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Abstract

Model-based epidemiological assessment is useful to support decision-making at the begin-

ning of an emerging Aedes-transmitted outbreak. However, early forecasts are generally

unreliable as little information is available in the first few incidence data points. Here, we

show how past Aedes-transmitted epidemics help improve these predictions. The approach

was applied to the 2015–2017 Zika virus epidemics in three islands of the French West

Indies, with historical data including other Aedes-transmitted diseases (chikungunya and

Zika) in the same and other locations. Hierarchical models were used to build informative

a priori distributions on the reproduction ratio and the reporting rates. The accuracy and

sharpness of forecasts improved substantially when these a priori distributions were used in

models for prediction. For example, early forecasts of final epidemic size obtained without

historical information were 3.3 times too high on average (range: 0.2 to 5.8) with respect to

the eventual size, but were far closer (1.1 times the real value on average, range: 0.4 to 1.5)

using information on past CHIKV epidemics in the same places. Likewise, the 97.5% upper

bound for maximal incidence was 15.3 times (range: 2.0 to 63.1) the actual peak incidence,

and became much sharper at 2.4 times (range: 1.3 to 3.9) the actual peak incidence with

informative a priori distributions. Improvements were more limited for the date of peak inci-

dence and the total duration of the epidemic. The framework can adapt to all forecasting

models at the early stages of emerging Aedes-transmitted outbreaks.

Author summary

In December, 2015, Aedes mosquito-transmitted Zika outbreaks started in the French

West Indies, about two years after chikungunya epidemics, spread by the same mosquito,

hit the same region. Building on the similarities between these epidemics—regarding the

route of transmission, the surveillance system, the population and the location—we show

that prior information available at the time could have improved the forecasting of rele-

vant public health indicators (i.e. epidemic size, maximal incidence, peak date and epi-

demic duration) from a very early point. The method we describe, together with the

compilation of past epidemics, improves epidemic forecasting.
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Introduction

Model-based assessments must be done in real time for emerging outbreaks: this was the case

in recent years for MERS-CoV in the Middle East [1–3], Ebola virus in West Africa [4–10],

chikungunya virus (CHIKV) [11] and Zika virus (ZIKV) [12–14] in the Americas. These anal-

yses often focused on transmissibility and reproduction numbers rather than on forecasting

the future impact of the epidemic. Indeed, forecasting is difficult before the epidemic reaches

its peak, all the more when information on natural history, transmissibility and under-report-

ing is limited [15]. Yet, it is precisely at the beginning of an outbreak that forecasts would help

public health authorities decide on the best strategies for control or mitigation.

Several methods have been used to make epidemic predictions, including exponential

growth models [5, 16], sigmoid-based extrapolations [17], SIR-type models [18] and more

realistic model accounting for spatial and population structure [19]. But in addition to specify-

ing a model, selecting good parameter values is also essential to obtain good predictions. In

models for directly transmitted diseases, this can come from realistic demographic and behav-

ioral characteristics, for example the contact frequency between individuals [20], mobility pat-

terns [21–24], and from clinical and epidemiological characteristics like the duration of the

serial interval [25]. Such information is less easily available and more limited for mosquito-

transmitted diseases [26]. However, outbreaks of the same disease or diseases with similar

routes of transmission may have occurred in the same or similar locations, so that relevant

information may be recovered from the analysis of past outbreaks.

Here, we show that past outbreaks of Aedes-transmitted diseases can substantially improve

the epidemiological assessment of diseases transmitted by the same vector from early surveil-

lance data. We introduce a hierarchical statistical model to analyze and extract information

from historical data and obtain a priori distributions for required epidemiological parameters

[27]. The method is illustrated with ZIKV outbreaks in the French West Indies between

December, 2015 and February, 2017, using historical data regarding CHIKV and ZIKV epi-

demics in French Polynesia and the French West Indies between 2013 and early 2015. We

assess the improvement in predictability of several operational indicators using different

choices of a priori distribution and according to epidemic progress.

Methods

Data

Surveillance data on the 2015–2017 ZIKV epidemics in Guadeloupe, Martinique and Saint-

Martin was collected by local sentinel networks of general practitioners and reported weekly

by the local health authorities (Fig 1) [28]. Cases of ZIKV infection were defined as “a rash

with or without fever and at least two signs among conjunctivitis, arthralgia or edema”. We

obtained numbers of suspected cases by week for each island, extrapolated from the number of

active sentinel sites (S1 Dataset (D1)). In the West Indies, local health authorities described the

situation as “epidemic” when incidence was larger than 1 per 2,000 population per week (i.e.

200 cases in Guadeloupe and Martinique [29], and 20 cases in Saint-Martin). Following this

description, we defined the “S”(-tart) of the epidemic as the first week above this threshold, the

“P”(-eak) date when incidence was the highest, and the “E”(-nd) of the epidemic as the third

consecutive week below the threshold (to ascertain the downwards trend). The time interval

from “S” to “E” corresponds to the period of “high epidemic activity”.

We then analyzed historical data on the spread of emerging Aedes-transmitted diseases in

similar locations. CHIKV epidemics occured in the same three islands during 2013–2015.

Both diseases were transmitted by the same vector (Aedes aegypti), circulated in the same
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immunologically naive populations within a period of two years, had the same kind of clinical

signs (i.e., fever, rash and arthralgia) and were reported by the same surveillance system. Sur-

veillance data on CHIKV epidemics in the French West Indies was available from local health

authorities (S2 Dataset (D2)) [30]. Finally, we also selected the ZIKV and CHIKV epidemics

that occured in six islands or archipelagoes of French Polynesia between 2013 and 2017, as

they provided information on the differences between the two diseases. Surveillance data

regarding the outbreaks in French Polynesia (S3 Dataset (D3)) was collected following similar

methods as in the French West Indies [31, 32].

Epidemic model

The ZIKV outbreaks in Guadeloupe, Martinique and Saint-Martin were modelled separately

using a dynamic discrete-time SIR model within a Bayesian framework. Briefly, the two main

components of the model were: (i) a mechanistic reconstruction of the distribution of the serial

interval of the disease (the time interval between disease onset in a primary case and a second-

ary case) that allows bypassing vector compartments; (ii) a transmission model for the genera-

tion of observed secondary cases in the human host. The generation time distribution was

reconstructed by estimating the durations of each part of the infection cycle using disease- and

Fig 1. (A) Weekly number of Zika virus (ZIKV) cases reported by the surveillance systems in the French West Indies during 2016–2017 (S1 Dataset).

The dotted line shows the threshold defining high epidemic activity, “S” and “E” mark the start and the end of the period of high epidemic activity and

“P” marks the date of peak incidence. (B-C) Weekly incidence (per 1,000 population) during the epidemics of chikungunya virus (CHIKV) in the

French West Indies in 2013–2015 (S2 Dataset (D2)) and of ZIKV then CHIKV in French Polynesia in 2013–2015 (S3 Dataset (D3)).

https://doi.org/10.1371/journal.pntd.0006526.g001
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mosquito-specific data from the literature, and assuming a fixed local temperature of 28˚C,

as described in more detail in the supplementary appendix. This led to gamma distributions

with mean 2.5 weeks (standard deviation: 0.7) for ZIKV and with mean 1.6 weeks (sd: 0.6) for

CHIKV.

Then, we linked weekly observed incidence Ot, X to past incidence with:

Ot;X jO0;���;t� 1;X;R0;X; rX; �X � NB R0;X

St;X
N

X5

n¼1

wX;nOt� n; �X

 !

ð1Þ

where subscript X refers to disease (X = C for CHIKV or X = Z for ZIKV), R0;X is the basic

reproduction number, N the population size, and St;X ¼ N �
Pt� 1

k¼0
Ok;X=rX the number

of individuals susceptible to infection at time t where ρX is the reporting rate. The term
P5

n¼1
wX;nOt� n accounts for exposure to infection at time t, where wX,n is the discretized serial

interval distribution. The variance is computed as the mean divided by the overdispersion

parameter ϕX. The model was implemented in Stan version 2.15.1—R version 3.4.0 [33–35].

More details regarding the epidemic model and the Stan code are available in the supplemen-

tary appendix.

Informative and non-informative prior distributions

To analyze Zika epidemics, the reproduction ratio R0;Z , the reporting rate ρZ and the overdis-

persion parameter ϕZ must be estimated. For ϕZ, we used a non-informative prior in all cases

[36]. For R0;Z and ρZ, we designed three different prior distributions, labelled as “non-infor-

mative” (NI), “regional” (R), or “local” (L) and described below.

The NI prior distributions expressed vague characteristics of the parameters: R0;Z will be

positive and likely not greater than 20; and ρZ will range between 0 and 1.

The R and L priors were derived from the analysis of D2 and D3 datasets in three steps. We

first analysed jointly the three CHIKV epidemics in dataset D2 using model 1, introducing a

two-level hierarchical structure for the island-specific parameters: an island-specific reproduc-

tion number R0;C;i sampled from a top-level regional distribution N ðmR0 ;C
; sR0 ;C

Þ, and simi-

larly logitðrC;iÞ � N ðmrC
; srC
Þ for the logit of the reporting rate. We obtained the posterior

distributions of these parameters for the CHIKV outbreaks in each island pðR0;C;i; rC;ijD2Þ, as

well as that of the hyperparameters pðmR0 ;C
; sR0 ;C

; mr;C; sr;CjD2Þ.

We then analysed dataset D3 using the same hierarchical structure as above and introduc-

ing relative transmissibility and reporting of ZIKV with respect to CHIKV as R0;Z ¼ bR0
R0;C

and ρZ = βρ ρC. We thus used French Polynesia data to estimate the relative transmissibility

pðbR0
jD3Þ and the relative reporting rate pðbrjD3Þ of ZIKV with respect to CHIKV in the

French West Indies. In a third step, these posterior distributions were combined to obtain the

R and L prior probability distributions as described in Table 1.

The R and L priors differed in how much island-specific information they contained, the R

priors being altogether less informative than the L priors. More precisely, the L priors used the

bottom level in the hierarchical description, actually combining island-specific distributions

for transmission and reporting of CHIKV with relative ratios bR0
and βρ of ZIKV to CHIKV.

The R priors, on the contrary, were based on the top-level distributions in the hierarchical

description, and can be interpreted as providing information for a “typical” island of the

French West Indies rather than for a specific island.

Alternative prior distributions were considered in the sensitivity analysis and results are

reported in the supplementary appendix.
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Fitting and predicting ZIKV epidemics

We fitted model 1 to ZIKV data separately in Martinique, Guadeloupe and Saint-Martin using

the K first weeks of data (varying K from 5 to the number of weeks in the epidemic) and each a
priori distribution (NI, R or L), to obtain posterior distributions for parameters R0;Z , ρZ and ϕZ
for every combination of island, K and choice of prior.

Then, using each set of posterior distributions, the epidemics were simulated forward from

week K + 1 for two years using a stochastic version of the model described in Eq 1. We used

16,000 replicates to compute the predictive distribution of the weekly number of future inci-

dent cases and a trajectory-wise 95% prediction band [37]. Using these simulated trajectories,

we also computed the predictive distributions of four indicators of operational interest, for

direct comparison with observed values:

• the final epidemic size, defined as the average total incidence across all simulated trajectories;

• the peak incidence, defined as the maximal value of the upper bound of the trajectory-wise

95% prediction band, as it corresponds to the capacity needed to ensure continuity of care

[38];

• the date of peak incidence, defined as the average date of peak incidence across all trajectories;

• the epidemic duration, defined as the average duration between dates “S” and “E” across all

trajectories.

The predictive distributions were compared using two measures of forecasting quality: (i)

accuracy, i.e. the root-mean-square difference between predicted and observed values, and (ii)

sharpness, i.e. the mean width of the 95% prediction band [39]. In order to improve clarity,

these values were multiplied by −1 so that a higher value means a better accuracy or sharpness.

Results

ZIKV epidemics in the French West Indies

The timecourse of the ZIKV epidemics in Guadeloupe, Martinique and Saint-Martin between

December, 2015 and February, 2017 differed markedly: the initial growth was early and sud-

den in Martinique, while it was delayed in Guadeloupe and Saint-Martin, starting only after

four months of low-level transmission (Fig 1). The epidemic showed a sharp peak in Guade-

loupe, reaching a maximal weekly incidence of 6.9 cases per 1,000 inhabitants 9 weeks after

the start of the period of high epidemic activity. In Martinique and Saint-Martin, weekly inci-

dence reached a maximum of 4.8 cases per 1,000 inhabitants after a period of 10 and 21 weeks,

respectively. Conversely, the period of high epidemic activity was longer in Martinique and

Saint-Martin (37 and 48 weeks, respectively), than in Guadeloupe (27 weeks). In the end, a

total of about 37,000 cases were observed in Martinique (97 cases per 1,000 inhabitants),

Table 1. Prior distributions choice and design for modelling a Zika virus outbreak in the French West Indies.

Non-informative (NI) Regional (R) Local (L)

R0;Z;i Gamma(1, 0.2) pðbR0
jD3Þ �

R
φ R0;C � mR0 ;C

sR0 ;C

� �
pðmR0 ;C

; sR0 ;C
jD2Þ dmds pðbR0

jD3Þ � pðR0;C;ijD2Þ

ρZ, i Beta(1, 1) pðbrjD3Þ �
R
φ R0;C � mR0 ;C

sR0 ;C

� �
pðmR0 ;C

; sR0 ;C
jD2Þ dmds pðbrjD3Þ � pðrC;ijD2Þ

ϕZ, i half-Cauchy(0, 2.5) half-Cauchy(0, 2.5) half-Cauchy(0, 2.5)

φ is the standard normal distribution pdf, i stands for the island.

https://doi.org/10.1371/journal.pntd.0006526.t001
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more than in Saint-Martin (90 cases per 1,000 inhabitants) and Guadeloupe (77 cases per

1,000 inhabitants).

Prior information from past epidemics

The CHIKV epidemics observed in the same three islands of the French West Indies during

2013–2015 are shown in Fig 1B, and the CHIKV and ZIKV epidemics observed in French

Polynesia during 2013–2015 in Fig 1C. The a priori distributions on the reproduction ratio

and reporting rates for the ZIKV epidemics in the French West Indies defining the NI, R or L

approaches are shown in Fig 2. The R priors were wide, with 95% credible intervals between

0.5 and 2.5 for R0;Z and between 0 and 0.30 for ρZ. On the contrary, the more specific L priors

on R0;Z were highly concentrated around 1.5 in Guadeloupe and 1.3 in Martinique, and ran-

ged between 1.0 and 1.8 in Saint-Martin. Likewise, the island-specific priors on ρZ carried

more information that their regional counterpart, peaking around 0.19 in Guadeloupe, and

covering wider intervals in Martinique (0.20–0.40) and Saint-Martin (0.03–0.39).

Epidemiological parameters and predictive distribution of future incidence

Fig 3 shows the future course of the ZIKV epidemics predicted using data available two weeks

after date “S” in each island, for the three choices of prior distributions. At this week, predic-

tions with the NI priors were largely off-target, overestimating the future magnitude of the epi-

demic in all three islands. Using the R priors reduced the gap between forecasts and future

observation. Major improvements in both accuracy and sharpness were obtained only with L

priors. These results were typical of the initial phase of the epidemics, as shown in Fig 4. Over-

all, the quality of the forecasts improved as K increases in all three islands and also as prior dis-

tributions brought more specific information. Results of the sensitivity analysis show that L

priors defined here outperformed or performed at least equivalently to the alternative priors

definition tested (S1 Appendix).

Fig 2. A priori distributions considered for the reporting rate ρZ (panel A) and the basic reproduction number R0;Z (panel B) during the Zika

virus epidemics in the French West Indies: Non-informative, regional and island-specific.

https://doi.org/10.1371/journal.pntd.0006526.g002
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The posterior distributions of the parameters built up differently as data accrued for R0;Z

and ρZ. For all three choices of prior distributions, the posterior distributions of R0;Z quickly

overlaid after a few points of incidence data were observed (Fig 5A). In sharp contrast, the pos-

terior distributions of ρZ could remain affected by the choice of prior distributions (Fig 5B). In

Martinique and Saint-Martin, ρZ remained essentially unidentified with the NI priors for the

entire duration of the epidemic, with 95% credible intervals ranging approximately from 20 to

80%, even though the posterior mean was close to the estimates obtained with the more infor-

mative priors (around 25% at the end). Informative priors allowed for a more precise estima-

tion of ρZ, and this remained the case over the whole course of the epidemics. In Guadeloupe,

all posterior distributions for ρZ were similar after the peak, irrespective of the choice of priors.

Fig 3. Predictive distribution of weekly incidence of Zika virus infections in Guadeloupe, Martinique and Saint-Martin using either non-

informative (NI, panel A), informative regional (R, panel B) or informative local (L, panel C) priors, and calibrated using data available up to the

vertical dashed line (here chosen two weeks after date “S”). Continuous lines correspond to mean prediction of future incidence, dark and light grey

areas to 50% and 95% prediction intervals, respectively, and circles to observed incidence.

https://doi.org/10.1371/journal.pntd.0006526.g003
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Operational indicators

The forecasts of the four indicators of operational interest produced before peak incidence

were contrasted. With NI priors, forecasts of total epidemic size overestimated the final counts

by on average 3.3 times (range: 0.2 to 5.8) (Fig 6A), with substantial variations in the forecasts

from one week to the next. For instance in Martinique, projections varied from 105,000 total

observed cases (95% prediction interval [95%PI]: 5,300–340,000) on February 7th to 8,100

(95%PI: 5,700–13,700) on February 14th. For the same indicator, forecasts using the R priors

were only 1.7 times too high (range: 0.4 to 3.3) and those produced using L priors were only

1.1 times too high (range: 0.4 to 1.5). As a comparison, with the L priors on February 7th, the

forecast of epidemic size was 47,200 (95%PI: 20,900–71,100) in Martinique, much closer to the

final count of 37,400 observed cases at the end of the epidemic in this island.

Similarly, forecasts of maximal weekly (observed) incidence produced before date “P” were

generally too large when using NI priors, on average 15.3 times higher than the actual maximal

weekly incidence observed thereafter (range: 2.0 to 63.1) and with large fluctuations (Fig 6B).

Using informative prior distributions improved the forecasts, reducing the maximum pre-

dicted incidence to 7.5 times higher (range: 3.0 to 25.5) with the R priors and 2.4 times higher

(range: 1.3 to 3.9) with the L priors. In all cases, forecasts of maximal incidence were never

smaller than actual incidence.

Fig 4. Accuracy (panel A, values closer to zero indicate better accuracy) and sharpness (panel B, values closer to zero indicate better sharpness) of

the predictive distribution of future incidence based on epidemiological assessments conducted each week. Colours correspond to different a priori
distributions on the parameters: non-informative priors or informative priors based on historical data, either considered at the regional or the local

level.

https://doi.org/10.1371/journal.pntd.0006526.g004
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Forecasting the dates of interest in the epidemics showed mixed results, with less differences

depending on the choice of priors. The forecasts of the date of peak incidence were too late by

on average 1.0 month (range: -3.4 to +3.9) using the NI priors, with large variations (Fig 6C).

Forecasts were only slightly better with the R priors (+0.7 months, range: −2.1 to +2.8) and

the L priors (+0.9 months, range: -1.1 to +3.2), but sharper. Better forecasts were obtained for

Martinique than for the other islands.

The forecasts of the total duration of the period of high epidemic activity were overesti-

mated by a factor 1.3 (range: 0.1 to 2.6) with NI priors, again with high variability from week

to week (Fig 6D). Informative priors brought a small improvement, in particular regarding the

stability of the forecasts over time, overestimating the actual duration by a factor 1.2 (range:

0.7 to 2.0) with R priors and by a factor 1.1 (range: 0.9 to 1.7) with L priors.

Discussion

Obtaining reliable model-based forecasts in real time at the beginning of an epidemic is a diffi-

cult endeavour. It is however precisely during these periods that forecasts may have the most

impact to guide interventions. Here, we compared several approaches to provide forecasts for

ZIKV epidemics from an early point in a retrospective analysis of the outbreaks that occurred

in the French West Indies in 2015–2017. We found that the accuracy and sharpness of the

Fig 5. Posterior distributions (mean and 95% credible intervals) of the basic reproduction number R0;Z (panel A) and the reporting rate ρZ (panel

B) throughout the ZIKV epidemics of the French West Indies. Colours correspond to different a priori distributions on the parameters: non-

informative priors or informative priors based on historical data considered either at the regional or the local level.

https://doi.org/10.1371/journal.pntd.0006526.g005
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Fig 6. Early forecasts regarding four indicators of operational interest: (A) final epidemic size (total observed cases); (B) maximal weekly

observed incidence; (C) date of peak incidence (difference with the date observed thereafter, in months); and (D) duration of the period of high

epidemic activity (from date “S” to date “E”, in months). The dashed lines represent the values observed after the end of the epidemic. Colours

correspond to different a priori distributions on the parameters: non-informative priors or informative priors based on historical data, either considered

at the regional or the local level.

https://doi.org/10.1371/journal.pntd.0006526.g006
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forecasts before peak incidence were substantially improved when a priori information based

on historical data on past epidemics was used.

The three ZIKV outbreaks in the French West Indies provided an ideal situation to look

for ways to improve prediction of Aedes-transmitted diseases using historical data. Indeed,

CHIKV outbreaks had been observed in the same locations about two years before ZIKV,

CHIKV is also transmitted by Aedes mosquitoes, and both viruses spread in a region where the

populations were immunologically naive at first. Furthermore, all epidemics were observed by

the same routinely operating GP-based surveillance networks, and the three locations benefit

from a mature public health system, with easy access to medical consultation and individual

means of protection. Last, pest control is done in routine, with additional intervention show-

ing limited efficacy in this context [40, 41]. This motivated our decision to use constant param-

eters for transmsission and reporting over time in the modelling.

Having established the many similarities between ZIKV and CHIKV epidemics regarding

transmission and reporting, we assumed that information could be transported (as defined

in [42]) between diseases and between places. Bayesian approaches allow such transportation

using informative a priori distributions on model parameters [27]. Historical data on CHIKV

epidemics was therefore used to build informative a priori distributions on the two key param-

eters R0;Z and ρZ. Hierarchical models are particularly adapted to this task, as they naturally

pool information among several past epidemics and capture both within- and between-loca-

tion variability [43]. We used separate hierarchical models to obtain information about (i)

transmissibility and reporting during CHIKV outbreaks in the French West Indies and (ii) rel-

ative transmissibility and reporting between ZIKV and CHIKV in French Polynesia, rather

than from a global joint model (as in [44]). This choice was made to show that prior informa-

tion can be combined from separate sources in a modular way. We finally considered two ver-

sions of informative priors to capture different degrees of knowledge. The “Local” priors

corresponded with estimates for the previous CHIKV epidemic in the same island, therefore

including island-specific epidemic drivers, such as population structure and distribution,

socio-economic circumstances and environmental conditions. On the other hand, the

“Regional” priors encompassed the diversity of past observations within the region, making

priors valid for a typical island of the West Indies, especially when no other epidemic has been

observed previously.

Analyses conducted at the early stage of an epidemic using non-informative a priori distri-

butions—as is often done—led to poor forecasts before the peak of incidence was reached, an

observation already made in other studies [45]. Indeed, early forecasts of epidemic size were

largely off-target and unstable, varying between 0.2 and 5.8 times the eventually observed total

incidence. Worst case projections on maximal incidence were very imprecise, ranging between

2 and 63 times the eventually reached maximal weekly incidence. Using historical data led to a

substantial increase of the quality of these forecasts from the very early stages of the epidemics.

Using “local” priors, the ratio between forecasts and reality ranged between 0.4 and 1.5 for epi-

demic size and between 1.3 and 3.9 for maximal incidence. The less specific “regional” priors

increased accuracy and sharpness as well, though to a lesser extent. However, the date of peak

incidence and the date of the end of the period of high epidemic activity were only slightly

improved by integrating historical data.

The posterior distributions of all forecasted quantities changed as more data was included

(Fig 4). The posterior estimates of R0;Z were quickly similar and in good agreement with prior

information. On the contrary, the reporting rate ρZ remained essentially unidentifiable until

after the incidence peak in Guadeloupe, and to the end of the outbreak in Martinique and

Saint-Martin. This suggests that prior information is essentially required for the reporting rate,
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a difficult to estimate quantity as already noted [15]. Sensitivity analysis support this result.

Indeed, providing informative prior on ρZ only leads to similar results as providing it for both

ρZ and R0;Z (S1 Appendix).

Predicting the future course of epidemics from an early point is increasingly seen as a prob-

lem of interest [8, 9, 46], and forecasting challenges have been set up for influenza [47], for

Ebola [45] and for chikungunya [48]. Comparing and systematically evaluating models’ fore-

casting performances is still at the beginning. As of now, comparisons targeted the merits of

different models including exponential growth models, sigmoid models, or mechanistic epi-

demic models [45]. Our work provides a complementary approach where information from

past epidemics is combined using hierarchical models to inform on parameter ranges, thus

increasing the reliability of early forecasts. It was applied here to a dynamic discrete-time SIR

model that for its parsimony is well-adapted to real-time forecasting. Complex mechanistic

models can provide a more realistic description of the epidemic, accounting, for instance, for

heterogenous spatial distribution of individuals and mobility coupling—a relevant ingredient

for describing epidemics in more extended spatial areas –, or vector population dynamics and

its mixing with humans. Our framework could in principle be adapted to these more sophisti-

cated models.

Only recently have hierarchical models been used for modelling multiple epidemics, for

instance with the joint analysis of six smallpox epidemics [49], for transmissibility and dura-

tion of carriage in the analysis of multistrain pneumococcus carriage [50], or for forecasting

seasonal influenza [51]. Other modelling papers specifically attempted to take advantage of the

similarities between different Aedes-transmitted diseases, e.g., by estimating the risk of acquir-

ing chikungunya from the prevalence of dengue [52] or by assesssing the spatio-temporal

coherence of chikungunya, Zika and dengue [53]. Also, using informative priors to make up

for the lack of information during the early stages of an epidemic has been done before. For

instance, a priori information from the ZIKV epidemics in French Polynesia has been used to

support the early forecasts of health-care requirements for the ZIKV epidemic in Martinique

[38]. In this case, however, authors concluded that a prior built from an epidemic in a different

location resulted in inaccurate predictions at the early stage. We found a similar result in a sen-

sitivity analysis: the direct use of information from ZIKV in French Polynesia, or alternatively

the direct use of information from CHIKV in the French West Indies, without adjusting for

ZIKV, leads to poor overall forecasting quality compared to the L prior considered here (S1

Appendix).

This shows that the choice of appropriate historical data is the cornerstone of any such

attempt. Yet little is known regarding the comparative epidemiology of diseases in the same or

similar places and on the condition where transportability can be assumed. For influenza, it

has been reported that the reproduction ratios in two successive flu pandemics (1889 and

1918) showed substantial correlation (r = 0.62) in the same US cities, even years apart [54]. For

Aedes-transmitted diseases, comparisons of ZIKV and dengue virus outbreaks [55] and of

ZIKV with CHIKV outbreaks [44] in the same locations have highlighted similarities in the

epidemic dynamics. In any case, careful consideration of all the factors that may influence

transmission and reporting is needed. For example, contrary to CHIKV, some cases of sexual

transmission have been reported for ZIKV [56, 57]. Yet, no epidemics were seen in locations

without enough Aedes mosquitoes, as for example in metropolitan France, despite the intro-

ductions of several hundreds ZIKV infected cases [58]. This justifies the use of CHIKV epi-

demic data to provide prior information on ZIKV in the epidemic context considered here.

More generally, documenting, analyzing and comparing more systematically past epidemics

[59] is necessary to provide the data required to derive prior information. In particular,
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informed with epidemiological records of the recent CHIKV and ZIKV epidemics, our

approach could be applied to potential future emergences of other Aedes-transmitted diseases

such as Mayaro virus [60], Ross River virus [61] or Usutu virus [62] once transportability is

deemed plausible.
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Formal analysis: Julien Riou.

Supervision: Chiara Poletto, Pierre-Yves Boëlle.
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32. Centre d’hygiène et de salubrité publique de Polynésie française. Surveillance de la dengue et du zika

en Polynésie française; 2014. Available from: http://www.hygiene-publique.gov.pf/IMG/pdf/bulletin_

dengue_28-03-14.pdf.

33. Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich B, Betancourt M, et al. Stan: a probabilistic pro-

gramming language. Journal of Statistical Software. 2015;

34. Stan Development Team. RStan: the R interface to Stan; 2016. Available from: http://mc-stan.org/.

35. R Core Team. R: A Language and Environment for Statistical Computing; 2017. Available from: https://

www.R-project.org/.

36. Gelman A, Jakulin A, Pittau MG, Su YS. A weakly informative default prior distribution for logistic and

other regression models. The Annals of Applied Statistics. 2008; 2(4):1360–1383. https://doi.org/10.

1214/08-AOAS191

37. Kolsrud D. Time-simultaneous prediction band for a time series. Journal of Forecasting. 2007; 26

(3):171–188. https://doi.org/10.1002/for.1020
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