KEGG enrichment for each subgroup. The color indicates

significance. The size of the circle means Gene Ratio.

to the membrane. BP in subgroup II was mainly related to the

regulation of membrane potential, modulation of chemical

synaptic transmission, and regulation of trans-synaptic

signaling. BP in subgroup III was primarily concerned with the

ensheathment of neurons, axon ensheathment, and forebrain

development (Figure 8A). According to KEGG enrichment

results, subgroup I mainly involved Coronavirus disease—

COVID-19, Ribosome, and HIF-1 signaling pathway; subgroup

II was mainly related to Retrograde endocannabinoid signaling,

Dopaminergic synapse, and Nicotine addiction; subgroup III

was primarily concerned with TGF-beta signaling pathway,

Leukocyte transendothelial migration, and Hippo signaling

pathway (Figure 8B). Furthermore, the gene expression in

the pathways also was attention. All details can be found in

Supplementary Files 4, 5.

The clinical correlation analysis of hub
genes in subgroups

We selected the top 10 genes of groups for follow-

up studies, according to CORE ENRICHMENT of GSEA

(Supplementary File 6). Figure 9 showed the expression

of hub genes in ND and AD subgroups. We noted gene

function through uniport (https://www.uniprot.org/),

GeneCards (https://www.genecards.org/), and published

literature (Table 1). Gene correlation heatmaps show gene-

to-gene interactions in each subgroup (Figures 10A–C). In

order to study the correlation between TOP10 genes and

clinical characteristics, we mapped the clinical relevance

heatmap of single-gene and combination-gene in each

subgroup (Figures 10D,E). Existing clinical indicators
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FIGURE 9

Subgroup-specific gene expression. (A) Expression of subgroup I hub genes in each group. (B) Expression of subgroup II hub genes in each

group. (C) Expression of subgroup III hub genes in each group. Kruskal–Wallis test, ***P < 0.001.

such as CDR, Braak, NFT, CERAD, and NPD can only

distinguish between AD and ND. They cannot directly

define the AD caused by the status change of different

functions. In comparison, our molecular subtypes could define

the AD state caused by different functional impairments

(Figure 10D). Subgroup I and subgroup III were positively

correlated with major clinical indicators such as CDR,

Braak, NFT, and NPD. In contrast, subgroup II was negative

(Figure 10E). Furthermore, the correlation between hub

genes with CDR, NFT, and NPD was focused on (Table 1,

Figures 10F–H).

Validation of diagnostic value

In order to verify the diagnostic values of top10 genes in

each subgroup, one new dataset, GSE5281 (19–22) was used.

We tested diagnostic values for single-gene and combination-

gene in each subgroup; a total of 3,069 options were offered

(Supplementary File 7). The combination of eight genes is the

optimal molecular marker diagnostic scheme. AUC was 0.950,

0.916, 0.834 in subgroup I, subgroup II, and subgroup III,

respectively (Table 2, Figures 11A–C). Generally, with an AUC

of 0.7–0.9, there is a diagnostic value, and the diagnostic value
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TABLE 1 Functional annotation of hub genes.

Subgroup Gene

name

Protein Correlation with CDR Correlation with NFT Correlation with NPD Function

r P-value r P-value r P-value

I PRELP Prolargin 0.37 2.20E-16 0.3 2.20E-16 0.096 1.10E-03 Prolargin is a member of the small leucine-rich

proteoglycan (SLRP) family, binding the basement

membrane heparan sulfate proteoglycan perlecan,

and triple-helical collagens type I and type II was

identified in rat pituitary folliculostellate cells and

capillary pericytes in expression (23). Play a role in

spinal degenerative diseases (24).

RBM17 Splicing factor 45 0.27 2.20E-16 0.28 2.20E-16 0.13 1.50E-05 Involved in the regulation of alternative splicing

and the utilization of cryptic splice sites. RBM17

dismiss can lead to rapid degeneration of the

Purkinje nerve and early embryonic death, which

may be related to neuron survival (25).

Contributing to cancers, viral infections, and the

development of neurological disorders (26).

AHNAK Neuroblast

differentiation-associated

protein AHNAK

0.22 1.10E-13 0.22 5.90E-14 0.068 0.021 May be required for neuronal cell differentiation.

Participate in the regulation of RNA splicing,

calcium steady-state, voltage gating calcium

channel activity. AHNAK is a differentiated

protein for normal aging and AD brains and may

act as a new biomarker for age-related

neurodegenerative changes (27). At the same time,

it is involved in a series of physiological activities

such as immune regulation, cell structure

maintenance, and neuronal excitability (28).

TAF10 Transcription initiation factor

TFIID subunit 10

0.13 1.50E-05 0.14 1.20E-06 −0.0089 0.76 TIIFD is a multimeric protein complex that plays a

central role in mediating promoter responses to

various activators and repressors.

ANKRD40 Ankyrin repeat

domain-containing protein 40

0.27 2.20E-16 0.34 2.20E-16 0.16 3.20E-08 It may be associated with neurodevelopmental

disorders (29).

(Continued)
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TABLE 1 (Continued)

Subgroup Gene

name

Protein Correlation with CDR Correlation with NFT Correlation with NPD Function

r P-value r P-value r P-value

METRN Meteorin 0.21 6.60E-13 0.21 3.30E-13 0.067 0.023 Involved in both glial cell differentiation and

axonal network formation during neurogenesis. A

neurotrophic factor that regulates angiogenesis

(30, 31).

RPL18 60S ribosomal protein L18 0.11 2.30E-04 0.15 1.10E-07 0.036 0.22 Component of the large ribosomal subunit.

Participates in viral RNA transcription.

TRIM8 E3 ubiquitin-protein ligase

TRIM8

0.22 7.10E-14 0.26 2.20E-16 0.13 5.10E-06 Participates in multiple biological processes

including cell survival, differentiation, apoptosis,

and in particular, the innate immune

response.TRIM8 as a mediator of IFN-γ

responsiveness and macrophage activation

syndrome (32).

RPL35 60S ribosomal protein L35 −0.17 5.70E-09 0.17 5.00E-09 0.057 0.052 Component of the large ribosomal subunit.

Participates in viral RNA transcription.

MKNK2 MAP kinase-interacting

serine/threonine-protein

kinase 2

0.13 5.00E-06 0.17 5.10E-09 0.011 0.72 Serine/threonine-protein kinase that

phosphorylates SFPQ/PSF, HNRNPA1, and EIF4E.

MNK2 controls the macrophage antiinflammatory

phenotype (33).

II HINT1 Histidine triad

nucleotide-binding protein 1

−0.12 5.40E-05 −0.1 5.80E-04 0.13 1.20E-05 Hydrolyzes purine nucleotide phosphoramidates

with a single phosphate group. A potential marker

of AD and Neuroplastic Mediator (34, 35). HINT1

regulates the interaction between mu-opioid

receptors and NMDA receptors in the spinal cord

and affects pain perception (36).

FGF12 Fibroblast growth factor 12 −0.19 2.60E-10 −0.22 7.20E-15 −0.033 0.26 Involved in nervous system development and

function. And the positive regulation of

voltage-gated sodium channel activity. Promotes

neuronal excitability and chemical synaptic release

(37).

(Continued)
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TABLE 1 (Continued)

Subgroup Gene

name

Protein Correlation with CDR Correlation with NFT Correlation with NPD Function

r P-value r P-value r P-value

MAPK9 Mitogen-activated protein

kinase 9

−0.25 2.20E-16 −0.25 2.20E-16 −0.058 0.049 Serine/threonine-protein kinase is involved in

various processes such as cell proliferation,

differentiation, migration, transformation, and

programmed cell death. Related to autophagy

caused by Aβ monomer (38).

ATP6V0B V-type proton ATPase 21 kDa

proteolipid subunit

−0.14 3.80E-06 −0.12 7.60E-05 0.1 3.80E-04 V-ATPase is responsible for acidifying a variety of

intracellular compartments in eukaryotic cells. It is

related to the acidification of autophagosomes.

SLC6A15 Sodium-dependent neutral

amino acid transporter

B(0)AT2

−0.086 3.60E-03 −0.041 0.16 0.098 8.50E-04 Functions as a transporter for neurotransmitter

precursors into neurons. Changes in SLC6A15

expression affect hippocampal neurochemistry

and behavior, particularly glutamate transmission

(39).

VPS35 Vacuolar protein

sorting-associated protein 35

−0.032 0.29 −0.12 4.60E-05 0.048 0.11 Acts as a component of the retromer

cargo-selective complex to prevent missorting of

selected transmembrane cargo proteins into the

lysosomal degradation pathway. VPS35 is a key

factor in tau phosphorylation and endosomal

trafficking (40, 41). VPS35 is involved in the

terminal differentiation of neurons, and its defects

are risk factors for neurodegenerative diseases

(42).

SYN2 Synapsin-2 −0.17 5.80E-09 −0.19 2.70E-11 0.04 0.18 Neuronal phosphoprotein that coats synaptic

vesicles, binds to the cytoskeleton, and is believed

to function in the regulation of neurotransmitter

release.

ATP6V1C1 V-type proton ATPase

subunit C 1

−0.18 1.10E-09 −0.23 1.50E-15 −0.053 0.071 V-ATPase is responsible for acidifying a variety of

intracellular compartments in eukaryotic cells. It is

related to the acidification of the autophagosome.

RAB6B Ras-related protein Rab-6B −0.22 2.30E-14 −0.25 2.20E-16 −0.046 0.12 May function in intra-Golgi vesicle-mediated

transport and retrograde transport of neuronal

cells.

(Continued)
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TABLE 1 (Continued)

Subgroup Gene

name

Protein Correlation with CDR Correlation with NFT Correlation with NPD Function

r P-value r P-value r P-value

ARPC5L Actin-related protein 2/3

complex subunit 5-like

protein

−0.28 2.20E-16 −0.29 2.20E-16 −0.053 0.074 May function as a component of the Arp2/3

complex, which is involved in the regulation of

actin polymerization and mediates the formation

of branched actin networks.

III GAB1 GRB2-associated-binding

protein 1

0.23 6.60E-15 0.26 2.20E-16 0.12 4.80E-05 Adapter protein plays a role in intracellular

signaling cascades triggered by activated

receptor-type kinases. Positive regulation of

angiogenesis and oligodendrocyte differentiation

(43).

SALL1 Sal-like protein 1 0.15 4.20E-07 0.19 8.40E-11 0.11 1.80E-04 Transcriptional repressor involved in

organogenesis. SALL1 is a microglia-specific gene

and regulates microglia phenotype (44).

PHF10 PHD finger protein 10 0.21 2.00E-13 0.23 5.40E-15 0.12 7.20E-05 Involved in transcription activity regulation by

chromatin remodeling. PHF10 is necessary for

neural progenitor cells to proliferate, differentiate

into neurons after mitosis, and regulate dendritic

growth.

SPOCK3 Testican-3 0.063 0.034 0.12 4.30E-05 0.03 0.31 May participate in diverse steps of neurogenesis. It

may affect the brain’s fusiform gyrus (FUS) role in

facial recognition (45). It could be genetic factors

associated with delayed recall (46). Is an NIBP

gene associated with severe developmental delay,

corpus callosum dysplasia, and facial

malformation(47).

KRCC1 Lysine-rich coiled-coil protein

1

0.2 7.60E-12 0.2 1.30E-12 0.073 0.014 Also known as Cryptogenic hepatitis-binding

protein 2.

PAWR PRKC apoptosis WT1

regulator protein

0.2 3.50E-12 0.2 3.70E-12 0.081 5.90E-03 Pro-apoptotic protein capable of selectively

inducing apoptosis in cancer cells. Seems also to

be a transcriptional repressor by itself. May be

directly involved in regulating the amyloid

precursor protein (APP) cleavage activity of

BACE1.

(Continued)
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TABLE 1 (Continued)

Subgroup Gene

name

Protein Correlation with CDR Correlation with NFT Correlation with NPD Function

r P-value r P-value r P-value

S100PBP S100P-binding protein 0.13 1.70E-05 0.13 8.20E-06 0.095 1.20E-03 It may play a role in early tumorigenesis of

pancreatic duct adenocarcinoma (48).

CPM Carboxypeptidase M 0.24 2.80E-16 0.3 2.20E-16 0.082 5.30E-03 Specifically removes C-terminal basic residues

(Arg or Lys) from peptides and proteins. It is

believed to play important roles in the control of

peptide hormone and growth factor activity at the

cell surface, and in the membrane-localized

degradation of extracellular proteins. A marker of

macrophage maturation (49).

MYLIP E3 ubiquitin-protein ligase

MYLIP

0.14 1.50E-06 0.14 8.50E-07 0.14 1.20E-06 Inhibits neurite growth and low-density

lipoprotein particle clearance. To participate in the

neuron VLDLR regulation (50).

BRD7 Bromodomain-containing

protein 7

0.21 2.50E-13 0.23 2.30E-15 0.13 1.20E-05 It may play a role in chromatin remodeling.

Promotes oligodendrocyte differentiation and

myelination (51). Plays an anti-inflammatory role

in early acute inflammation(52).
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FIGURE 10

Correlation analysis. (A) Gene-to-gene interactions in subgroup I. (B) Gene-to-gene interactions in subgroup II. (C) Gene-to-gene interactions

in subgroup III. The size and color of the circle reflect the magnitude of the interaction, with larger size and darker color illustrating that the

interaction has been reinforced. (D) Clinical relevance heatmap of single-gene. Red represents high expression. Blue represents low expression.

White means no di�erence. (E) Subgroup-trait relationship of combination-gene in each subgroup. Red represents high expression. The number

above the parentheses represents the correlation. The number in parentheses represents the P-values. Blue represents low expression. White

means no di�erence. (F) Correlation analysis between hub genes and CDR in each subgroup. (G) Correlation analysis between hub genes and

NFT in each subgroup. (H) Correlation analysis between hub genes and NPD in each subgroup.

TABLE 2 Subgroup best combined diagnosis genes.

Subgroup gene1 gene2 gene3 gene4 gene5 gene6 gene7 gene8 AUC

I PRELP AHNAK TAF10 ANKRD40 METRN RPL18 TRIM8 MKNK2 0.9497

II HINT1 FGF12 ATP6V0B SLC6A15 VPS35 SYN2 ATP6V1C1 RAB6B 0.9158

III SALL1 PHF10 SPOCK3 KRCC1 S100PBP CPM MYLIP BRD7 0.8336

was high when the AUCwas above 0.9. Furthermore, the boxplot

shows that the majority of hub genes (29/30) were different

from the normal group (Figure 11D). All these proofs indicated

that a combination of eight marker genes could predictive

of AD. It provides a valuable model for the development of

diagnostic chips.
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Discussion

Implications of our research

Alzheimer’s disease has attracted extensive attention

and research worldwide. Unfortunately, so far, attempts

to find drug interventions that can alter the onset or

progression of dementia have failed (53). The continued

failure is attributable to (I) extensive irreversible damage

already present at the stage of clinical symptoms of the

disease process; (II) lack of precise intervention targets

in multifactorial conditions (8). Therefore, scientists are

committed to finding multimodal biomarkers to find high-risk

groups in the preclinical asymptomatic stage and distinguish

patients according to their pathophysiological status to

achieve precise intervention. The bygone research paradigm

was from clinical phenotype to molecular phenotype, while

genomics was the opposite. Genomic subtype analysis of

multi-sample multi-gene status can help us capture genetic

heterogeneity in AD patients. Interestingly, Frisoni et al.

(54) also believed that Alzheimer’s disease was far from a

single disease with the same cause and the same impact. The

analysis suggested that patients be divided into three groups,

each with its own dynamic changes. However, AD genomic

subtypes were blank to our knowledge, and our research filled

this gap.

This study analyzed gene expression profiles of AD cases

and ND people from five independent GEO datasets. We

can find that the batch effects from different platforms

or batches were successfully removed. In addition, 743

AD brain tissue samples were robustly classified into three

subgroups based on gene expression profiles for the first

time. Moreover, the three subgroups were evaluated according

to the “A/T/N” system. Transcriptome classification reviews

subgroup-specific functions and pathways, explaining the

pathological characteristics of each subgroup. Further, we

identified the core genes and confirmed the correlation

between the core genes and clinical features. Finally, we

verified that the core gene has good diagnostic value. The

schematic diagram is shown in Figure 12 which was created

with BioRender.com.

Clinical features of subtypes

Clinical annotation makes subgroups more strongly

associated with clinical variables than unsupervised subtypes

based solely on genetic profile similarity. In this section, we

drew three momentous conclusions:

A. Subgroups I and III had a higher risk of cognitive decline

than subgroup II. We found that the three subgroups had

almost the same severe amyloid plaque load. However, the

degree of clinical dementia and NFT in subgroups I and

III were higher than those in subgroup II. There was no

significant difference between subgroups I and III.

B. Furthermore, we found that the trends of the three-course

labels were not completely parallel. In our research, there

was a correlation between NFT and clinical dementia

score (r = 0.39), significant in identifying the elderly

at risk of cognitive decline. In contrast, amyloid plaque

deposition did not correlate with clinical dementia scores.

The clinical study conducted by Dumugier et al. (55) also

reached a similar conclusion. Baseline CSF t-tau, p-tau,

and hippocampal volume were independently related to

the decline of future cognitive ability. Frisoni et al. (54)

also consider supporting evidence for inconsistencies in

the current conceptualization of the amyloid hypothesis.

Tau protein, a marker of neuronal injury, combined with

mental symptoms, can be used as a standard for the severity

classification of AD (3).

C. High amyloid plaques were found in all three subgroups,

suggesting that Aβ deposition is a corporate pathogenic

mechanism in AD patients. CSF t-Tau, P-Tau, and

neurogranuloprotein increased only in Aβ -positive

individuals during the entire aging process (56). Cognition

decreases were measurable at subthreshold levels of Aβ

deposition (6). This prompts us to reconsider whether

amyloid plaques are at the core of AD pathology or a key

target for clinical outcomes. Drugs targeting tau pathology

may be more effective in improving cognition.

Biological function of subgroups

Subgroup I

Subgroup I is mainly involved in the cotranslation protein of

targeted membrane, viral gene expression, vascular endothelial

growth factor signaling pathway. Pathway analysis involved

ribosome, HIF-1 signaling pathway. Such results attract our

interest in the association between subgroup I patients and viral

infection, hypoxia injury, and angiogenesis.

Infection promotes amyloid deposition and

neuroinflammatory pathology in the brain. Human herpes

virus, cytomegalovirus, and hepatitis C virus may be pathogenic

factors of AD (57). Our findings demonstrated a strong

association between subgroup I and viral infection, confirming

the viral theory in AD pathogenesis.

Subgroup I was also covered in vascular endothelial factors

caused by hypoperfusion hypoxia, such as hypoxia-inducible

factor HIF-1, vascular endothelial growth factor, and Notch

signaling. Hypoxia-induced vascular growth factors are known

to accumulate in the brain of AD patients, especially near Aβ

plaques; however, due to the imbalance of lateral inhibition of

angiogenesis, the non-productive angiogenesis (NPA) pathway
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FIGURE 11

Validation of diagnostic value. (A) The combined diagnostic value of eight genes in subgroup I. (B) The combined diagnostic value of eight genes

in subgroup II. (C) The combined diagnostic value of eight genes in subgroup III. glm function to build logistics model, pROC package for ROC

analysis. (D) Expression of hub genes in ND and AD groups. n = 74–87. vs. ND, Wilcoxon’s rank-sum test, *P < 0.05; **P < 0.01; ***P < 0.001.

leads to the aggregation of abnormal vascular structures around

Aß plaques (58).

Subgroup II

Under the same high amyloid plaque load, fibrous tangles

and clinical dementia were the lightest in subgroup II.

Specific genes reveal the heterogeneity of subgroup II in

synaptic pathology. Since changes in synaptic function are

associated with changes in synaptic protein concentration,

several significant synaptic protein genes in these pathways are

beneficial in the treatment of AD.

The differences in synaptic function in subgroup II can be

explained in four directions: ① Inducing dendrite development,

and synaptic plasticity (DLGAP1, PSD-95, SHANK2, HINT1

PAK1, PAK3, EPHA4). ② Axonal vesicle transport and synaptic

transmission are upregulated (SNCA, PAK1, SYN2, VPS35,

CACNA1B, RIMS1). ③ Increased axon terminal autophagy

and increased phagosome acidification (MAPK9, MAPK10,

ATP6V0B, ATP6V1C1, SNCA). ④ Postsynaptic membrane

transmitter receptors are upregulated, and intracellular signal

transmission is active (GRIN2A, GRIA3, GRIA4, GABRA1,

HTR2A, GNB5, ADCY1, KCNJ3).

Synaptic fluctuations precede neuronal changes and are

directly associated with cognitive deficits in the early stages of

dementia (59). Synaptic proteins may be biological targets closer

to disease specificity, and treatment based on synaptic repair and

regeneration can play a role in the early stages of lesions. We

suspect subgroup II synaptic proteins change a compensatory

protection factor; dementia early triggers these protective factors

against the decline of cognitive function.

Subgroup III

Subgroup III is considered to be the most dangerous

subtype. PSEN1 is an essential gene specifically upregulated in

subgroup III, although gene amplification is not entirely due

to gene mutation. CpG alters in methylation patterns are also
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FIGURE 12

This schematic diagram describes the clinical characteristics, biological significance, and hub genes of three subgroups of AD. Subgroup I

showed high CDR, NFT, and NPD, which were closely related to virus infection. Furthermore, subgroup I showed characteristic genes associated

with hypoxia factors and angiogenesis factors. Subgroup II, low CDR, NFT, and high NPD, had minor synaptic damage. In subgroup II, spinous

dendritic development and synaptic plasticity were upregulated, axonal vesicle transport and synaptic transmission were upregulated,

autophagy and phagosome acidification were increased, and postsynaptic membrane transmitter receptors (especially NMDA receptors and

AMPA receptors associated with long-term potentiation, post-sca�old protein PSD95) were upregulated, and intracellular signaling was active.

Subgroup III presented high CDR, NFT, and NPD, which was similar to familial AD due to PSEN1-specific amplification. Subgroup III showed

TGF-beta and active Hippo signaling pathway, self-renewal of neural stem cells, the proliferation of neural progenitor cells, di�erentiation and

activation of glial cells, etc. We speculated that these changes in subgroup III were cross-talk.

a factor (60). Group III is still considered a suspected familial

AD phenotype.

The pathophysiological features typical of subgroup III can

be described as abnormal neurogenic signaling (including cell

adhesion, TGF-beta, Hippo, SMAD, stem cell pluripotency,

etc.) and glial proliferation. Previous studies have shown that

neurodevelopment and degeneration coexist in AD. GO analysis

indicated that subgroup III might participate in the self-renewal

of neural stem cells, the proliferation of neural progenitor cells,

differentiation and activation of glial cells, and myelination of

glial cells through the Hippo pathway (61, 62). Transforming

growth factor TGF-beta is a downstream signaling molecule
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of the Hippo pathway. It is continuously expressed in adult

microglia as a critical regulator of glial differentiation and

function (63, 64).

The findings of subgroup III suggest the double-edged

influence of neural stem cell biology and glial cells in the

pathogenesis of AD, and whether the effect is related to

presenilin mutation needs to be verified.

Hub gene screening and subtype
validation

The repeatability of subtypes is an important index to

detect and evaluate effectiveness. Experiments that lacked out-

of-sample validation tended to report near-perfect areas under

the curve (AUC), while papers that performed out-of-sample

cross-validation reported milder and more convincing results

(8). We took the TOP10 genes of GSEA in each subgroup as

the core genes and introduced an additional independent group

sample for model evaluation.

We found that core genes in subgroup I and subgroup III

were positively correlated with the “A/T/N” system, while those

in subgroup II were negatively correlated. Furthermore, the

radar map shows similar results. The functional interpretation

of hub genes of subgroups shows in Table 1. Comprehensive

functional analysis of subgroups, we speculate subgroup I and

subgroup III were high-risk subgroups of AD. It also may

represent a “pure AD” population, while subgroup II may reflect

AD-like dementia.

In the validation of hub genes by external data sets, the

boxplot of differential genes showed the same results. Passing

the 3,069 measurements, we discover that the united diagnosis

of eight genes had the maximum worth. This may provide a

regular reference value for the accurate diagnosis of AD. Note,

the concept of AD molecular subtypes can not only describe

the clinical and pathological heterogeneity but also distinguish

it from other age-related dementia and normal aging. The

set of AD molecular subtypes reported in this study has the

potential to be developed for microarray detection in clinical

blood samples.

Deficiencies and prospects

Although the study combined multiple unsupervised

subtype maps into biological subtypes with clinical predictive

value through further analysis, subtypes in the animal model test

are tough to carry out. Like any single omics approach, data-

driven biomarkers do not directly consider the multi-gene and

multi-factormechanisms that influence AD. Current phenotypic

and omics studies focus on association analysis of genome

and disease rather than causal relationship exploration. From

analysis of only the pathogenic portion, some key information

may be hidden. Exploration after intervention is required (65).

Further research is needed to expand the scope of

finding gene-gene or gene-environment phenotypic-phenotypic

interactions, thereby building a multiscale, layered, dynamic

framework for AD brain network research and translating it into

clinical practice (9). Reproducibility analysis of such systems will

be a potential area of future work.

Conclusion

Precise and early diagnosis of AD is a problem encountered

worldwide. Diagnostic markers of AD were found based

on transcriptomics. The diagnostic model constructed by

combining eight genes showed excellent diagnostic value. This

provides a research basis for early and accurate diagnosis of AD.
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