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Distributed neural representation of saliency
controlled value and category during anticipation of
rewards and punishments
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An extensive literature from cognitive neuroscience examines the neural representation of

value, but interpretations of these existing results are often complicated by the potential

confound of saliency. At the same time, recent attempts to dissociate neural signals of value

and saliency have not addressed their relationship with category information. Using a multi-

category valuation task that incorporates rewards and punishments of different nature, we

identify distributed neural representation of value, saliency, and category during outcome

anticipation. Moreover, we reveal category encoding in multi-voxel blood-oxygen-level-

dependent activity patterns of the vmPFC and the striatum that coexist with value signals.

These results help clarify ambiguities regarding value and saliency encoding in the human

brain and their category independence, lending strong support to the neural “common cur-

rency” hypothesis. Our results also point to potential novel mechanisms of integrating

multiple aspects of decision-related information.
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To make a decision, one needs to compare the subjective
values of available options1–3. In many cases, these options
are of fundamentally different nature, for example, an ice

cream cone and a magazine. To facilitate such comparisons, the
brain needs access to category-general, “common-currency”,
representations of subjective value4.

Aiming to identify such representations, previous fMRI
research has examined value encoding across different categories.
Several studies identified overlapping value representations of
items from different categories5–11, a finding that is consistent
with a pure category-general value representation, but is not
sufficient to prove it. Stronger evidence for the neural common
currency hypothesis came from two studies that used activation
patterns in the ventromedial prefrontal cortex (vmPFC) to predict
value or preferences across categories12, 13,]. These studies,

however, were restricted to the domain of rewards, raising the
possibility that these activation patterns encode saliency rather
than value. While value quantifies how good or bad something is,
saliency signals its significance. The saliency of available options
is also an important variable in the choice process. An option of
higher saliency elicits higher levels of attention and emotional
arousal, as well as stronger orientation and motor preparation.
Clearly, saliency and value are strongly correlated in the reward
domain—a more rewarding outcome has higher value (it is more
desirable), as well as higher saliency (as it is more important)14.
Similarly, in the domain of punishments, saliency and value are
negatively correlated. Identifying true value signals, which are
distinct from saliency signals, therefore requires the inclusion of
both reward and punishment categories in the experimental
design. In such a design, moving from very negative to very
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Fig. 1 Multi-category valuation paradigm and behavioral pleasantness ratings. a Four outcome categories were included in the paradigm. These categories,
resulting from the crossing between outcome valence (reward/punishment) and outcome type (primary/secondary), were: viewing pleasant faces,
receiving electric shocks on one’s ankle, monetary gains, and monetary losses. Each of these outcome categories was represented by a distinct shape,
which the participants learned beforehand. These shapes served as cues that predicted the potential upcoming outcome in the current trial. b Four levels/
intensities were included within each outcome category. Participants only received the predicted outcome in 1/3 of the trials; in the remaining trials nothing
was delivered. In those actualized trials, participants could receive one of four different levels/intensities of the predicted outcome, which was indicated by
the levels to which the corresponding shapes were filled. For instance, in monetary gains, the amount of money delivered could be $1, $5, $20, or $100. For
other outcome categories see the Methods section. c Trial timeline. Each trial began with a cue presentation. Participants had to provide their pleasantness
rating for the cue within 5.5 s. Two buttons on a botton box moved a cursor to the left and to the right along the 1–9 scale, and a third button was used to
register the selection. A brief delay period of 0.5 s and a presentation of the outcome for 2 s then followed. For actualized shock trials, a 2 ms electric shock
of the specified level was delivered during this time. For non-actualized trials of all categories, the message “No Outcome” appeared on the screen.
Participants then had another 4 s to rate the outcome pleasantness. The trial length was held constant at 12 s, and the inter-trial interval was jittered
between 10 s and 12 s. d Pleasantness ratings for cues predicting outcomes of different levels and of different categories (average across 18 participants,
error bars denote SEM). A statistically significant two-way interaction between valence and magnitude indicated opposing trends of pleasantness ratings
as a function of magnitude in reward and punishment categories. See Supplementary Fig. 2 for the pleasantness ratings for delivered and non-delivered
outcomes
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positive stimuli generates a monotonically increasing profile for
value and a U-shape function for saliency, allowing separation of
their neural encoding. Although a few recent studies did examine
the neural processing of both positive and negative outcomes15,
16,], each of these studies used a single outcome type (e.g.,
monetary gains and losses). Whether the neural signals of value
and saliency identified in these studies generalize across different
categories remains unclear. Furthermore, the use of different
analytic methodologies across previous studies also poses a
nontrivial challenge for comparing and integrating their findings.

Our primary goal in this study was to identify the neural
encoding of true value, controlling for saliency, across different
outcome categories. To this end, a functional MRI paradigm,
incorporating valuation of rewards and punishments of different
nature, was necessary. Our experimental design also allowed us to
explore the neural encoding of category information during
valuation, as well as its interaction with the value signal. The
representation of category identity has primarily been the subject
of studies on semantic memory and conceptual knowledge, with
little consideration of valuation17–19. Information about the
nature and category of each option, however, is integral to
making optimal decisions. Category information may be a key
input to the computation of value, guided by the current moti-
vational goals. For example, an ice cream and a magazine may
both be valuable, but depending on your hunger level, you may
prefer one or the other. We therefore hypothesized that category
information may coexist with value signals to facilitate their
flexible integration.

To the best of our knowledge, despite the interconnected
relationships among these three variables—value, saliency, and
category—no study so far has examined their neural repre-
sentations simultaneously within the same context. In our fMRI
paradigm, participants evaluated cues that predicted the prob-
abilistic delivery of positive and negative outcomes, of various
types and intensities. Our results reveal neural patterns for value,

which are distinct from both perceptual and value-based saliency
signals, as well as distributed category-information encoding.
Importantly, we found that activation patterns in both the
vmPFC and the ventral striatum, areas heavily implicated in value
representation, also provided category information. These find-
ings help clarify existing ambiguities regarding “common-cur-
rency” value encoding in the human brain, and provide new
insights on how category information may be integrated with
value signals.

Results
Pleasantness ratings for cues. Outcome categories included both
rewards and punishments, of both primary (pleasant face images
and electric shocks) and secondary (monetary gains and losses)
nature (Fig. 1a). Four magnitude or intensity levels were used for
each outcome type (Fig. 1b), so that participants experienced wide
ranges of value and saliency. Pleasantness ratings (Fig. 1c), rather
than choice behavior, were used as a measure of subjective value
to allow examination of value signals that are not contaminated
by choice and comparator signals. Mean pleasantness ratings for
cues predicting different magnitudes of outcomes from different
categories are presented in Fig. 1d. In the reward categories
(monetary gains and pleasant faces), these pleasantness ratings
increased as the level or magnitude of predicted outcomes
increased. Conversely, in the punishment categories (monetary
losses and electric shocks), ratings decreased as a function of the
magnitude of predicted outcomes.

A three-way repeated measures ANOVA was used to
determine the effect of outcome valence (reward/punishment),
modality (primary/secondary), and magnitude on pleasantness
ratings across participants. The two-way interaction between
valence and magnitude was statistically significant (F(2.219. 37.726)
= 91.877, p< 1e−6), indicating opposing trends of pleasantness
ratings as a function of magnitude in reward and punishment
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Fig. 2 Univariate value signals in the brain. a BOLD activity of the bilateral OFC and the left PPC significantly correlated with cue value (per-voxel p< 0.005
and cluster-size thresholding at FWE p< 0.05). b Activity levels in these regions showed a positive slope on value (pleasantness ratings). Data were
extracted from ROIs defined by a LOSO procedure (n= 18). c The effects of value and saliency on the activity of these brain regions were assessed in the
same ROIs generated by the LOSO procedure, using a GLM with both value and saliency parametric regressors. Bilateral OFC demonstrated specificity to
value, while PPC also showed a mild saliency effect. OFC orbitofrontal cortex. PPC posterior parietal cortex
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categories, consistent with the observations from Fig. 1d. There
was no statistically significant three-way interaction between
valence, modality, and magnitude (F(1.415, 24.059) = 0.908,
p= 0.38), so the valence × magnitude interaction was consistent
in both primary and secondary modalities. There was also a
statistically significant two-way valence ×modality interaction
(F(1,17) = 28.11, p = 6e−5). The two-way modality × magnitude
interaction was not statistically significant (F(2.219, 37.726) = 1.601,
p = 0.21).

Whole-brain univariate analysis of value encoding. One major
goal in this study was to identify the encoding of value signals in
the expectation phase, after controlling for saliency and regardless
of outcome category. To this end, we constructed trial-by-trial cue
value and saliency estimates based on each participant’s own

pleasantness ratings. Value was defined as the pleasantness rating
in the cue period of the current trial; saliency was computed by
taking the squared difference of the pleasantness rating and the
neutral point 5 (see Supplementary Note 1 and Supplementary
Fig. 1 for the rationale of this approach and potential caveats). We
regressed BOLD signals against these trial-wise estimates in a
general linear model to compute the contribution of value and
saliency signals to the activity of each voxel. We then searched for
voxels whose activity was positively correlated with value across
participants (Fig. 2a, Table 1; for details, see Methods section).
This analysis revealed univariate value signals in the left posterior
parietal cortex (PPC; family-wise error rate (FWE) p< 0.05
cluster-size thresholding, threshold = 69 voxels, same below;
center Talairach coordinates X = −39, Y = −61, Z = 55) and bilat-
eral orbitofrontal cortex (OFC; X = −21, Y = 50, Z = −5 in the left
hemisphere, X = 30, Y = 29, Z = −2 in the right hemisphere). To

Table 1 Brain regions that showed univariate value or saliency responses (outcome expectancy) during the cue period

Contrast Region Side Mean t statistic Peak Talairach
coordinates

Cluster size (number of voxels)

x y z

Value Posterior parietal cortex L 3.96 −35 −60 48 127
Lateral orbitofrontal cortex R 3.70 34 36 2 101
Lateral orbitofrontal cortex L 3.57 −25 47 −5 71
Lingual gyrus R 4.24 18 −80 4 825

Saliency Rostral anterior cingulate cortex L/R 3.59 −15 38 15 496
Precentral gyrus L 3.65 −36 −23 48 315
Caudate/Striatum L 3.87 −9 4 8 106
Caudate/Striatum R 3.41 10 6 8 79
Anterior insula R 3.67 36 13 3 219
Anterior insula L 3.75 −37 17 8 100
Lingual gyrus L/R 3.94 −10 −61 5 1307
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Fig. 3 Univariate saliency signals in the brain. a BOLD activity in the rACC, the bilateral striatum and anterior insula significantly correlated with cue
saliency (per-voxel p< 0.005 and cluster-size thresholding at FWE p< 0.05). b Activity levels of these regions showed a U-shaped profile as a function of
pleasantness ratings. Data were extracted from ROIs defined by a LOSO procedure (n= 18). c The effects of value and saliency on the activity of these
brain regions were assessed in the same LOSO ROIs, using a GLM with both value and saliency parametric regressors. Across all these regions, there was a
significant saliency effect while value was not significant. rACC rostral anterior cingulate cortex
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visualize the effect of value on activation in these regions, we
extracted parameter estimates, determined by the leave-one-
subject-out (LOSO) procedure, and plotted them as a function of
pleasantness ratings for the cues (Fig. 2b). A mixed effects linear
regression of parameter estimates vs. pleasantness rating showed
significantly positive slopes for all three regions (t(17) = 3.82, p=
0.0014 for PPC; t(17) = 2.45, p= 0.037 for left OFC; t(17) = 4.23, p
= 0.00056 for right OFC). Using the same set of LOSO regions-
of-interest (ROIs), we also directly quantified the strength of
value and saliency effects on the BOLD activity in these brain
regions (Fig. 2c). In both the left and the right OFC, there was a
statistically significant effect of value (t(17) = 2.35, p= 0.031 for left
OFC; t(17) = 2.76, p= 0.014 for right OFC), while saliency did not
reach significance (t(17) = 1.39, p= 0.18 for left OFC; t(17) = 0.58, p
= 0.57 for right OFC). In PPC, a strong value effect was found
(t(17) = 4.27, p= 5.8e−4), while the saliency predictor was mar-
ginally significant (t(17) = 1.97, p= 0.066).

Whole-brain univariate analysis of saliency encoding. Our
experimental paradigm also allowed us to search for brain areas
whose activity is positively correlated with saliency after con-
trolling for value. This analysis revealed a different set of brain
regions (Fig. 3a and Table 1), including the rostral anterior cin-
gulate cortex (rACC; FWE p< 0.05 cluster-size thresholding,
threshold = 72 voxels, same below; center Talairach coordinates
X = −12, Y = 38, Z = 16), bilateral striatum (X = −9, Y = 5, Z = 4 in
the left hemisphere, X = 9, Y = 8, Z = 4 in the right hemisphere),
left precentral gyrus (X = −36, Y = −22, Z = 52), bilateral anterior
insula (AI; X = −33, Y = 20, Z = 4 in the left hemisphere, X = 33, Y
= 17, Z = −2 in the right hemisphere), and visual areas. Similarly,
plotting activation levels as a function of ratings in corresponding
ROIs defined by the LOSO procedure clearly showed U-shaped
patterns, consistent with predictions of saliency encoding
(Fig. 3b). The activities of these ROIs also demonstrated statis-
tically significant saliency effects (Fig. 3c; t(17) = 5.01, p= 0.00013
for rACC; t(17) = 3.66, p= 0.0021 for striatum; t(17) = 5.14, p=
0.0001 for AI), but not value (t(17) = 1.26, p= 0.23 for striatum;
t(17) = 1.18, p= 0.26 for AI), except for a marginally significant
effect in the rACC (t(17) = 1.84, p= 0.084). A control analysis
verified that these findings were not likely to be driven by hand
movement or the time it took participants to register their
responses (see Supplementary Note 2 and Supplementary Meth-
ods for details). Furthermore, as our operationalization of sal-
iency likely encompassed both value-based saliency and
perceptual (visual) saliency, we conducted further analysis using
separate estimates for these two types of saliency (Supplementary
Note 3). This analysis revealed that value-based saliency and
visual saliency mapped onto spatially distinct regions in the brain,
with the former reflected in activation in rACC, striatum and
anterior insula, and the latter reflected mostly in activation of
sensory areas (Supplementary Fig. 4, and Supplementary Table 1).

ROI analysis of univariate value and saliency signals. In addi-
tion to the whole-brain analysis, we also examined the effects of
value and of saliency on BOLD activity in a set of ROIs from a
recent meta-analysis focusing on the valuation system20, includ-
ing the vmPFC and the ventral striatum (VS). vmPFC activity was
significantly modulated by value (t(17) = 2.52, p= 0.022), but not
saliency (t(17) = 1.10, p= 0.29), while in the VS, both value and
saliency contributed significantly to the activation (t(17) = 3.11, p
= 0.0064 for value and t(17) = 3.48, p= 0.0029 for saliency)
(Fig. 4). This mixture of value and saliency representations in the
VS is consistent with the findings of a previous study15. In
addition, a small area in the VS was also identified in a whole-
brain conjunction analysis of correlation with cue value and with
cue saliency (center Talairach coordinates X = −6, Y = 2, Z = −2),
if a less stringent statistical threshold were used (per-voxel p<
0.005 uncorrected, cluster size> 20 voxels).

Univariate and multi-voxel encoding of category information.
Next, we examined univariate representations of category identity
using a general linear model (GLM) with binary predictors for
each of the four categories, and controlling for value and saliency
(see Supplementary Note 4). While we did observe univariate
category-related signals in several brain areas (Supplementary
Tables 2 and 3, and Supplementary Fig. 5), value-related areas did
not encode category identity in the univariate fashion. Informa-
tion about outcome category (and other key variables) could still
be encoded in multi-voxel activation patterns, rather than overall
activation magnitude, in the same areas. To test that hypothesis,
we used whole-brain searchlight representational similarity ana-
lysis (representational similarity analysis (RSA); Fig. 5a; see
Methods for details). A 27-voxel (3 × 3 × 3) cubic searchlight was
formed around each voxel, and a neural representational dis-
similarity matrix (neural RDM) was constructed for each cube,
computing the difference (dissimilarity) between voxel-wise pat-
terns of neural activities in different conditions. We then com-
pared the neural RDMs to predicted dissimilarities in neural
patterns between conditions based on models of category identity,
value, or saliency encoding. Figure 5b through 5d and Table 2
present areas of the brain in which activation patterns repre-
sented category, value, or saliency, respectively (per-voxel p<
0.005, FWE p< 0.05 cluster-size thresholds = 38, 25, 41 voxels,
respectively). Importantly, Pearson correlational distance is
insensitive to general changes of mean activation levels of the
ROI, and thereby provides complementary information to uni-
variate GLM analyses. This analysis revealed widespread, dis-
tributed multivariate representation of category information in
many cortical areas, as well as several subcortical structures
(Fig. 5b). Notably, these areas overlap substantially with the tra-
ditional univariate value areas, including the vmPFC and VS.
Conversely, multi-voxel representations of value and saliency
were more localized (Fig. 5c, d). Interestingly, both value and

0.10

vmPFC Striatum

NS
*

*

*

0.05

C
oe

ffi
ci

en
ts

C
oe

ffi
ci

en
ts

0.00

0.10

0.05

0.00
Value Saliency Value Saliency

Fig. 4 Region-of-interest univariate analysis. Univariate value and saliency signals in the vmPFC and the ventral striatum, defined based on a recent meta-
analysis of the valuation system20. In the vmPFC, there was a significant effect of value, but not saliency, while in the ventral striatum, the effects of both
value and saliency were statistically significant (n= 18). Error bars denote SEM. NS not significant;+p< 0.1; *p< 0.05; ***p< 0.001. vmPFC ventromedial
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saliency signals were encoded by multi-voxel patterns in adjacent,
but potentially distinct, regions of PPC.

To account for the possibility that category effects may be
driven by other category attributes, rather than its identity, we
examined several additional model RDMs (Fig. 6; see Methods for
details). These models tested the effects of the mean value of each

category (Fig. 6a), whether the category is primary or secondary
(modality; Fig. 6b), and the category valence (Fig. 6c), as well as
the effect of potential interactions between valence and modality
(Fig. 6d, e and Supplementary Table 4). These control models
further confirmed the specific encoding of category identity. Very
few brain areas showed significant multi-voxel encoding of the
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mean value of a category (Fig. 6a; per-voxel p< 0.005, FWE
p< 0.05 cluster-size thresholding, threshold = 40 voxels). More-
over, modality or valence did not explain much of the variability
in multi-voxel patterns across the brain: compared with the
category model, the primary-secondary model and the positive-
negative model were reflected in more circumscribed multi-voxel
representations in the brain (Fig. 6b, c; per-voxel p< 0.005, FWE
p< 0.05 cluster-size thresholding), and only had minor overlap
with the regions that showed significant responses to the category
model. Similarly, results from the models targeting potential
interactions between valence and modality (Fig. 6d, e; per-voxel
p< 0.005, FWE p< 0.05 cluster-size thresholding) revealed little
overlap with the widespread reflection of category information
observed in Fig. 5b.

We also performed RSA with four key candidate models in the
ROIs identified by the univariate analysis (Supplementary Note 5,
Supplementary Methods, and Supplementary Fig. 6). The
category-identity model contributed significantly to the activation
patterns in all of these ROIs, confirming the widespread multi-
voxel coding of category information. The fact that brain areas
that encode value or saliency in a univariate manner showed little
multivariate representations of these quantities also demonstrates
the independence of the GLM and RSA approaches.

Multidimensional category and value signals in vmPFC and
VS. RSA revealed considerable spatial overlap between regions
that showed multi-voxel encoding of category information and
the well-established valuation areas, including the vmPFC and
VS. This suggests an intriguing possibility: category information

and value may coexist within the same brain region, but in
different forms. To probe this possibility we performed a data-
driven analysis using principal component analysis (PCA), a
methodology that reveals the internal structure in multi-
dimensional data and does not assume particular forms of the
signal. We expected that PCA would uncover both value and
category information from the valuation areas, and that the
loading structures of the identified neural signals may reveal
distinct forms of encoding, consistent with the univariate and
RSA findings.

Similar to RSA, we used the voxel-wise beta coefficients for the
16 cue conditions in all functional voxels of the vmPFC ROI as
the input to PCA. The percentages of total variance explained by
individual principal components (PCs) were consistent across
participants (Fig. 7a). As there was no substantial improvement in
total variance explained beyond the third PC, only the first 3 PCs
were kept for further analysis. Across participants, these PCs
accounted for 81.7± 1.05% (mean± SEM) of the total variance.
To demonstrate the relative contributions of the voxels in the
vmPFC ROI to these PCs, we examined the histograms of voxel-
wise loading coefficients, or the contributions of different voxels
to each PC, for each participant and present the average
distributions of the loading coefficients in Fig. 7b. The loading
coefficients for the first PC were distributed along a narrow range
of positive values consistently across participants, indicating that
this PC resembles the mean activity of all voxels in this ROI. In
contrast, the second and the third PCs showed more complicated
loading structures with loading coefficients spanning both
positive and negative values. This potentially represents

Fig. 5 Whole-brain searchlight representational similarity analysis (RSA) of multi-voxel category, value, and saliency signals. a Schematic illustration of the
procedure of the whole-brain searchlight RSA. In this analysis, activation patterns in the immediate neighborhood of every voxel (a 27-voxel cube with that
voxel as the center) was examined. The construction of searchlight neural representational dissimilarity matrices (neural RDMs) from multi-voxel activity
patterns in response to each condition in the paradigm was based on Pearson correlational distance. The neural RDMs were then compared with candidate
model RDMs based on different hypotheses. Example theoretical candidate similarity matrices based on category identity, value, and saliency are shown.
The latter two candidate matrices depended on pleasantness ratings and, therefore, differed between participants. The candidate matrices from one
representative participant are shown here. b–dWhole-brain maps of the z-statistic of the resemblance between the neural RDMs and each of the candidate
RDMs, including category b, value c, and saliency d. Statistical thresholds for all maps were per-voxel p< 0.005 and cluster-size thresholding at FWE
p< 0.05. The human brain image in a, entitled “human brain on white background”, by _DJ_ is sourced from https://www.flickr.com/photos/
flamephoenix1991/8376271918 and licensed under CC BY 2.0 (https://creativecommons.org/licenses/by-sa/2.0/)

Table 2 Brain regions with statistically significant multivariate encoding of category, value, or saliency as identified by
representational similarity analysis

Candidate model Region Side Mean z statistic Peak Talairach
coordinates

Cluster size (number of voxels)

x y z

Category Cuneus L/R 3.37 6 −79 13 3422
Superior frontal gyrus L 3.30 −31 48 −22 248
Precuneus R 3.29 −19 −69 41 727
Caudate/Striatum R 3.28 19 −75 9 106
Inferior parietal lobule R 3.32 40 −77 −1 70
Inferior frontal gyrus R 3.30 49 24 21 249
Middle frontal gyrus R 3.28 28 37 −17 116
Anterior cingulate cortex R 3.30 22 45 4 447
Paracentral lobule L 3.26 −3 −33 56 60
Caudate/Striatum R 3.31 13 3 13 68
Cingulate gyrus R 3.26 10 −2 29 63

Value Lingual gyrus L/R 3.16 −7 −81 −3 2169
Inferior parietal lobule R 2.86 31 −64 40 53
Medial frontal gyrus L/R 2.81 0 29 35 25

Saliency Inferior parietal lobule L/R 3.14 42 −52 43 87
Middle occipital gyrus R 3.18 39 −80 6 1876
Inferior temporal gyrus L 3.11 −45 −67 0 48
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population coding by local activity patterns, instead of mean
activation levels.

To examine whether these three PCs correspond to any of our
variables of interest, including value, saliency, and category, we
performed mixed-effects linear regressions of each PC on these
variables (Fig. 7c). The first PC was significantly correlated with
value (t(16) = 2.44, p= 0.027), but not with saliency (t(16) = 0.98,
p= 0.34) or category (coded as three dummy variables, using the
electric shock category as the reference category; all p> 0.08), and
the difference between value and saliency effects was significant
(p= 0.012). The second PC was not significantly correlated with
any of the variables (all p> 0.38), while the third PC was
significantly correlated with both value (t(16) = 3.40, p= 0.0036)
and category (all p< 0.0231), but not with saliency (t(16) = −0.138,
p= 0.89).

A parallel analysis on the VS ROI from the univariate analysis
revealed similar, albeit slightly weaker, results (Supplementary
Fig. 7). Across participants, the first three PCs in this ROI
collectively accounted for 83.1± 1.13% (mean± SEM) of the total
variance. Loading structures were similar across participants: the
first PC was analogous to the mean activity of all voxels, while the
next two PCs had loading profiles consistent with multi-voxel
patterns. Follow-up mixed-effects regressions showed that the
first PC was significantly correlated with value (t(16) = 2.425, p=
0.028), but not with saliency (t(16) = 1.07, p= 0.30), or category
(all p> 0.27). No significant effects were found for PC2, while
PC3 showed trends towards significance for value (t(16) = 1.805, p
= 0.09) and category (compared to electric shocks: monetary
gains t(16) = 2.304, p= 0.035; monetary losses t(16) = −0.064, p=
0.95; pleasant faces t(16) = 1.801, p= 0.09). Taken together, these
results demonstrate the multiplexing of univariate and multi-
dimensional value and category signals in both vmPFC and VS.
Results of PCA in other ROIs are reported in Supplementary
Note 6.

Discussion
In this study, we used a multi-category valuation task to identify
pure category-general value encoding on a common scale, after
accounting for saliency effects. We also explored the repre-
sentation of category identity, a crucial input for valuation, and
how it may integrate with value encoding. Our univariate analysis
revealed regions whose activation magnitudes encode value, even
after controlling for saliency, as well as regions in which activa-
tion scales with saliency after controlling for value. Multi-voxel
pattern analysis, including RSA and PCA, offers a complementary
view of the data and suggests that category information is
encoded in a distributed manner across multiple brain regions,
overlapping substantially with previously known valuation areas
including the vmPFC and VS.

These findings contribute to the interpretation of results from
prior studies of value encoding, which have not controlled for
saliency confounds. Our results confirm the univariate repre-
sentation of value in several brain regions that have been
repeatedly implicated in value encoding in various value-based
decision-making tasks, including vmPFC, OFC, PPC, and stria-
tum21, 22,]. Such value signals also seemed to be independent of
the category identity of the evaluated outcome. It is also worth
noting that although no choice was required in our paradigm, the
localization of univariate representations in our study was largely
consistent with many previous studies involving active decisions.
Indeed, the notion of valuation processes that are independent of
choice has received empirical support23–28 (also see Supplemen-
tary Discussion of implications of different techniques for value
elicitation). The present study extends these results by showing
that this brain system for valuation in the absence of choice is

capable of processing anticipation of rewards and punishments
both on a continuous scale and across different categories.

The saliency areas we identified (rACC, striatum, and anterior
insula) substantially overlap with the saliency regions identified in
a prominent previous study that used appetitive and aversive
foods to dissociate value from saliency signals15. The consistency
of results across several different categories (monetary gains and
losses, shocks, and foods) strongly supports the conclusion that
saliency-like signals in these regions are category-independent.
Furthermore, saliency as defined in this study may encompass
both bottom-up perceptual saliency29–31 and top-down value-
based saliency15, 16,]. In this study, both forms of saliency were
examined, in order to facilitate the unambiguous identification of
true value signals.

One caveat is the possibility that the saliency signals we
observed resulted from a “valence-general” neural representation
of value, rather than from a saliency encoding per se32. In such
representation, neural activity scales with the absolute value of
both rewards and punishments, resulting in a U-shaped activa-
tion profile as a function of value. In addition, given the resolu-
tion of fMRI, we cannot rule out the possibility that two distinct
groups of neurons exist within the same voxel, one responding
monotonically to increasing intensities of reward and the other to
increasing punishments, thereby creating a saliency-like activity
profile for the voxel. Further studies are needed to distinguish
between these accounts.

Our study also examined the representation of category
information. While we know that conceptual knowledge
of category information is distributed in multiple brain areas33, 34,
very few studies examined categorization in the context of
decision-making. One study showed both category-independent
and category-specific value encoding in different sub-regions of
the vmPFC/OFC using three categories of rewards13. Along the
same lines, a recent study found identity-specific and identity-
general encoding of reward value in OFC and vmPFC, respec-
tively35. Finally, using repetition suppression, another study
demonstrated encoding of reward identity in part of medial
OFC36. To our knowledge, our study is the first to incorporate
punishments to assess the effects of category on value processing.
Using RSA, we found widespread representation of category
identity in brain regions associated with univariate signals of
value and saliency. By testing a series of control models, we ruled
out the possibility that differences in the mean value, valence, or
modality of different categories, were driving the significant
category effects, rather than category identity itself. Importantly,
these category-related activities occurred at the cue period, in
which participants had not experienced any of the predicted
outcomes, thus reflecting anticipation of specific categories, rather
than actual experiences. It is also unlikely that sensory properties
of the cues were the cause for these effects, because regions like
vmPFC or striatum are unlikely to encode visual information
strongly and passively.

Our findings that univariate value signals and multivariate
category signals coexist in the vmPFC, and striatum provide a
novel insight about the role of these areas in valuation. This
multiplexing of two distinct signals in a single-brain region sug-
gests an efficient coding strategy, which could increase the
capacity of information encoded by the region and facilitate
subsequent utilization of these two sources of information to
guide behavior and monitor environmental feedback. This notion
is supported by our PCA results, which identified a multi-
dimensional value signal in the vmPFC, compatible with several
previous studies12, 13, 37, 38,]. The coexistence of value and cate-
gory effects in the same principal component may explain why
the whole-brain searchlight RSA did not identify this multi-voxel
value code in the vmPFC. This finding bears particular
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significance for attempts to decode subjective values and con-
sumer preferences from neural data. The results are also of
relevance for models of value computation. Prior research shows
that vmPFC integrates multiple attribute-value signals from
other, specialized, brain areas39, 40,]. There is also evidence sug-
gesting that in addition to comparisons of these integrated values,
the choice process may also entail direct comparisons at the level
of single attributes41. Moreover, recent research suggests that
value may be determined, to a large extent, based on memories of
individual instances of encountering the particular reward42, 43,].
Current models of value and choice thus require the simultaneous

encoding of category-independent value and of category infor-
mation (as well as other specific information of the evaluated
option). Future research will need to determine how conceptual
category knowledge in temporal regions18 is transformed into the
category information encoded in value areas. Such research will
also need to reveal the nature of the multidimensional value
signals in vmPFC (and perhaps also the VS), including their
regional specificity and context dependence, temporal dynamics
of the category information in value computation, and whether
the effects we observed here extend beyond the four outcome
categories included in our design.
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Fig. 6 Whole-brain searchlight RSA for additional control models. Five additional control models for the category model are shown, together with their
whole-brain searchlight statistical maps. In each panel, a pseudo colored candidate model RDM for the corresponding model is shown on the left. Warmer
colors indicate greater distance and thereby larger dissimilarity. The order of the conditions is the same as in Fig. 5a. For each model, whole-brain maps of
the z-statistic of the resemblance between the candidate model RDM and the neural RDMs are shown on the right. Statistical thresholds for all maps were
per-voxel p< 0.005 and cluster-size thresholding at FWE p< 0.05 by simulation of 1000 random samples. To facilitate comparison, all maps are presented
from the same planes as in Fig. 5b for the category model. a The category-mean-value model from a representative participant. b The primary-secondary
model. Because this model does not involve ratings, all participants have the same model RDM (same below). c The positive-negative model. d The money
vs. face vs. shock model. e The monetary gains vs. monetary losses vs. primary model
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This study also provides several methodological insights. The
multivariate distance we used in RSA, the Pearson correlational
distance, is insensitive to changes of overall activation magnitude,
making the RSA orthogonal to the univariate GLM analysis44.
This offers a unique advantage for the unambiguous identification
of univariate and multidimensional coding of decision variables,
which has proven difficult for other multi-voxel pattern analysis
techniques, such as classification and support vector regression16,
37,]. A recent study of value representation in the amygdala
demonstrated the strength of this approach45. While mean acti-
vation was similar for different odors, differences in pleasantness
ratings of these odors could account for (dis)similarity in acti-
vation patterns as measured by the Pearson distance. Similarly,
univariate analysis and RSA with the Pearson distance uncovered
multiplex encoding of arousal and affect in the medial OFC46.
However, a more comprehensive whole-brain analysis of parallel
univariate and multidimensional representations of value and
related decision variables has yet to be reported.

Our study fills this gap in the literature. Consistent with the
orthogonality of the two analytic techniques, there is little overlap
between the univariate and multivariate representations (Figs. 2

and 5, Supplementary Fig. 6). Both methodologies identified brain
regions that have been implicated in valuation under different
contexts, including the OFC, PPC, and ventral striatum16, 47, 48,].
They shed new light, however, on the particular nature of these
signals in the brain. For instance, using support vector regression,
both OFC and PPC were reported to encode predicted value of
monetary outcomes16. Our results suggest that despite their
apparent similarity, value codes in these two regions might rely
on different implementations, as OFC shows exclusive univariate
coding, while PPC seems to utilize both mean activity levels and
multivoxel patterns.

One potential limitation of both univariate GLM and RSA
approaches is the strong assumptions they make about the spe-
cific features of information coding by neural activities. This can
be nicely overcome by PCA. As a widely used exploratory sta-
tistical technique in multivariate spaces, PCA makes very few, if
any, assumptions about the nature of signals other than the
constraint of linear combinations of individual units (voxels).
PCA therefore offers a data-driven perspective on the functional
organization of voxel-wise activities in ROI, which can be seen as
an independent validation of both univariate and multivariate

b

c

a

Value Saliency Category

PC1
√

(p = 0.027)
× ×

PC2 × × ×

PC3
√

(p = 0.0036)
×

√
(all p < 0.023) 

Principal component regression

F
re

qu
en

cy

0

0.1

0.2
100

80

60

40

20

0
1 2 3 4 5

Principal components

Principal components analysis on
the vmPFC ROI

%
 o

f t
ot

al
 v

ar
ia

nc
e 

ex
pl

ai
ne

d

PC1

PC2

PC3

F
re

qu
en

cy

0

0.1

0.2

F
re

qu
en

cy

0

0.1

0.2

–0.2 –0.1 0 0.20.1
Loading coefficients

Average distribution of
loading coefficients

Fig. 7 Principal component analysis of ensemble patterns in vmPFC. a Percentages of total variance explained by the first 5 PCs in each participant (n= 17).
Each dot is a data point from a participant, and data from the same participant are connected by dashed lines. b Average histograms of loading coefficients
for the first 3PCs. The frequency of loading coefficients falling under a particular bin was calculated separately for each participant. The mean and the SEM
of frequencies in this bin were then obtained. This was repeated for all bins, spanning the entire range of loading coefficients. The mean frequencies in each
bin are plotted here in the form of a histogram with error bars representing SEMs. c Summary of results of mixed-effect linear regression of the first 3 PCs
on value, saliency, and category

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02080-4

10 NATURE COMMUNICATIONS |8:  1907 |DOI: 10.1038/s41467-017-02080-4 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


analyses. Indeed, in all value or saliency ROIs, PCA invariably
identified a mean-activity-like component that accounts for a
majority of the total variance, and mixed-effects regressions of
this component consistently confirmed results from the whole-
brain and ROI GLM analysis. One notable exception is the lack of
significant saliency effect in the first PC in the VS, even though
the ROI GLM indicated both value and saliency encoding (Fig. 4).
This could be due to the slight spread of loading coefficients for
this PC, producing deviation from the true mean activity across
all voxels. Regardless, noting that the PCA was based on a very
different partition of conditions compared with the univariate
GLM analysis (see Methods section) and that the mean-activity-
like principal component evolved entirely from the covariance
structure of the data itself, the overall consistency between PCA
and univariate GLM results indicates the prominence of uni-
variate encoding by magnitude of neural activity. Furthermore,
PCA in the vmPFC and VS confirmed the presence of multi-voxel
category signals as identified by the whole-brain searchlight RSA
(Fig. 5), while also revealing more complicated ensemble encod-
ing of multiplexing value and category signals (Fig. 7). In some
other cases, though, results of RSA and PCA were com-
plementary, for instance in rACC multi-voxel category encoding
was implicated by RSA, while at least the first 3 PCs identified by
PCA did not show effects of category. One reason for this might
be that the RSA uncovered category signals which had more
complicated structure than linear combinations of individual
voxel activations. The use of multiple analytic techniques (uni-
variate GLM, RSA, and PCA) in parallel is therefore beneficial for
gaining a complete picture of the nature of neural representation
of value, saliency, and category in these regions.

Understanding value encoding and its interaction with cate-
gory is important because this is a fundamental cognitive function
at almost every level of human behavior. Our results demonstrate
value encoding when saliency is adequately controlled for,
resolving ambiguities in the interpretation of prior results on
value representation in the brain. Furthermore, our findings
suggest that while a univariate neural common currency does
exist, there is much richer information in the ensemble activities
in the same brain regions that incorporate other important
aspects of value, specifically category information. This opens the
door to future investigations on the neurocomputational
mechanisms of integrating different sources of information to
guide behavior optimally.

Methods
Participants. In total 29 healthy right-handed volunteers were recruited for the
fMRI task. All participants were screened for the use of psychotropic medications,
alcohol and drug use, and history of psychiatric disorders, cognitive/neurological
disorders, and traumatic brain injury. Data from eleven participants were excluded
from further analysis: seven had excessive head motion (> 2 mm) during the fMRI
scan, three did not complete the task due to technical issues, and one participant’s
verbal report following the scan indicated lack of task understanding. The final
sample included 18 healthy right-handed volunteers (12 males) between 18 and 45
years of age (mean 31.1± 8.8 S.D.). The experiment was approved by Yale School
of Medicine Human Investigation Committee. All participants gave informed
consent and were paid for their participation.

Picture rating task and shock tolerance threshold procedure. Before the main
task, participants completed a picture rating task and a shock tolerance threshold
procedure. Each participant rated the pleasantness of 20 male and 20 female face
images (black-and-white photographs of professional models chosen from the
International Affective Picture System49, 50,]) on a 1–9 scale, with 1 corresponding
to “the most unpleasant”, and 9 corresponding to “the most pleasant”. Following
this initial rating, all faces rated as pleasant (6 or above) were presented and the
participants were asked to rank them in order of pleasantness. This was done
separately for male and female faces. In the case of ties, participants were prompted
to rank their preferences among those faces, such that the final ranking was based
on strict preferences. Participants were asked if they preferred to see male or female
faces during the experiment. Based on the participant’s gender preference, the faces
at the top, bottom, and the two tertile points of the participant-specific ranking

were chosen. Therefore, in the main task, each participant had a unique set of four
faces to be used as pleasant face rewards, based on her/his own preference.

For the shock tolerance threshold procedure, electric shocks of 2 ms duration
were administered via electrodes attached to the right ankle. During the threshold
procedure, shocks increased in intensity (~ 3 s inter-stimulus-interval) from mild
(imperceptible; 10 V) to more intense (up to a maximum 100 V) at 10 V intervals.
The participants were asked to report when he or she first felt the shock, and when
the shock was “very unpleasant” (but not painful) and he or she would not like it to
increase anymore. At this point the threshold procedure was terminated and the
upper threshold served as the maximum shock that the participant would receive
during the subsequent task. In total 90%, 80%, and 70% of this maximal level
would serve as the three lower levels of shock in the main task.

fMRI paradigm. In the fMRI paradigm, subjects were presented with a series of
four colored shapes, each signaling one of four different categories of rewarding or
aversive outcomes—winning money, losing money, viewing a pleasant face, or
getting an electric shock (Fig. 1a). These outcomes included both primary (pleasant
face images and electric shocks) and secondary (monetary gains and losses)
modalities. The meaning of each shape was fully explained to the participants and
tested by a few quiz questions and practice trials before the experiment. Each shape
was filled up to one of four different levels to indicate the amount or intensity of
reward or punishment the participant may receive (Fig. 1b). Upon seeing the cue,
the participants were prompted to rate how pleasant they felt in anticipation of the
cued outcome. Approximately 1/3 of the trials were followed by the corresponding
reward or punishment. Regardless of whether the predicted reward or punishment
was delivered or not, the participants were then prompted to rate again how
pleasant they felt after seeing the outcome. All cues and outcomes were pro-
grammed into the script in advance, and the outcomes did not depend on the
responses by the participant.

For actualized money trials the participants could earn or lose $1, $5, $25, or
$100. The loss or gain was added to or subtracted from a running tally (which was
not displayed to the participant). Each participant was endowed with $20 prior to
the start of the task to make sure that they would not lose their own money (the
task was pre-programmed such that participants could not lose more than $20).
For actualized shock trials, the participants could receive a shock at their ankles
with the intensity of 100%, 90%, 80%, or 70% of the participant’s discomfort
threshold determined by the procedure described above. The duration of shocks of
all levels was 2 ms. For actualized pleasant face trials, participants were presented
with one picture of his or her own set of four pleasant pictures, depending on the
reward level of that particular trial.

The timeline of a representative trial is presented in Fig. 1c. Each trial began
with a cue presentation. Participants had to provide their pleasantness rating for
the cue within 5.5 s. Ratings were indicated using three buttons on a response box
with the index, middle, and ring fingers of the right hand. Two buttons moved a
cursor to the left and to the right along the 1–9 scale, and the third button was used
to register the selection. A brief delay period of 0.5 s and a presentation of the
outcome for 2 s then followed. For actualized shock trials, a 2 ms electric shock of
the specified level was delivered during this time. For non-actualized trials of all
categories, the message “No Outcome” appeared on the screen. Participants then
had another 4 s to rate the outcome pleasantness. The trial length was held constant
at 12 s, and the inter-trial interval was jittered between 10 s and 12 s. This slow
event-related design was chosen to ensure that responses to each event could be
captured. Four blocks of 24 trials each were completed, resulting in a total of 96
trials for each participant. To ensure that participants would not know the total
amount of money they would earn before the experiment, one additional monetary
gains/losses trial was added to the end of the 4th block, which was randomized
among participants, thereby creating different total payoffs for different
participants.

After the experiment, a short quiz was administered to ensure that participants
understood the task. Depending on the final tally, participants were either paid
additional money (up to $45), or had to pay the money they lost during the
experiment, out of their $20 endowment. A separate participation fee for the
participants' time was also provided.

Neuroimaging data acquisition and preprocessing. Participants were scanned in
a 3T Siemens Magnetom Tim Trio scanner, using a 12-channel receiver array head
coil. High-resolution, T1-weighted anatomical images were collected for each
subject using an MPRAGE sequence (TR = 2.5 s, TE = 3.93 ms, TI = 900 ms, flip
angle = 8°, 176 sagittal slices, 1 × 1 × 1mm, 256 × 256 matrix in a 256 mm field-of-
view, or FOV). Functional data were collected using a standard gradient echo EPI
sequence (TR = 2 s, TE = 20 ms, flip angle = 80°, 40 near axial slices at an orien-
tation of 30° to the AC-PC axis, 3 × 3 × 4mm3, 64 × 64 matrix in a 192 × 192mm2

FOV) and local shimming to the field of view. Analysis of the imaging data were
conducted using BrainVoyager QX Version 2.8, NeuroElf V1.1 software packages
(http://www.neuroelf.net), the RSA toolbox51, and additional in-house Matlab
functions. Functional imaging data preprocessing included discarding the first 16
volumes, motion correction, slice scan time correction (using sinc interpolation),
spatial smoothing using a three-dimensional Gaussian filter (6 mm FWHM),
voxelwise linear detrending, and high-pass filtering of frequencies above three
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cycles per scan. Structural and functional data of each participant were then
transformed to standard Talairach stereotaxic space52.

Behavioral data analysis. A three-way repeated measures ANOVA was used to
determine the effect of outcome valence (reward vs. punishment), modality (pri-
mary vs. secondary/monetary), and level on pleasantness ratings across partici-
pants. Outliers were detected using boxplots of mean pleasantness ratings for cues
predicting outcomes of different levels from different categories (averaging all
ratings for trials of the same level of magnitude/intensity from the same category
within a participant). There was one outlier in the data, assessed as a value (the
mean rating for a cue indicating $5 gain for one participant) greater than 1.5 inter-
quartile range from the edge of the box. Mean pleasantness ratings, after removing
the outlier, were normally distributed, as assessed by Shapiro–Wilk's test of nor-
mality (all p > .05). Mauchly’s test of sphericity indicated that the assumption of
sphericity had been violated for the three-way interaction (χ2(5) = 30.563, p =
0.000012) and the two-way valence × magnitude and modality × magnitude inter-
actions (χ2(5) = 11.122, p = 0.049 and χ2(5) = 12.546, p = 0.028). Therefore,
Greenhouse–Geisser correction was applied to the degrees of freedom of F statistics
and thereby the assessment of significance of corresponding results.

fMRI data analysis: general linear models. Univariate analysis of the neuroi-
maging data was based on GLMs using ordinary least squares. The main GLM was
designed to identify univariate value and saliency signals with all categories pooled
together. In this GLM, each trial was divided into two periods1: the cue period in
the first half (0–6 s) of a trial2; the outcome period in the second half of a trial
(6–12 s). As we are primarily interested in the anticipation period, the cue period is
the focus of this article. To ensure that activation to the delivered outcomes did not
contaminate the neural responses to the cue, cues of actualized and non-actualized
trials were modeled separately, and only analysis of the cues of non-actualized trials
is reported. For non-actualized trials, the cue was modeled by a binary regressor
and two parametric regressors modulated by trial-by-trial value and saliency
estimates for each participant. Value was defined as the pleasantness rating in the
cue period of the current trial; saliency was computed by taking the squared
difference of the pleasantness rating and the neutral point 5. For actualized trials,
the cue was modeled by a binary regressor only, serving as a regressor of no
interest. For future analysis not described in this article, we also included separate
binary predictors for actualized and non-actualized outcomes of all categories.
Actualized outcomes were further modeled by two parametric regressors modu-
lated by value and saliency of the outcomes. Value and saliency estimates were
demeaned prior to creating the parametric regressors. Six motion parameters were
included as regressors of no interest, as well as regressors of missed trials (if any).
All regressors were convolved with a standard canonical hemodynamic response
function. Activation during inter-trial intervals served as baseline.

In a whole-brain single-subject analysis, the model was independently fit to the
activity time course of each voxel, yielding eight coefficients for each participant
(the presentation of cues of non-actualized trials, cue value of non-actualized trials,
cue saliency of non-actualized trials, the presentation of cues of actualized trials, the
presentation of outcomes of actualized trials, outcome value of actualized trials,
outcome saliency of actualized trials, the presentation of outcomes of non-
actualized trials). These coefficients were taken to a random-effects group analysis,
in which one-sample t tests over the single-subject contrasts were conducted. A
per-voxel threshold of p< 0.005 was used, and cluster-size thresholding (at the
level of p < 0.05) was performed using the cluster-level statistical threshold
estimator plugin of the BrainVoyager software. This implementation involves a
Monte Carlo simulation of the random process of image generation, taking into
account the estimated smoothness of the map, as was described in previous
publications53, 54,]. For the reporting of activation clusters, anatomical locations
were determined via visual inspection and the Talairach Daemon database.

A number of other GLMs were constructed for the examination of the encoding
of category identities and for control analyses of the saliency signals
(see Supplementary Methods for details for all GLMs).

One more GLM was estimated to extract parameter estimates (Fig. 2) from
regions of interest that were used to visualize value or saliency representations. In
this GLM, each pleasantness rating level from 1 to 9 in the cue period was modeled
by a separate binary regressor. It also contained regressors of no interest including
cue presentations for actualized trials, outcome periods, missed trials, and motion
parameters.

ROI analysis was conducted in two types of ROIs. First, we used external ROIs
based on a meta-analysis of human neuroimaging studies on value
representation20. These ROIs were taken directly from the meta-analysis and are
available on the authors' website (http://www.psych.upenn.edu/kable_lab/
Joes_Homepage/Resources.html) (Fig. 4). Second, to examine effects of both value
and saliency in value/saliency brain areas (Figs. 2 and 3), we defined ROIs using the
LOSO procedure24, 55,] in order to prevent circularity and to avoid the introduction
of biases56. In the LOSO procedure, we first identified interim ROIs (for either cue
value or cue saliency) in certain brain regions from the data of n−1 participants.
The interim ROIs were defined by carrying out one-sample t tests over the single-
subject contrasts statistics using a cluster-size thresholding (1000 samples) with the
statistical threshold of FWE p < 0.05 (per-voxel threshold p< 0.005). New spherical
ROIs were constructed around the center of gravity of these interim ROIs with 5

mm radius, and these spherical ROIs were used as the participant-specific ROIs for
the independent participant that was not included in the analysis to determine the
ROI. We repeated the same procedure n times for each participant using data from
the remaining n−1 participants. As a result, all such ROIs were determined from an
independent sample of participants, thereby avoiding potential biases and so called
“double-dipping”57.

For reporting results from the ROI analyses, mean beta values (regression
coefficients/parameter estimates averaged across participants) from the GLMs are
plotted (Figs. 2b, c, 3b, c, and 4, Supplementary Figs. 3 and 5). The units of the beta
values are on the same scale as z-scores because the BOLD data was z-transformed
before fitting the GLM. These β values were then subject to subsequent second-level
statistical tests, such as regressions against variables of interest, paired t-tests
between conditions, or t-tests against zero.

fMRI data analysis: representational similarity analysis. One participant was
excluded for this part of the analysis, because he did not encounter the entire set of
16 conditions in the cue period, due to a technical issue. The following pattern
analysis was performed on data from the 17 remaining participants. Data pre-
processing for multi-voxel pattern analysis (MVPA) followed a similar procedure
to the one used for the univariate analysis, except that no spatial smoothing was
performed to preserve the voxelwise activation patterns. To prepare the data for
MVPA, a different GLM was fit to the activity time course of each voxel. This GLM
included one binary regressor for the cue period of each of the 16 non-actualized
trial types (4 categories × 4 levels per category), as well as regressors of no interest
for the outcome period and the actualized trials and motion parameters. Voxel-
wise activity patterns (β maps) for each of the 16 non-actualized trial types (4
categories × 4 levels per category) were then extracted with this GLM and served as
a basis for the analysis described below.

To examine the encoding of value, saliency, and category information in multi-
voxel patterns, we used an analysis technique referred to as RSA58. This analysis
focuses on similarities and dissimilarities in activation patterns for different
experimental conditions and examines theoretical models that may explain the
observed patterns. This methodology was combined with a whole-brain
“searchlight” procedure59, in which we examined patterns in the immediate
neighborhood of every voxel (a 27-voxel cube with that voxel as the center) in the
brain. Similar to a whole-brain univariate GLM analysis, the searchlight RSA
procedure allowed us to find where in the brain certain task-related variables were
encoded, except that now we focused on the multi-voxel pattern of activation,
rather than the activation magnitude in single voxels.

The activation patterns of an m-voxel searchlight for all 16 conditions of
interest in the task can be represented by 16 m-dimensional vectors of beta
coefficients bi; i ¼ 1; 2; ¼ ; 16. Using Pearson correlation distance, the
dissimilarity between the patterns of two conditions bj and bk is then quantified as

dPearson bj; bk
� � ¼ 1� corr bj; bk

� � ¼ 1� <bj; bk>
kbjkkbkk

:

One important property of the Pearson correlation distance is that it is invariant
to changes in the scaling of elements of bi, i.e., the magnitude of voxel-wise
activities. Therefore, Pearson correlation distance is sensitive to the
representational geometry only and can be regarded as a complement to traditional
univariate GLM-based analysis of fMRI data, which is based on mean activations.
Importantly, Pearson correlation distance does depend on the implicit baseline
estimate of the GLM that is used to extract beta values for the various conditions.

For each searchlight, we generated a 16 × 16 neural representational
dissimilarity matrix (neural RDM) for each individual participant, based on the
Pearson correlation distance between activity patterns for all possible pairs of
conditions (Fig. 5).

Candidate model representational dissimilarity matrices (model RDMs) were
constructed under different hypotheses of information coding by neural activation
patterns. For instance, if category identity of the cues is the only encoded
parameter, then the distance between two conditions from the same category will
be zero, while the distance between two conditions from different categories will be
positive. Similarly, if we hypothesize that a continuous variable (e.g., value or
saliency) is represented by multi-voxel patterns of a certain brain region, the
distance between any two conditions should be the difference between the means of
that variable in these two conditions.

Given the focus of this study on category, value, and saliency encoding, the
following candidate models were constructed:

(1) The category model (Fig. 5b). In this model, any two conditions had a
distance of 0 if they were from the same category, and 1 if they belonged to
two different categories.

(2) The value model (Fig. 5c). The distance between a pair of conditions was
determined by difference between the mean values (mean pleasantness
ratings) of the two conditions on an individual-subject basis.

(3) The saliency model (Fig. 5d). The distance between a pair of conditions was
determined by the difference between the mean saliencies of the two
conditions on an individual-subject basis.
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Five additional control models for category encoding were examined, which
included the following:

(1) The category-mean-value model (Fig. 6a). In this model, the distance
between any two conditions from the same category was 0. The distance
between any two conditions from two different categories was defined as the
difference in mean values (ratings) of the two categories.

(2) The primary-secondary model (Fig. 6b). This model distinguished conditions
by their modality only. Therefore, if two conditions were both from the same
modality (both primary outcomes, i.e., pleasant faces or electric shocks or
both secondary/monetary outcomes), they were indistinguishable by this
model, namely their distance was defined as 0. Otherwise, the distance
between the two conditions was 1.

(3) The positive-negative model (Fig. 6c). This model distinguished conditions
by their valence only. Therefore, if two conditions were both positive
outcomes (rewards, i.e., monetary gains or pleasant faces) or both negative
outcomes (punishments, i.e., monetary losses or electric shocks), then they
were indistinguishable by this model, namely their distance was defined as 0.
Otherwise, the distance between the two conditions was 1.

(4) The money vs. face vs. shock model (Fig. 6d). This model was similar to the
category model which distinguished conditions by the four categories, except
that here monetary gains and losses were combined as one single category.

(5) The monetary gains vs. losses vs. primary model (Fig. 6e). This model was
similar to the category model which distinguished conditions by the four
categories, except that here the two primary categories (pleasant faces and
electric shocks) were combined as one single category.

Neural RDMs (to be explained) were then compared to candidate model RDMs
(serving to explain). Statistical inference was performed to assess the contribution
of each candidate model RDM to the neural RDM, using the RSA toolbox51 and
customized Matlab scripts. The first-level analysis was conducted at the level of
individual participants; Spearman’s rank correlation coefficients between the
single-subject neural RDM and the candidate model RDM of interest for this
participant were computed, using only the lower triangles (excluding the diagonal
elements) of both RDMs. The Spearman’s rank correlation coefficients of all
participants were then taken to a second-level group analysis, in which a one-sided
signed-rank test across the single-subject correlations was performed, generating
the effect size estimate (z-value) for this candidate model. For searchlights, each z-
value was assigned to the searchlight's center voxel. Whole-brain z-maps formed by
this procedure were then subject to statistical thresholding on a per-voxel basis (at
the level of p < 0.005) and cluster-size thresholding (at the level of FWE p < 0.05
with 1000 random samples) using the NeuroElf package.

Principal component analysis. To better elucidate the nature of neural signals in
the form of multi-voxel patterns, PCA were run on the β coefficients for the 16 cue
conditions in various ROIs. The suitability of PCA (including multivariate nor-
mality, linearity, and moderate correlations between dimensions) was assessed prior
to analysis. For each brain region, the PCA was first conducted on the βmaps of this
brain region on every participant. The percentages of total variance explained by the
first 5 principal components in each participant are presented in Fig. 7a. The first 3
principal components were used in mixed-effects regressions, in which our main
variables of interest (category identity, value, and saliency) served as independent
variables and subject was treated as a random effect. Category identity was coded by
three dummy variables for monetary gains, monetary losses, and pleasant face,
respectively, and the electric shock served as the reference category. Group level
statistics were reported for the significance of the effects of category, value, and
saliency on each of the principal components. To assess the loading structures of
PCs and the consistency across subjects, we first calculated the frequency of loading
coefficients falling under a particular bin separately for each participant, and
obtained both the mean and the S.E.M. of frequencies in this bin across participants,
and then repeated this for all bins, spanning the entire range of loading coefficients.
We then plotted the mean frequencies and the S.E.M.s in each bin in the form of a
histogram with error bars, as shown in Fig. 7b and Supplementary Fig. 7b.

Code availability. Analysis codes for RSA and PCA are available at https://github.
com/zhihao13/Zhang_et_al_17.

Data availability. All relevant data and other codes are available from the authors
upon reasonable request.
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