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Cholecystokinin is a gastrointestinal peptide hormone with important roles in metabolic
physiology and the maintenance of normal nutritional status, as well as potential roles in
the prevention and management of obesity, currently one of the dominant causes of direct
or indirect morbidity and mortality. In this review, we discuss the roles of this hormone and
its receptors in maintaining nutritional homeostasis, with a particular focus on appetite
control. Targeting this action led to the development of full agonists of the type 1
cholecystokinin receptor that have so far failed in clinical trials for obesity. The possible
reasons for clinical failure are discussed, along with alternative pharmacologic strategies
to target this receptor for prevention and management of obesity, including development
of biased agonists and allosteric modulators. Cellular cholesterol is a natural modulator of
the type 1 cholecystokinin receptor, with elevated levels disrupting normal stimulus-
activity coupling. The molecular basis for this is discussed, along with strategies to
overcome this challenge with a corrective positive allosteric modulator. There remains
substantial scope for development of drugs to target the type 1 cholecystokinin receptor
with these new pharmacologic strategies and such drugs may provide new approaches
for treatment of obesity.

Keywords: cholecystokinin, type 1 cholecystokinin receptor, obesity, appetite regulation, positive allosteric
modulator, biased agonist
INTRODUCTION

Nutritional status reflects the health of an organism, with both extremes of this continuum that
represent malnutrition and obesity indicative of and/or causing major health problems. In
particular, obesity has become one of the dominant health problems present throughout the
world. This has many associated co-morbidities, such as diabetes mellitus and cardiovascular
disease, which are responsible for immense expense, suffering, and even mortality. Many potential
therapeutic targets have been identified for the treatment of this problem (1, 2). The focus of this
review is the role played by one specific gastrointestinal hormone, cholecystokinin, in the physiology
of nutrition and potentially for therapeutic approaches to prevent and manage obesity.

The gastrointestinal tract plays a central role as the portal for the nourishment of an organism.
The gastrointestinal endocrine system is key for the regulation and integration of multiple processes
that contribute to normal nutrient digestion and absorption. This includes the control of secretion
n.org June 2021 | Volume 12 | Article 6846561
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of acid and pepsin in the stomach, rate of gastric emptying,
biliary secretion and gallbladder contraction, pancreatic exocrine
secretion, and intestinal and colonic transit. The gastrointestinal
endocrine system provides remarkable orchestration of a
complex series of events that contribute to optimal rates of
delivery of nutrient-containing chyme having composition
ideal for intestinal absorption. Perhaps even more remarkable
is the frequency that these processes occur seamlessly in the
background, without people being aware of the component
events, even after tremendous variation in the size and
composition of meals ingested.
CHOLECYSTOKININ AND ITS
RECEPTORS

One of the classical gastrointestinal hormones known to play a
central role in regulating nutritional homeostasis is
cholecystokinin (3). This is a peptide hormone synthesized and
secreted from neuroendocrine I cells scattered throughout the
mucosa in the proximal two-thirds of the small bowel. Major
stimulants of its release include lipids and protein in the meal.
Earliest recognized physiologic effects of this hormone include
the stimulation of gallbladder contraction (described as
cholecystokinin) and pancreatic exocrine secretion (described
as pancreozymin). Ultimately, it was appreciated that the same
peptide was responsible for both activities, and what became
known as cholecystokinin-pancreozymin, was ultimately
shortened to cholecystokinin (CCK). With bile playing a key
role in micelle formation for the digestion of fat and pancreatic
enzymes critical for the digestion of fat and protein, the rationale
for the parallel roles for CCK in this servomechanism becomes
clear. Other physiologic actions of this hormone include slowing
gastric emptying, to titrate the rate of delivery of nutrients to
allow optimal digestion and absorption. All of these actions are
important to facilitate nutrient assimilation for the organism.

In modern society, we often have ready access to high caloric
foods, and we do not have to expend the energy previously
required by our ancestors to gather this food. This has shifted the
energy balance, thereby contributing to the tendency for people
to be overweight or frankly obese. Teleologically, in attempt to
address this, cholecystokinin can also suppress appetite, limiting
overeating and weight gain. Indeed, cholecystokinin was one of
the first GI hormones recognized as having this effect (4).

The effect of cholecystokinin on appetite is mediated by a
class A G protein-coupled receptor (GPCR) identified as the type
1 cholecystokinin receptor (CCK1R) (4). These receptors are
present on vagal afferent neurons present within the upper gut
wall (5). Those neurons subsequently affect central nervous
system nuclei involved in appetite regulation. It is important to
remember that the dominant target for controlling appetite is a
peripheral CCK1R, and there is no need for a potential drug that
targets these receptors to cross the blood-brain barrier.
Cholecystokinin also binds with high affinity and acts with
high potency at a structurally-related receptor identified as the
type 2 cholecystokinin receptor (CCK2R) (6, 7). CCK2R is
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present on the parietal cell where it mediates gastric acid
secretion and on various neurons in the periphery and central
nervous system (7). While both CCK1R and CCK2R bind the
same peptide with high affinity and signal similarly, they have
different ligand recognition properties (6, 7). The CCK2R is also
known as the gastrin receptor, with cholecystokinin and gastrin
sharing the same carboxyl-terminal pentapeptide amide
(GWMDF-amide). Indeed, the peptide pharmacophore for the
CCK2R is the carboxyl-terminal tetrapeptide amide (WMDF-
amide) that is present in both CCK and gastrin. The
pharmacophore for CCK1R extends beyond this small focused
region, requiring seven amino acids for receptor activation,
including a tyrosine sulfate present uniquely at the position
seven residues from the carboxyl terminus of cholecystokinin
[(Y-sulfate)MGWMDF-amide].
CCK1R-ACTIVE DRUGS FOR OBESITY

When the prevalence and adverse implications of obesity began
to be appreciated, cholecystokinin agonists that are active at
CCK1R were widely sought as possible therapeutic tools. Indeed,
several major pharmaceutical companies launched programs to
develop full agonists with cholecystokinin-like activity (8–11).
All such agents, including peptides, peptoids and small
molecules, have been active in reducing meal size and causing
weight loss. Most of the drug candidates in development
exhibited selectivity for CCK1R over CCK2R, but one of these
candidates exhibited agonist activity at CCK1R and antagonist
activity at CCK2R (8). There may have been an advantage of
such a compound to not only reduce appetite, but also to reduce
acid secretion. However, for approval for an obesity drug, the
Food and Drug Administration requires such agents to be more
efficacious than acute dieting. No such agents have yet met this
primary endpoint in clinical trials.

A challenge in developing effective CCK1R agonists for the
treatment of obesity has been side effects of highly potent and/or
long-acting full agonists that can cause nausea, abdominal
cramping, and diarrhea, with the theoretical possibility
observed in rodents of trophic effects on receptor-bearing cells
and the possible progression and/or development of pancreatic
cancer (11). With the disappointing effects observed in the early
clinical trials for obesity and these theoretical side effects and
toxicities, the enthusiasm for developing agents that are exclusive
cholecystokinin agonists for obesity has waned, and we are not
aware of any active drug development programs continuing to
pursue this (12). However, CCK1R continues to be a potential
target of interest for programs that combine different agents to
take advantage of complementary and synergistic effects of
distinct hormonal systems (2, 13–15).

Gastrointestinal endocrinology is a field that has progressed
through various stages, as described by Jens Rehfeld (16–18). In
the early years, many gastrointestinal hormones were discovered
based on regulatory activities such as those described above.
Subsequently, we have been able to biochemically characterize
these hormones and quantify them. This led to increased
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understanding of physiologic roles, as well as pathologic and
even potential therapeutic roles for these hormones. In more
recent years, the focus shifted toward the receptors for these
hormones. This provided potential targets for drug discovery. Of
these receptors, as noted above, even when a hormone has an
ideal physiologic effect that could be mimicked by such a drug,
there can still be shortcomings and limitations of such agents.

Molecular pharmacology has recently recognized the
potential power of new types of receptor-active drugs
providing “texture” to the response, rather than simply acting
to fully turn on or off the post-receptor signaling mechanisms
(19, 20). This can take the form of biased agonists or allosteric
modulators of natural hormonal action (Figure 1). We believe
that both of these newer types of drugs have the potential to
reinvigorate drug discovery efforts targeting the cholecystokinin
receptor for the treatment of obesity.
RATIONALE FOR DEVELOPING BIASED
AGONISTS OF CCK1R

After the initial recognition of GPCRs as key conduits for
regulation of cellular function, the focus was on signaling
through association with a dominant heterotrimeric G protein,
as the presumed driver of functional response for this class of
receptors. This focus was on signaling mediated by the activated
GTP-bound G protein alpha subunit. It was subsequently
recognized that the beta-gamma subunits of the G protein
could independently mediate signaling activities (21). We now
recognize that multiple distinct G proteins can couple with an
Frontiers in Endocrinology | www.frontiersin.org 3
individual GPCR, and that even non-G protein-mediated
signaling can occur (22, 23). For example, arrestin proteins
were identified as prominent proximal scaffolds of alternate
transducer proteins for activated GPCRs (22). All this
contributed to our current concept of pleiotropic signaling
initiated by GPCRs. With this came the recognition that
various ligands, both naturally occurring hormones and drugs,
can stimulate various parts of this signaling machinery in a
selective manner (19, 20). Thus, there has been elevated interest
in the concept of “texture” of the biological responses.

Almost all of our knowledge of signaling events initiated by
cholecystokinin occupation of CCK1R has come from use of
synthetic CCK-8 and with a particular focus on intracellular
calcium or inositol phosphate as second messengers generated
downstream of receptor association with Gq/11 proteins.
Although it is now recognized that a variety of signaling events
distal to activation of the CCK1R can occur beyond those
mediated by Gq/11 proteins (24), essentially all drug discovery
activity to date has focused on efforts to identify full agonists by
measuring Gq-mediated responses. There are no published data
systematically evaluating the broad spectrum of signaling
responses to various CCK ligands. Due to the paucity of such
data, it is not yet possible to identify the optimal signaling profile
for a biased CCK1R-active drug for the management of obesity.

There are at least two lines of evidence pointing toward the
potential importance of the broader spectrum of signaling
responses initiated at the CCK1R. One of these relates to
heterogeneity of responses to two naturally-occurring
molecular forms of this hormone, CCK-8 and CCK-58 (25,
26). The other relates to analogues of CCK that have been
prepared and used in the laboratory, the most interesting being
FIGURE 1 | Potential for new types of CCK1R-active drugs. Shown is a diagram of a GPCR, highlighting the orthosteric site of action of the natural agonist ligand
and distinct allosteric sites of action for allosteric modulators. These can be lateral allosteric modulation through membrane lipids like cholesterol or through
association with other membrane proteins, or via ligands that bind to the receptor in places outside of the orthosteric site. Any of these ligands can act as full
agonists, stimulating the full range of pleiotropic signaling events activated by the natural agonist, or reduced responses of some of these events (partial agonist and
biased agonists). Traditional drug development has focused on full agonists and antagonists (inverse agonists). It is now clear that “texture” in responses can be
evoked by allosteric modulation and/or biased agonists.
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what has been called a mixed high affinity agonist/low affinity
antagonist of CCK1R, JMV-180 [also known as an O-phenyl
ethyl ester analogue of CCK, CCK-OPE (27)] (28).

With the pharmacophore of cholecystokinin that is recognized
at CCK1R being defined as the carboxyl-terminal heptapeptide-
amide, present within synthetic CCK-8, and with this peptide
widely available for a very reasonable price, almost all in vitro and
in vivo studies of cholecystokinin biologic activity have utilized this
form of this hormone. This includes the feeding studies that have
universally demonstrated impact to reduce meal size (4). The
physiologic importance of the CCK1R has also been
demonstrated with a selective antagonist that has been shown to
stimulate food intake (29). However, at least a subset of the studies
with CCK-8 also demonstrated shortened interval between meals,
offsetting the reduced caloric intake at a single meal; this has
reduced the enthusiasm for CCK agonists as satiety agents for the
treatmentofobesity.However, ofparticular interest, thephysiologic
form of this hormone that is believed to be dominant in the
circulation is CCK-58 (30). Because this peptide is not readily
commercially available and is much more expensive to produce
than CCK-8, far fewer studies have been performed with the
physiologic peptide. There are now compelling data
demonstrating that this form of cholecystokinin not only reduces
meal size, but also extends the inter-meal interval (25, 26). Thus, the
impact of endogenous cholecystokinin released after eating is a net
reduction in caloric intake. The potential differences in signaling
events stimulated by these two forms of cholecystokinin that might
underly their different physiologic profiles have not been
investigated to date.

An analogue of cholecystokinin in which the carboxyl
terminus of this hormone was modified to an O-phenyl ethyl
ester rather than a phenylalanine-amide linked through a peptide
bond was reported to have interesting biological properties.
Extensive work of Gardner led to this analogue being described
as a mixed high affinity receptor agonist and low affinity receptor
antagonist, since it mimicked the increase in pancreatic secretion
stimulated by CCK-8, while not exhibiting the supramaximal
inhibition of secretion typical of CCK-8 (28). This was also
reflected in biological differences in animal models, where
infusions of high doses of full CCK-like agonists such as
caerulein produced pancreatitis, whereas the analogue peptide
did not (31). Moreover, in feeding studies, where full CCK-like
agonists reduced meal size, this peptide did not (32). In cellular
assays, the peptide analogue appears to elicit a smaller
intracellular calcium response than CCK-8 (33), but detailed
analyses of the full spectrum of signaling and regulatory events
that occur at the CCK1R have not been reported. Rather than
representing a mixed agonist/antagonist or even a partial agonist,
this peptide is most likely a biased orthosteric agonist. Careful
pharmacologic analysis will be important for understanding the
translational relationship between distinct modes of cellular
signaling and the physiologic effects mediated by the CCK1R.

Based on these existing literature observations, it is likely that
some type of biased agonism at CCK1R may have therapeutic
benefit. Such bias can be achieved either by orthosteric or allosteric
agentswith intrinsic biological activity, or couldbe achievedbypure
allosteric modulators that have no intrinsic activity.
Frontiers in Endocrinology | www.frontiersin.org 4
RATIONALE FOR DEVELOPING
ALLOSTERIC MODULATORS OF CCK1R

Allosteric modulators interact with receptors at sites spatially
distinct from the locus where natural agonist hormones act,
termed the orthosteric site (19). This allows such modulators to
bind to the receptor simultaneously with natural hormone.
Allosteric modulators can sculpt the normal responses to
natural hormones, altering the profile of cellular response,
while maintaining the physiologic timing of receptor
stimulation. The modulatory role of such agents can affect
hormone binding and/or biological responses, with the latter
including potential for enhancement or reduction of coupling
events that can be specific to particular signaling pathways. The
allosteric modulatory effects are typically saturable, adding an
additional level of safety to the effects of these agents. It has
previously been suggested that pure allosteric modulators may be
advantageous as CCK1R-active drugs to be used in obesity (34)
- a positive allosteric modulator of CCK1R possessing no
intrinsic agonist activity could enhance the satiety effect of
natural CCK when it is released after a meal (34). The short
half-life of circulating CCK peptides would limit the potential for
side-effects relating to prolonged receptor activation, adding to
the safety profile of such agents.

Extensive work has been done to determine how
cholecystokinin binds to its receptor. Like most peptide
hormones binding to a GPCR, this peptide interacts primarily
at the receptor region sited within external surface of the lipid
bilayer, including interactions with extracellular loop regions
(35). There is also indirect data suggesting peptide interaction
deeper within the helical bundle of this receptor (36). The
peptide binding site is by definition the orthosteric ligand-
binding site of this receptor. The most direct evidence for the
mode of docking this peptide under normal conditions comes
from intrinsic photoaffinity labeling studies in which a
photolabile residue positioned within the pharmacophore is
allowed to form a covalent bond with a spatially-approximated
residue within the receptor (35). This approach used with
substitution of multiple residues spread throughout the
cholecystokinin pharmacophore, providing a series of such
experimentally-derived constraints (35). Receptor mutagenesis
has also been utilized to gain insights into the mode of
cholecystokinin docking at CCK1R and CCK2R, although this
approach is indirect and is largely dependent on loss of function
effects (36, 37).

It is clear that there is a small molecule-binding site in the
helical bundle high in the lipid bilayer in both CCK1R and
CCK2R (38, 39). This is the location of docking for
benzodiazepine agonists and antagonists for these receptors. Of
particular interest, structure-activity studies have localized an
agonist trigger within such small molecules as an isopropyl group
that interacts with receptor residue Leu7.39 (39, 40).
Furthermore, the selectivity for such molecules can be changed
from CCK1R to CCK2R based on the rotation at a single bond.
Multiple lines of evidence have supported this site as allosteric
within the CCK1R under normal conditions. Of interest, though
not yet supported directly, the carboxyl-terminus of
June 2021 | Volume 12 | Article 684656
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cholecystokinin has been predicted to be inserted into the helical
bundle for CCK2R (37), which may occupy this region and
preclude simultaneous binding of ligands here at the time
peptides are bound.

To date, almost all the small molecules described to bind to
CCK1R are agonists or antagonists, with minimal or no
modulatory behavior for cholecystokinin action. Only one
small molecule agonist has been found to also exhibit weak
positive allosteric modulatory activity (41). This is perhaps not
surprising, since these agents came from high throughput
screening efforts directed toward this type of molecule. To
date, there have been no pure positive allosteric modulators
(i.e. that have no intrinsic biological activity) that have been
described, which will be required to assess the utility of the
proposed allosteric modulation of physiological CCK signaling.
IMPACT OF CHOLESTEROL ON
CHOLECYSTOKININ RECEPTORS

Several years ago, it was recognized that cholecystokinin
stimulus-activity coupling at CCK1R was abnormal at
gallbladder receptors of patients with cholesterol gallstones
(42–45). This was characterized by an increase in binding
affinity for cholecystokinin, with reduced gallbladder
contraction in response to this hormone. Indeed, those patients
are also known to have bile that is super-saturated in cholesterol,
with the possibility that this lipid could be transferred to adjacent
cell membranes. Extensive studies have demonstrated that both
CCK1R and its proximal G protein (Gq) are normal in the
gallbladder muscularis of such patients, yet the coupling
mechanism appears to be aberrant (42–45). This was shown to
be corrected by extraction of cholesterol from such cells in vitro.
Of note, CCK2R, a closely related GPCR, does not exhibit the
cholesterol sensitivity of CCK1R. Another important control was
that patients with pigment gallstones and similar inflammation
exhibited normal stimulus-activity coupling at the gallbladder
CCK1R. Animal models such as the prairie dog fed a high
cholesterol diet confirmed this mechanism, exhibiting
increased cholesterol in bile and the development of
cholesterol gallstones with abnormal cholecystokinin stimulus-
activity coupling present (46).

The molecular basis of the impact of cholesterol on stimulus-
activity coupling at the CCK1R has been extensively explored
(47, 48). Cholesterol composition of the lipid bilayer is known to
affect general physicochemical characteristics, such as fluidity
and the shape of the membrane. While these features were
initially implicated in the impact of cholesterol on many
GPCRs, it has also become clear that there can be distinct
direct sites of interaction between this lipid and membrane
proteins. A series of cholesterol-association amino acid
sequence motifs within membrane proteins have been
described, with many of these found to be present in large
percentages of GPCRs. However, it is not clear how many such
sites are actually utilized and how many of these are functionally
important. Cholesterol association with GPCRs has been
Frontiers in Endocrinology | www.frontiersin.org 5
reported to affect binding affinity, signaling, and trafficking, but
the impact of this has been inconsistent, with no clear rules yet
established. CCK1R is one of those receptors with multiple
cholesterol-association motifs in the primary sequence. Of
note, CCK2R shares some of these motifs as well, despite not
exhibiting the functionally important cholesterol sensitivity of
CCK1R (47, 48). The cholesterol content has been modified by
direct extraction and physical delivery, as well as use of drugs to
affect cholesterol metabolism, and genetic modification of the
cell’s machinery to produce and regulate cholesterol. The impact
of cholesterol on CCK1R has been attributed to a CRAC motif
low in transmembrane segment 3, with this site identified
through a series of CCK1R/CCK2R chimeric constructs and
then focused mutagenesis. One of the most informative CCK1R
mutants involved replacement of a tyrosine residue within this
motif with an alanine (49). This mimicked the effect of high
cholesterol on receptor function with no further impact from
increased cholesterol. The mutant receptor bound CCK and
other agonists with increased affinity, while eliciting reduced
intracellular calcium responses. Because there is no analogous
modulation of CCK2R function by increased cholesterol, the
impact of this lipid on CCK1R is clearly a direct effect.

Of further interest, sterols related to cholesterol, such as bile
acids and phytosterols also potentially affect CCK1R function,
adding structure-activity insights into the specificity of the
choles tero l impact on this CRAC moti f (50 , 51) .
Ursodeoxycholic acid and b-sitosterol have been shown
in vitro to reduce the negative effects of elevated cellular
cholesterol on CCK1R function (50, 51).

While there has been widespread recognition of the
phenomenon of cholesterol sensitivity of CCK1R in the
gallbladder, it was unclear whether peripheral cholecystokinin
receptors not bathed in a high cholesterol solution such as super-
saturated bile would exhibit the same type of abnormality. It is
thus noteworthy that there are now several reports showing the
existence of abnormal membrane lipid composition in some
patients who are obese or have metabolic syndrome (52, 53).
This may include an increase in cholesterol, analogous to what is
observed in the cholesterol gallstone patient gallbladder.
Unfortunately, it is very difficult to get direct data on the
characteristics of the CCK1R present on relevant enteric vagal
afferent neurons. In initial efforts to evaluate the possible impact
of varied membrane composition on CCK1R function, we
developed techniques to rapidly express this receptor on easily
accessible cells from the peripheral circulation of a broad variety
of patients (54). To achieve this, we utilized adenoviral delivery
of the wild type CCK1R to buffy coat cells, and quantified
cholecystokinin responsiveness 24 hours later. It was
impressive that there was a broad spectrum of hormonal
responsiveness observed, and this correlated with various
metabolic parameters such as increased body mass and
diabetes. Since this was achieved ex vivo, it became important
to explore whether the same phenomenon could be observed in
vivo. For this, we utilized cholecystokinin-stimulated gallbladder
contraction quantified using cholecystokinin-cholescintigraphy
(hepatobiliary iminodiacetic acid scintigraphy, HIDA scanning)
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in patients having no gallbladder disease and normal full
gallbladder contraction in response to hormone (55). These
patients also exhibited a similar broad spectrum of
cholecystokinin responsiveness. This, too, supports the
presence of at least a subset of patients exhibiting reduced
stimulus-activity coupling at CCK1R, with some of these
patients typical of those who were likely included in previous
clinical trials for the treatment of obesity. We believe that this
dysfunction of cholecystokinin stimulus-activity coupling could
have had a negative impact on previous trials of CCK1R agonists
in obesity. Perhaps most exciting about this observation is the
theoretical ability of a positive allosteric modulator to correct the
dysfunctional cholecystokinin stimulus-activity coupling at this
receptor. Here, too, it will be necessary to develop such agents to
test this hypothesis.
SUMMARY

The type 1 cholecystokinin receptor continues to be a potentially
important target for drugs to prevent and manage obesity, a
major public health problem responsible for much morbidity
Frontiers in Endocrinology | www.frontiersin.org 6
and mortality. While the receptor has previously been the target
of full agonists for this application, they have failed clinical trials,
due to lack of superiority over acute dieting. There are substantial
concerns about side effects and/or toxicity of increasing potency
and duration of action of CCK1R agonists. Here, we make the
case for potential advantages of biased agonists and/or positive
allosteric modulators as new types of drugs targeting this
receptor for obesity treatment in a safer and more effective
manner. It will be important to develop such agents and to test
them for proof-of-concept in a clinical setting.
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