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Abstract: Many-valued (MV; the many-valued logics considered by Łukasiewicz)-algebras are algebraic
systems that generalize Boolean algebras. The MV-algebraic probability theory involves the notions of the
state and observable, which abstract the probability measure and the random variable, both considered
in the Kolmogorov probability theory. Within the MV-algebraic probability theory, many important
theorems (such as various versions of the central limit theorem or the individual ergodic theorem) have
been recently studied and proven. In particular, the counterpart of the Kolmogorov strong law of large
numbers (SLLN) for sequences of independent observables has been considered. In this paper, we
prove generalized MV-algebraic versions of the SLLN, i.e., counterparts of the Marcinkiewicz–Zygmund
and Brunk–Prokhorov SLLN for independent observables, as well as the Korchevsky SLLN, where the
independence of observables is not assumed. To this end, we apply the classical probability theory and
some measure-theoretic methods. We also analyze examples of applications of the proven theorems. Our
results open new directions of development of the MV-algebraic probability theory. They can also be
applied to the problem of entropy estimation.

Keywords: Brunk–Prokhorov SLLN; Korchevsky SLLN; Marcinkiewicz–Zygmund SLLN;
MV-algebraic probability

1. Introduction

MV-algebras, being generalizations of Boolean algebras, were introduced by Chang [1] and used in
the analysis of many-valued logic. Since this time, the theory of MV-algebras (see [2] and the references
therein) has been considerably developed. The role of MV-algebras in the theory of quantum structures
was discussed in [3,4].

Carathéodory defined the basic notions of point-free probability, replacing Kolmogorovian probability
measures on σ-algebras by strictly positive probability measures on σ-complete Boolean algebras and
random variables, defined within the Kolmogorov probability theory as measurable functions on the
event space Ω, by functions from the σ-algebra of Borel subsets of R into the σ-Boolean algebra of events
(see, e.g., [5]). The MV-algebraic probability theory generalizes the Boolean theory of probability, built by
Carathéodory and von Neumann. In this paper, we assume that a state m : M→ [0, 1] on an MV-algebra
M is a normalized σ-additive functional. Therefore, for each observable x : B (R) → M, the function
mx : B (R)→ [0, 1] of the form mx (A) = m (x (A)), A ∈ B (R), is a probability measure. Another notion
of a state, which is not considered in this paper, was introduced by Mundici [6] as a normalized additive
functional s : M→ [0, 1]. The σ-additivity of such a functional is obtained via the Kroupa–Panti theorem
(see, e.g., Mundici [7]) and Riesz representation.
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Main theorems of the MV-algebraic probability theory, including the basic version of the central
limit theorem (CLT), laws of large numbers, and the individual ergodic theorem, can be found in [4,8,9].
In the MV-algebraic setting, there exist three versions of the SLLN (see [4,8]). The first one concerns
the convergence of an independent sequence {xi}i∈N of square-integrable observables in a probability

MV-algebra (M, m), satisfying the Kolmogorov condition (K): ∑∞
i=1

σ2(xi)
i2 < ∞, where σ2(xi) is the variance

of xi, i ∈ N. The analogous version of the SLLN was proven for a strongly independent sequence {xi}i∈N
of square-integrable weak observables, satisfying (K). The third MV-algebraic version of the strong law of
large numbers concerns the convergence of a �-independent sequence {xi}i∈N of square-integrable weak
observables, satisfying (K), under the additional assumption that the considered MV-algebra M is weakly
σ-distributive. Generalized versions of the MV-algebraic central limit theorem, i.e., the Lindeberg and
Lyapunov CLT, as well as the Feller theorem were proven by Nowak and Hryniewicz [10]. It is important
to underline that, similar to in the Kolmogorov probability theory, the MV-algebraic versions of central
limit theorem and strong law of large numbers are different types of theorems, since they concern different
types of convergence of scaled sums of observables, i.e., the convergence in distribution in the first case
and the convergence m-almost everywhere in the second case.

The MV-algebraic probability theory was also applied in the Atanassov intuitionistic fuzzy sets
and interval-valued fuzzy sets settings (see, e.g., [11–18]). The notion of probability for the Atanassov
intuitionistic fuzzy sets was introduced by Szmidt and Kacprzyk [19]. Some interesting aspects of the
MV-algebraic probability theory were also studied in [20–23], etc.

As we have mentioned before, Riečan proved the MV-algebraic version of the SLLN for independent
observables satisfying the Kolmogorov condition. This is a counterpart of the classical Kolmogorov theorem
for independent square-integrable random variables, which is important for the Kolmogorov probability
theory. However, in many practical problems, its assumptions are not satisfied, e.g., in the case where the
second moments of the random variables do not exist or the random variables are dependent. In such
situations, other strong laws of large numbers, including the Marcinkiewicz–Zygmund, Brunk–Prokhorov,
and Korchevsky SLLN, are effective tools. In this paper, we prove generalized versions of the SLLN,
i.e., the Marcinkiewicz–Zygmund, Brunk–Prokhorov, and Korchevsky SLLN, within the MV-algebraic
probability theory, applying their classical counterparts and some measure-theoretic methods. The first two
theorems, which were also proven by the authors in a non-MV-algebraic interval-valued fuzzy sets setting
(see [24]), are devoted to sequences of independent observables in a probability MV-algebra, whereas
the last one concerns observables taking values in a probability MV-algebra with the product, and their
independence is not required. Since the above-mentioned classical versions of the SLLN are very useful
from the theoretical point of view, we believe that their MV-algebraic counterparts will contribute to
further development of the MV-algebraic probability theory, including the theory of stochastic processes
in the MV-algebraic setting, and will be very useful for its applications to estimation methods.

We present three examples of the applications of the Marcinkiewicz–Zygmund, Brunk–Prokhorov, and
Korchevsky SLLN for sequences of observables with convergent scaled sums. In particular, independent
identically continuously distributed, as well as both independent and dependent discretely-distributed
observables are considered.

The problem of entropy estimation is important from both theoretical and practical points of view.
Classical versions of the law of large numbers are used in this field. In particular, the authors of [25–27]
applied the SLLN to the analysis of the estimation of information theoretic measures, including entropy
and Kullback–Leibler divergence. On the other hand, in [28], the concept of logical entropy was studied
in the case of the family of IF-events, which can be embedded into a suitable MV-algebra. The results
obtained in this paper are treated by us as tools to introduce methods of estimation of logical entropy, as
well as other types of entropy in the case mentioned above.
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The paper is organized as follows. Section 2 contains notations and selected elements of the
MV-algebraic probability theory. The main results are presented in Section 3. The MV-algebraic versions of
the Marcinkiewicz–Zygmund, Brunk–Prokhorov, and Korchevsky SLLN are proven there. Examples of
applications of the SLLNs are discussed in Section 4. The paper is concluded in Section 5.

2. Preliminaries

We present some notations that are used in the paper.
We denote by R and N the set of real numbers and positive integers, respectively. For n ∈ N,

the symbol B(Rn) denotes the σ-algebra of Borel subsets of Rn.
Let (X,X ) and (X′,X ′) be two measurable spaces. A mapping T : X → X′ is measurable X/X ′ if

T−1 (A′) ∈ X for each A′ ∈ X ′.
For each real-valued random variable X on a probability space (Ω,S , P), we denote by EX the

expected value of X and by E|X|p (for p > 0) the absolute pth moment of X with respect to P (if they exist).

Selected Elements of the MV-Algebraic Probability Theory

The foundations of the theory of MV-algebras can be found in [2]. In this section, we recall only basic
definitions and facts concerning MV-algebras and the MV-algebraic probability theory based on [4,10].

Definition 1. An MV-algebra (M, 0, 1,¬,⊕,�) is an algebra, where M is a non-empty set, the operation ⊕ is
associative and commutative with zero as the neutral element, ¬0 = 1, ¬1 = 0, and for each x, y ∈ M:

x⊕ 1 = 1,

y⊕¬ (y⊕¬x) = x⊕¬ (x⊕¬y) ,

x� y = ¬ (¬x⊕¬y) .

In an MV-algebra (M, 0, 1,¬,⊕,�), a partial order is defined by the relation:

x ≤ y⇔ x�¬y = 0, x, y ∈ M.

The underlying lattice of M is the distributive lattice (M,∨,∧) with the least element zero and the greatest element
one, where the join and the meet are defined as follows: x ∨ y = ¬ (¬x⊕ y)⊕ y; x ∧ y = ¬ (¬x ∨ ¬y) for each
x, y ∈ M.

Definition 2. An MV-algebra M is called σ-complete (complete) if every sequence (non-empty set, respectively) of
elements of M has the supremum in M.

For a non-empty set X and an MV-algebra M, we introduce the notations:

for {An}∞
n=1 ⊂ 2X An ↗ A iff A1 ⊆ A2 ⊆ ... and

⋃∞
n An = A,

for {xn}∞
n=1 ⊂ R xn ↗ x iff x1 ≤ x2 ≤ ... and x = supi xi,

for {bn}∞
n=1 ⊂ M bn ↗ b iff b1 ≤ b2 ≤ ... and b = supi bi.

Definition 3. Given a σ-complete MV-algebra M, a function m : M → [0, 1] is called a state on M if it satisfies
the following conditions for each a, b, c ∈ M and {an}∞

n=1 ⊂ M:

(i) m (1) = 1;
(ii) if b� c = 0, then m (b⊕ c) = m (b) + m (c) ;

(iii) if an ↗ a, then m (an)↗ m (a) .
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A state m on M is called faithful if m (x) 6= 0 for each non-zero element x of M.

Definition 4. A probability MV-algebra is a pair (M, m) consisting of a σ-complete MV-algebra M and a faithful
state m on M.

If (M, m) is a probability MV-algebra, then M is complete (see Theorem 13.8 in [7]).

Definition 5. Given a σ-complete MV-algebra M, a function x : B (Rn) → M is called an n-dimensional
observable in M if it satisfies the following conditions:

(i) x (Rn) = 1;
(ii) x (A)� x (B) = 0 and x (A ∪ B) = x (A)⊕ x (B) for each A, B ∈ B (Rn) such that A ∩ B = ∅;

(iii) for each A, A1, A2, ... ∈ B (Rn) if An ↗ A, then x (An)↗ x (A) .

Theorem 1. Given M a σ-complete MV-algebra, an n-dimensional observable x : B (Rn)→ M, and a state m on
M, the function mx : B (Rn)→ [0, 1] described by:

mx (A) = (m ◦ x) (A) = m (x (A)) , A ∈ B (Rn) ,

is a probability measure on B (Rn).

The proof of the above theorem can be found in [10].

Definition 6. Let (M, m) be a probability MV-algebra. We call an observable x : B (R)→ M integrable in (M, m)

if the expectation Ex =
∫
R tdmx (t) exists. Moreover, we write x ∈ Lp

m for p > 0 if E|x|p =
∫
R |t|

pdmx (t) < ∞,
where E|x|p is the absolute pth moment of x. If x ∈ L2

m, then the variance of x is given by the formula D2x =

Ex2 − (Ex)2.

Definition 7. Observables x1, x2, ..., xn in a probability MV-algebra (M, m) are said to be independent (with respect
to m) if there exists an n-dimensional observable h : B (Rn)→ M (called the joint observable of x1, x2, ..., xn) such
that for arbitrary C1, C2, ..., Cn ∈ B (R):

m (h (C1 × C2 × ...× Cn)) = mx1 (C1)mx2 (C2) ...mxn (Cn) .

Remark 1. Let x1, x2, ..., xn : B (R) → M be independent observables in a probability MV-algebra (M, m)

and hn : B (Rn) → M be their joint observable. Then, for arbitrary Borel measurable function gn : Rn → R,
the mapping given by:

gn (x1, x2, ..., xn) = hn ◦ g−1
n (1)

is an observable.

Convergence almost everywhere of observables in a probability MV-algebra was defined by Riečan
and Mundici [4].

Definition 8. A sequence {zn}∞
n=1 of observables in a probability MV-algebra (M, m) is said to converge to zero

m-almost everywhere (m-a.e.), if:

lim
p→∞

lim
k→∞

lim
i→∞

m

(
k+i∧
n=k

zn

((
−1
p

,
1
p

)))
= 1. (2)
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3. Generalized Versions of the MV-Algebraic Strong Law of Large Numbers

3.1. The Kolmogorov Probability Space of Observables

In the further part of this section, we will use the Kolmogorov probability space of observables
considered by Riečan and Mundici [4].

Let {xi}∞
i=1 be a sequence of independent observables in a probability MV-algebra (M, m) . Let RN be

the space of all sequences of real numbers. Let C be the collection of cylinders of RN, i.e., the collection
of all sets C = Xi∈NCi ⊂ RN, where Ci ∈ B(R) and {i : Ci 6= R} is finite. The probability measure
P : B(RN)→ [0, 1] is uniquely described by:

P(C) = ∏
i

mxi (Ci)

for every C ∈ C of the above form.
We call the triplet (RN,B(RN), P) the Kolmogorov probability space of the observables {xi}∞

i=1 in (M, m) .
For each n ∈ N, we define the nth coordinate random variable ın : RN → R and nth coordinate random

vector ı̄n : RN → Rn by the formulas:

ın (u1, u2, ...) = un,

ı̄n (u1, u2, ...) = (u1, u2, ..., un) . (3)

We recall a shortened version of Proposition 2.14 from [4].

Proposition 1. Let (M, m) be a probability MV-algebra and {xi}∞
i=1 be a sequence of independent observables

in (M, m), with hn : B (Rn)→ M being the joint observable of {xi}n
i=1. Let (RN,B(RN), P) be the Kolmogorov

probability space of the observables {xi}∞
i=1 in (M, m). For each n ∈ N, let gn : Rn → R be an arbitrary Borel

function. Let further the observable yn : B (R) → M be defined by yn = hn ◦ g−1
n and the random variable

ηn : RN → R be described by ηn = gn (ı̄n). Then:

P ◦ η−1
n = m ◦ yn (4)

and the convergence of {ηi}∞
i=1 to zero P-a.s.implies the convergence of {yi}∞

i=1 to zero m-a.e.

3.2. Generalized SLLN for Independent Observables

In this section, we formulate and prove MV-algebraic counterparts of the Marcinkiewicz–Zygmund
and Brunk–Prokhorov SLLN (see Appendix A).

In the following part of the paper, in formulas containing integrals, we will assume that t ∈ Rk for an
appropriate value of k ∈ N.

Let (X,X ) and (X′,X ′) be measurable spaces and a function T : X → X′ be X/X ′ measurable. For a
given measure µ on X , the image measure µT−1 on X ′ has the form:

µT−1 (A′
)
= µ

(
T−1 (A′

))
, A′ ∈ X ′.

We will use the following lemma (a generalization of Lemma 3.2 from [10]), which shows the form of the
expected value of a Borel function of an observable.
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Lemma 1. Let (M, m) be a probability MV-algebra and d ∈ N. Then, for any R-valued Borel function ϕ : Rd → R
and observables h : B

(
Rd
)
→ M, y = ϕ (h) : B (R) → M in (M, m), the expected value E (y) exists if and

only if: ∫
Rd
|ϕ (t) |dmh (t) < ∞.

Furthermore, if the above condition is satisfied, then:

E (y) =
∫
Rd

ϕ (t) dmh (t) .

Proof. Let (X,X ) =
(
Rd,B

(
Rd
))

, (X′,X ′) = (R,B (R)), and T = ϕ. By Theorem 1, µ = mh is a
probability measure. Furthermore, by straightforward computations, we obtain:

µT−1 = mϕ(h) = my.

Therefore, application of the following change of variable formula (see Theorem 16.12 in [29]):∫
X

Tx dµ (x) =
∫

X′
x′ d(µT−1)

(
x′
)

(5)

ends the proof.

The MV-algebraic version of the Marcinkiewicz–Zygmund SLLN concerns the case of independent
observables belonging to Lp

m for p ∈ (0, 2) and a normalizing sequence that is a suitable power of n
as follows.

Theorem 2. Given a probability MV-algebra (M, m), let {xi}∞
i=1 be an independent sequence of observables in

(M, m) having the same distribution mx1 . Let p ∈ (0, 2), x1 ∈ Lp
m, c = 0 for 0 < p < 1 and c = E (x1) for

1 ≤ p < 2. Then:
x1 + x2 + ... + xn − nc

n1/p

converges to zero m-a.e.

Proof. Let (RN,B(RN), P) be the Kolmogorov probability space of the observables {xi}∞
i=1 in (M, m).

The sequence {ıi}∞
i=1 of the coordinate random variables is independent and identically distributed, i.e.,

P ◦ ı−1
i = mxi = mx1 .

Thus, applying Lemma 1, we obtain:

E ıi = E (xi) = c for 1 ≤ p < 2 and E|ıi|p = E (|xi|p) < ∞, i ∈ N.

Then, c = 0 for 0 < p < 1 and c = E ı1 for 1 ≤ p < 2. For each n ∈ N, we denote by hn the joint observable
of {xi}n

i=1, by gn the function:

gn (t1, t2, ..., tn) =
t1 + t2 + ... + tn − nc

n1/p

and by yn the observable:
yn = hn ◦ g−1

n .
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We also introduce the sequence of random variables {ηn}∞
n=1, assuming that ηn = gn(ı̄n). From

Theorem A1, it follows that {ηn}∞
n=1 converges to zero a.s. By Proposition 1:

P ◦ η−1
n = myn

and yn converges to zero m-a.e.

The following MV-algebraic version of the Brunk–Prokhorov SLLN concerns sequences of observables
that are not necessarily identically distributed.

Theorem 3. Let p ≥ 2. Given a probability MV-algebra (M, m), let {xi}∞
i=1 be an independent sequence of

observables in (M, m) such that Exi = 0, xi ∈ Lp
m for each i ∈ N. Let:

∞

∑
i=1

E|xi|p

ip/2+1 < ∞. (6)

Then:
lim

n→∞

x1 + x2 + ... + xn

n
= 0 m-a.e.

Proof. We denote by (RN,B(RN), P) the Kolmogorov probability space of the observables {xi}∞
i=1 in

(M, m) . For the independent sequence {ıi}∞
i=1 of the coordinate random variables, by Lemma 1,

E ıi = E (xi) = 0 and E|ıi|p = E|xi|p < ∞, i ∈ N.

Therefore, by (6) and Theorem A2,

lim
n→∞

ı1 + ı2 + ... + ın

n
= 0 P-a.s.

Thus, applying Proposition 1 for {gn}∞
n=1 of the form:

gn (t1, t2, ..., tn) =
t1 + t2 + ... + tn

n
,

we obtain the convergence:

lim
n→∞

x1 + x2 + ... + xn

n
= 0 m-a.e.

3.3. Generalized SLLN for Non-Negative Observables

In this subsection, we consider the convergence of observables in a probability MV-algebra with
product (M, m, ·), i.e., a probability MV-algebra (M, m) with an additional associative and commutative
binary operation · : M × M → M such that for each a, b, c ∈ M: (i) 1 · a = a; (ii) a · (b�¬c) =

(a · b)�¬ (a · c).

Remark 2. Let x1, x2, ..., xn : B (R) → M be observables in a probability MV-algebra with product (M, m, ·).
By Proposition 2.4 from [4], each probability MV-algebra is weakly σ-distributive. Therefore, Theorem 3.6
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from [4] implies that there exists an n-dimensional observable hn : B (Rn) → M such that for arbitrary
C1, C2, ..., Cn ∈ B (R):

hn (C1 × C2 × ...× Cn) = x1 (C1) · x2 (C2) · ... · xn (Cn) ,

called the joint observable of x1, x2, ..., xn. Moreover, for arbitrary Borel measurable function gn : Rn → R,
the formula:

gn (x1, x2, ..., xn) = hn ◦ g−1
n : B (R)→ M

defines a one-dimensional observable.

Let {xi}∞
i=1 be a sequence of observables in a probability MV-algebra with product (M, m, ·). Let for

each n ∈ N hn : B (Rn) → M be the joint observable of x1, x2, ..., xn, defined in the above remark.
Then, analogous to the case of probability MV-algebra, the application of the Kolmogorov consistency
theorem for probability measures Pn = m ◦ hn implies the existence of exactly one probability measure
P : B(RN) → [0, 1] such that for each n ∈ N and A ∈ B(Rn), P

(
ı̄−1
n (A)

)
= Pn (A), where ı̄n is given by

(3). We call the triplet (RN,B(RN), P) the Kolmogorov probability space of the observables {xi}∞
i=1 in (M, m, ·).

Both ın : RN → R and ı̄n : RN → Rn are random variables on (RN,B(RN), P).
The following proposition is a consequence of Theorem 3.17 and Proposition 3.16 from [4].

Proposition 2. Let (M, m, ·) be a probability MV-algebra with product and {xi}∞
i=1 be a sequence of observables in

(M, m, ·), with hn : B (Rn) → M being the joint observable of {xi}n
i=1. Let (RN,B(RN), P) be the Kolmogorov

probability space of the observables {xi}∞
i=1 in (M, m, ·). For each n ∈ N, let gn : Rn → R be an arbitrary Borel

function. Let further the observable yn : B (R) → M be defined by yn = hn ◦ g−1
n and the random variable

ηn : RN → R be described by ηn = gn (ı̄n). Then, the convergence of {ηi}∞
i=1 to zero P-a.s. implies the convergence

of {yi}∞
i=1 to zero m-a.e.

We formulate and prove the main theorem of this subsection. For its classical counterpart and some
notations, we refer the reader to Appendix A.

Theorem 4. Let observables {xi}∞
i=1 in a probability MV-algebra with product (M, m, ·) be non-negative, i.e.,

m (xi([0, ∞)) = 1, i ∈ N,

and their absolute moments of some order p ≥ 1 be finite. Let {an}∞
n=1 be a non-decreasing unbounded sequence of

positive numbers. If Esn = O (an), where:

sn = x1 + x2 + ... + xn, n ∈ N,

and:

E|x1 + x2 + ... + xn −E
(
∑n

i=1 xi

)
|p = O

(
ap

n
ψ (an)

)
,

where ψ is a function belonging to Ψc, then:

lim
n→∞

x1 + x2 + ... + xn −∑n
i=1 Exi

an
= 0 m-a.e.
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Proof. Let (RN,B(RN), P) be the Kolmogorov probability space of the observables {xi}∞
i=1 in (M, m, ·).

Let for arbitrary n ∈ N the functions ϕ1,n, ϕ2,n : Rn → R be given by:

ϕ1,n (t1, t2, ..., tn) = t1 + t2 + ... + tn

ϕ2,n (t1, t2, ..., tn) = |t1 + t2 + ... + tn −∑n
i=1 Exi|p,

random variables η1,n, η2,n have the forms

η1,n = ϕ1,n (ı̄n) , η2,n = ϕ2,n (ı̄n)

and observables:

sn = ϕ1,n (x1, x2, ..., xn) : B (R)→ M,

y2,n = ϕ2,n (x1, x2, ..., xn) : B (R)→ M

be defined as in Remark 2. The distributions of coordinate random variables {ıi}∞
i=1 are given by:

P ◦ ı−1
i = mxi , i ∈ N.

Moreover,
P ◦ ı̄−1

n = mhn , n ∈ N.

Applying Lemma 1, we obtain:

E ıi = E (xi) , E|ıi|p = E|xi|p < ∞, i ∈ N,

and:

Eη1,n =
∫
RN

ϕ1,n (ı̄n) dP =
∫
Rn

ϕ1,n (t) d(P ◦ ı̄−1
n ) (t) =

∫
Rn

ϕ1,n (t) dmhn (t)

= Esn = O (an) ,

Eη2,n =
∫
RN

ϕ2,n (ı̄i) dP =
∫
Rn

ϕ2,n (t) d(P ◦ ı̄−1
i ) (t)

=
∫
Rn

ϕ2,n (t) dmhn (t) = Ey2,n = O
(

ap
n

ψ (an)

)
, n ∈ N.

Clearly, P (ıi ∈ [0, ∞)) = mxi ([0, ∞)) = 1, i ∈ N. Finally, application of Theorem A3 for the sequence of
random variables {ıi}∞

i=1 and Proposition 2 for the sequence of Borel functions:

gn : Rn → R, n ∈ N,

gn (t1, t2, ..., tn) =
t1 + t2 + ... + tn −∑n

i=1 Exi

an

ends the proof.

We also present two special cases of the above theorem, corresponding to Theorem 2 and 3, formulated
by Korchevsky [30] within the Kolmogorov probability theory.
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Theorem 5. Let observables {xi}∞
i=1 in a probability MV-algebra with product (M, m, ·) be non-negative and have

finite variances. Let {an}∞
n=1 be a non-decreasing unbounded sequence of positive numbers. If Esn = O (an) and:

D2sn = O
(

a2
n

ψ (an)

)
for some function ψ ∈ Ψc, then:

lim
n→∞

x1 + x2 + ... + xn −∑n
i=1 Exi

an
= 0 m-a.e.

Theorem 6. Let observables {xi}∞
i=1 in a probability MV-algebra with product (M, m, ·) be non-negative and have

finite absolute moments of some order p ≥ 1. Let {wn}∞
n=1 be a sequence of positive numbers,

Wn =
n

∑
i=1

wi, τn =
n

∑
i=1

wixi, n ∈ N,

limn→∞ Wn = ∞, Eτn = O (Wn) and:

E|τn −Eτn|p = O
(

Wp
n

ψ (Wn)

)

for some function ψ ∈ Ψc. Then:

lim
n→∞

τn −Eτn

Wn
= 0 m-a.e.

Theorem 5 follows from Theorem 4 applied for p = 2, whereas Theorem 6 is a consequence of
Theorem 4 for arbitrary p ≥ 1, the sequence of observables yi = wixi, n ∈ N, and the sequence of real
numbers an = Wn, n ∈ N.

4. Illustrative Examples

We analyze the asymptotic behavior of scaled sums of three sequences of observables. They are
independent identically continuously distributed in the first sequence and independent identically
discretely distributed in the second one, whereas the third example concerns non-negative dependent
observables. The MV-algebraic version of the Kolmogorov SLLN, presented in [9], cannot be applied in
the first two examples. Therefore, we use the MV-algebraic versions of the Marcinkiewicz–Zygmund and
Brunk–Prokhorov theorems. The case of dependent observables is new, and it requires application of the
MV-algebraic version of the Korchevsky theorem.

4.1. Sequence of Identically Distributed Observables

We consider observables taking values in the probability MV-algebra (M, m) consisting of the
MV-algebra M = [0, 1] equipped with the operations ¬,⊕,� defined by the formulas:

¬a = 1− a, a⊕ b = (a + b) ∧ 1, a� b = (a + b− 1) ∨ 0,

where +, −, ∧, and ∨ have the usual meaning of addition, subtraction, minimum, and maximum, and the
faithful state m of the form m (t) = t.
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Let p > 0, γ = 7
4 , Cγ = 3

8 , and:

f (t) =
Cγ

|t|γ I|t|≥1 (t) .

Let for each j ∈ N an observable xj : B (R)→ M be described by the equality:

xj (A) =
∫

A
f (t) dt.

We assume that the observables defined above are independent. For each n ∈ N, the joint observable
hn : B (Rn)→ M of

{
xj
}n

j=1 has the form of the product measure given for each A ∈ B (Rn) by:

hn (A) =
∫

A
f (t1) f (t2) ... f (tn) dt1dt2...dtn.

Then, applying Lemma 1, we obtain:

E (|x1|p) = 2Cγ

∫ ∞

1
tp− 7

4 dt =

{
2Cγ

γ−1−p < ∞ f or p < γ− 1;
∞ f or p ≥ γ− 1.

Thus, E
(

x2
1
)
= ∞, and therefore, the MV-algebraic version of the Kolmogorov SLLN, presented in [9],

does not concern the considered case. However, application of Theorem 2 gives the convergence:

x1 + x2 + ... + xn

nr
−−→n→∞0 m-a.e.

for arbitrary r > 1
γ−1 = 4

3 .

4.2. Sequence of Not Identically Distributed Observables

Let (M, m) be the probability MV-algebra, defined in the previous subsection.
We fix p ≥ 2. Let ej

1 = −j1/4, ej
2 = j1/4, pj

1 = pj
2 = 1

2 for j ∈ N. Let a sequence of
independent observables:

xj : B (R)→ M, j ∈ N

be defined by for each A ∈ B (R) by the equality:

xj (A) = ∑
ej

i∈A, i∈{1,2}

pj
i .

For an arbitrary positive integer n, the joint observable hn : B (Rn) → M of the sequence
{

xj
}n

j=1 is the
product measure given for each A ∈ B (Rn) by the equality:

hn (A) = ∑(
e1

i1
,e2

i2
,...,en

in

)
∈A, i1,i2,...,in∈{1,2}

p1
i1 p2

i2 ...pn
in

= ∑(
e1

i1
,e2

i2
,...,en

in

)
∈A, i1,i2,...,in∈{1,2}

1
2n .
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Then, E|xj|p = jp/4 < ∞ for j ∈ N, and therefore,

∞

∑
j=1

E|xj|p

jp/2+1 =
∞

∑
j=1

1
jp/4+1 < ∞.

Thus, by Theorem 3,
x1 + x2 + ... + xn

n
−−→n→∞0 m-a.e.

4.3. Sequence of Dependent Observables

We consider a probability MV-algebra with the product, presented in [4]. Let (Ω, S, P) be a probability
space and F0 be the set of all S-measurable functions f : Ω→ [0, 1]. F0, called a full tribe, equipped with
the operations ¬,⊕,�, · given by:

(¬ f ) (x) = 1− f (x) , ( f ⊕ g) (x) = ( f (x) + g (x)) ∧ 1,

( f � g) (x) = ( f (x) + g (x)− 1) ∨ 0, ( f · g) (x) = f (x) · g (x) , x ∈ Ω,

is an MV-algebra with product. 0 = 0Ω and 1 = 1Ω, where for arbitrary c ∈ [0, 1] cΩ is the function
identically equal to c on Ω. Let a state m0 on F0 be defined by the formula:

m0 ( f ) =
∫

Ω
f dP.

The ideal J = { f ∈ F0 : m0 ( f ) = 0} in F0 is closed under countable suprema. Therefore, the quotient
MV-algebra F = F0/J (with the operations ¬,⊕,�, · arising via θ) is σ-complete, the quotient map
θ : F0 → F is a σ-homomorphism, m : F → [0, 1] given by m (θ ( f )) = m0 ( f ) is a faithful state on F , and
(F , m, ·) is a probability MV-algebra with product (see [4]).

Let (Ω, S, P) =
(
[0, 1] ,B ([0, 1]) , λ[0,1]

)
, where λ[0,1] is the Lebesgue measure on [0, 1]. For the fixed

constant γ = 1
2 and sequence {αi}∞

i=1, αi =
1
2i , we define a sequence {zi}∞

i=1 of independent observables
in (F , m, ·), given for arbitrary A ∈ B (R) by the equality:

zi (A) =


θ (1Ω) if A ∩ {0, 1} = {0, 1} ;
θ (γΩ) if A ∩ {1} = {1} ;

θ ((1− γ)Ω) if A ∩ {0} = {0} ;
θ (0Ω) if A ∩ {0, 1} = ∅

and a sequence {xi}∞
i=1 of observables in (F , m, ·) of the form:

xi = αiz1 + (1− αi) zi, i ∈ N.

Let for n ∈ N hn be the joint observable of {zi}n
i=1 ,

An = ∑n
i=2 αi =

1
2
−
(

1
2

)n
, Bn = ∑n

i=2 α2
i =

1
12
− 1

3

(
1
4

)n
, an = n.

Clearly,
mzi (dt) =

(
γδ{1} + (1− γ) δ{0}

)
(dt) .
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Let p ≥ 1. Then, for i ∈ N E|zi|p = Ezp
i = γ, D2zi = γ (1− γ) , E|x1|2 = γ. Moreover, by Lemma 1,

for i ≥ 2:

E|xi|2 = E|αiz1 + (1− αi) zi|2 =
∫
Ri
|αit1 + (1− αi) ti|2dmhi (t)

=
∫
R2
(αit1 + (1− αi) ti)

2dmz1 (t1) dmzi (ti)

= α2
i γ + 2αi (1− αi) γ2 + (1− αi)

2 γ < ∞.

Let for a fixed n ∈ N β1 = 1 + An and βi = 1− αi, 2 ≤ i ≤ n. Then, sn = ∑n
i=1 βizi, and by Lemma 1:

Esn =
∫
Rn
(∑n

i=1 βiti)dmhn (t) = ∑n
i=1

∫
R

βitidmzi (ti) = ∑n
i=1 βiEzi

= γ ∑n
i=1 βi = γ (1 + An + n− 1− An) = γn =

1
2

n = O (an)

as well as:

E|sn −Esn|2 = E
(
∑n

i=1 βizi −∑n
i=1 βiEzi

)2

=
∫
Rn

(
∑n

i=1 βiti −∑n
i=1 βiEzi

)2
dmhn (t) =

∫
Rn

(
∑n

i=1 βi (ti −Ezi)
)2

dmhn (t)

=
∫
Rn

(
∑n

i=1 β2
i (ti −Ezi)

2 + 2 ∑1≤i<j≤n βiβ j (ti −Ezi)
(
tj −Ezj

))
dmhn (t)

= ∑n
i=1 β2

i

∫
R
(ti −Ezi)

2 dmzi (ti)

+ 2 ∑1≤i<j≤n βiβ j

∫
R2

(ti −Ezi)
(
tj −Ezj

)
dmzi (ti) dmzj

(
tj
)
= ∑n

i=1 β2
i D

2zi

= γ (1− γ)∑n
i=1 β2

i = γ (1− γ)
[
1 + 2An + A2

n + n− 1− 2An + Bn

]
=

1
4

[
n +

2
3

(
1
4

)n
−
(

1
2

)n
+

1
3

]
= O

(
a2

n
ψ (an)

)
,

where ψ (x) = x ∈ Ψc. Thus, by Theorem 5 (or Theorem 4 for p = 2):

lim
n→∞

x1 + x2 + ... + xn − nγ

n
= 0 m-a.e.

5. Conclusions

This paper is devoted to the development of MV-algebraic probability theory. We formulate and
prove three generalized versions of the strong law of large numbers. The first two versions of the strong
law, i.e., the MV-algebraic Marcinkiewicz–Zygmund SLLN and Brunk–Prokhorov SLLN, describe the
asymptotic behavior of the sums of independent observables, whereas the third one, i.e., the Korchevsky
SLLN, concerns the case of dependent observables. Their proofs require an application of the Kolmogorov
theory of probability and some measure-theoretic techniques. To illustrate our theoretical results, we also
present and analyze some examples of sequences of observables in a probability MV-algebra. We believe
that our results open new possibilities for further development of the MV-algebraic probability theory in
the non-Kolmogorovian setting. In particular, they can be used for the future development of the theory of
fuzzy, intuitionistic fuzzy, and interval-valued fuzzy random events in complex spaces. We would like to
apply the proven theorems to the estimation of logical entropy, as well as other types of entropy in the
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case of intuitionistic fuzzy random events. This requires, among other things, the definition of entropy for
observables in MV-algebras.

Author Contributions: This paper was prepared using the contributions of both authors. P.N. mainly contributed to
developing the mathematical model. O.H. contributed to the interpretation of the obtained results. Both authors read
and approved the final manuscript.

Funding: This research received no external funding.
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Appendix A. Classical Versions of the SLLN

Let {Xi}∞
i=1 be a sequence of independent real-valued random variables on a probability space

(Ω,S , P), and let Sn = X1 + X2 + . . . + Xn for each n ∈ N. Apart from the Kolmogorov SLLN for
identically distributed sequence {Xi}∞

i=1 such that E|X1| < ∞, its Marcinkiewicz–Zygmund generalization
is known (see [31]):

Theorem A1 (Marcinkiewicz–Zygmund SLLN). Let the random variables {Xi}∞
i=1 be independent identically

distributed. Let p ∈ (0, 2). If E|X1|p < ∞, then:

lim
n→∞

Sn − nc
n1/p = 0 P-a.s.

In the above formula, c = 0 if 0 < p < 1 and c = EX1 if 1 ≤ p < 2.

In the next theorem, the same distribution of the random variables is not required.

Theorem A2 (Brunk–Prokhorov SLLN). Let the random variables {Xi}∞
i=1 be independent. Let q ≥ 1.

If EXi = 0, E|Xi|2q < ∞ for each i ∈ N and:

∞

∑
i=1

E|Xi|2q

iq+1 < ∞,

then lim
n→∞

Sn
n = 0 P-a.s.

The above theorem was proven by Brunk [32] for arbitrary positive integer q and by Prokhorov [33]
for arbitrary q ≥ 1.

Let Ψc be the set of positive functions ψ(x), non-decreasing in the interval x > x0 for some x0, such
that ∑∞

n=1
1

nψ(n) < ∞.
The following Korchevsky generalization of the Petrov SLLN (see [30]) gives a sufficient condition for

the convergence of scaled sums of random variables without the independence condition.

Theorem A3 (Korchevsky). Let the random variables {Xi}∞
i=1 be non-negative with finite absolute moments of

some order p ≥ 1. Let {an}∞
n=1 be a non-decreasing unbounded sequence of positive numbers. If ESn = O (an)

and there exists a function ψ ∈ Ψc such that E|Sn − ESn|p = O
(

ap
n

ψ(an)

)
, then:

lim
n→∞

Sn − ESn

n
= 0 P-a.s.
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