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Introduction
In patients with clinically isolated syndrome 
(CIS), gray matter (GM) and whole brain (WB) 
atrophy predict conversion to clinically definite 
MS (CDMS), and GM atrophy is associated with 
disability accumulation and cognitive impair-
ment.1–6 Studies of CIS and early MS indicate 
cortical pathology may be present from the earli-
est stages of the disease. Imaging and histopatho-
logical studies of CIS and early MS demonstrate 
that cortical demyelinating lesions can occur prior 
to the development of white matter (WM) lesions, 
are highly inflammatory, and are topographically 
associated with meningeal inflammation, suggest-
ing that the cortex may be a target of an early 

disease process that is, at least partially, distinct 
from that mediating later and longer-term phases 
of MS.7–11

Teriflunomide is a once-daily oral immunomodu-
lator for relapsing forms of MS in adults (includ-
ing CIS, relapsing-remitting disease, and active 
secondary progressive disease according to the 
local label).12 In the phase III TOPIC study,13 
teriflunomide 14 mg significantly reduced risk of 
CDMS conversion over 108 weeks in CIS patients 
(McDonald 2005 criteria) versus placebo. Recent 
evidence in relapsing MS patients suggests terif-
lunomide may slow cortical GM (CGM) and WB 
atrophy.14–16
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Abstract
Background: We explored the effect of teriflunomide on cortical gray matter (CGM) and whole 
brain (WB) atrophy in patients with clinically isolated syndrome (CIS) from the phase III TOPIC 
study and assessed the relationship between atrophy and risk of conversion to clinically 
definite MS (CDMS).
Methods: Patients (per McDonald 2005 criteria) were randomized 1:1:1 to placebo, teriflunomide 
7 mg, or teriflunomide 14 mg for ⩽108 weeks (core study). In the extension, teriflunomide-
treated patients maintained their original dose; placebo-treated patients were re-randomized 
1:1 to teriflunomide 7 mg or 14 mg. Brain volume was assessed during years 1–2.
Results: Teriflunomide 14 mg significantly slowed annualized CGM and WB atrophy versus 
placebo during years 1–2 [percent reduction: month 12, 61.4% (CGM; p = 0.0359) and 28.6% (WB; 
p = 0.0286); month 24, 40.2% (CGM; p = 0.0416) and 43.0% (WB; p < 0.0001)]. For every 1% decrease 
in CGM or WB volume during years 1–2, risk of CDMS conversion increased by 14.5% (p = 0.0004) 
and 47.3% (p < 0.0001) during years 1–2, respectively, and 6.6% (p = 0.0570) and 35.9% (p = 0.0250) 
during years 1–5. In patients with the least (bottom quartile) versus most (top quartile) atrophy 
during years 1–2, risk of CDMS conversion was reduced by 58% (CGM; p = 0.0024) and 58% (WB; 
p = 0.0028) during years 1–2, and 42% (CGM; p = 0.0138) and 29% (WB; p = 0.1912) during years 1–5.
Conclusion: These findings support the clinical relevance of CGM and WB atrophy and early 
intervention with teriflunomide in CIS.
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Structural Image Evaluation using Normalisation 
of Atrophy Cross-sectional, multi-time-point 
(SIENAX-MTP) is an MRI analysis technique 
that quantitates GM and white matter (WM) 
atrophy separately.17 We applied SIENAX-MTP 
and SIENA to images from TOPIC to explore the 
effect of teriflunomide on CGM and WB atrophy 
and evaluate the relationship between CGM and 
WB atrophy and risk of CDMS conversion.18 The 
TOPIC dataset provides a unique opportunity to 
examine these issues, as no placebo-controlled 
clinical studies to date have evaluated the impact 
of CGM or WB atrophy on long-term CDMS 
conversion and clinical progression in patients 
with CIS. We also examined the utility of CGM 
atrophy, WB atrophy, cumulative number of new/
enlarging T2 lesions, and gadolinium (Gd)+ 
lesions as predictors of CDMS conversion.

Methods

Study participants and design
Details of the TOPIC study [ClinicalTrials.gov 
identifier: NCT00622700] design were published 
previously.13 Briefly, patients with CIS (per 
McDonald 2005 criteria) were randomized (1:1:1) 
and treated daily with oral placebo, teriflunomide 
7 mg, or teriflunomide 14 mg for ⩽108 weeks 
(core study).19 Patients who completed the core 
study or were treated with placebo and converted to 
CDMS after ⩾24 weeks could participate in the 
open-label extension. Teriflunomide-treated patients 
continued to receive their original dose; placebo-
treated patients were re-randomized 1:1 to receive 
teriflunomide 7 mg or 14 mg. The extension 
period continued until teriflunomide was com-
mercially available in the patient’s country of resi-
dence or until the sponsor stopped the study 
(planned after a period of 390 weeks). Screening 
of patients for TOPIC stopped following an 
amendment to the protocol on 24 May 2011, as a 
result of the 2010 revisions to the MS diagnostic 
criteria enabling earlier diagnosis of MS.20 The 
first patient was enrolled in the core study on 13 
February 2008, and the last patient completed the 
core study on 17 December 2012.

MRI protocol
MRI imaging of brain tissue was done at baseline 
and months 6, 12, 18, and 24 in the core study. 
Standard MRI acquisition parameters were used, 
including axial dual-echo spin density- and 

T2-weighted, sagittal and axial fluid-attenuated 
inversion recovery (FLAIR), 3D volumetric 
SPGR (3-dimensional spoiled gradient recalled) 
acquisition, and axial T1-weighted spin-echo 
acquisition before and after the administration of 
Gd. The data extracted from the multimodal 
image dataset included the number and volume 
of Gd+ T1 lesions, volume of T2 lesions, and 
volume of hypointense pre-Gd T1 lesions. The 
imaging data were collected at MRI facilities 
associated with each of the clinical sites and were 
sent on electronic media to a reading center for 
post-acquisition processing, tissue and lesion seg-
mentation, and data extraction.

In this post hoc blinded analysis of atrophy during 
the core TOPIC study, baseline CGM volume 
(CGMV) and WB volume (WBV) was calculated 
using SIENAX, and longitudinal changes of 
CGM and WB volumes were assessed using 
SIENAX-MTP and SIENA.17,18 All MRI analy-
ses underwent multi-level quality control and 
were reviewed (by author NB) at all critical points 
of segmentation.

Statistical analysis
Analyses were carried out using data from the 
modified intention-to-treat (ITT) population 
(defined as all randomized patients who received 
⩾1 dose of study drug) who had ⩾1 postbaseline 
MRI measure of CGM or WB (referred to as the 
CGM and WB analysis populations, respec-
tively). Patients without ⩾1 postbaseline MRI 
measure did not have sufficient data to be 
included in the analysis.

To examine the effect of teriflunomide treatment 
on CGM and WB atrophy during years 1–2, data 
from months 6, 12, 18, and 24, standardized for 
follow-up duration, were analyzed relative to 
baseline. Nonparametric analysis of adjusted 
covariance (rank ANCOVA) models assessed 
treatment effects on CGM and WB change at 
each time point separately, and longitudinal rank 
ANCOVA evaluated the overall cumulative treat-
ment effect. In a subgroup analysis, patients were 
stratified according to absence/presence of Gd+ 
lesions at baseline with a treatment-by-subgroup 
interaction term.

To examine the association between CGM or WB 
atrophy during years 1–2 and CDMS conversion 
during years 1–5, irrespective of treatment group, 
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two different statistical models were used. In one, 
annualized CGM or WB atrophy was treated as a 
continuous variable and analyzed using a Cox 
proportional hazards model adjusted for geo-
graphical region, treatment, baseline monofocal/
multifocal lesion status, and baseline CGMV or 
WBV. In the other, CGM or WB atrophy was 
treated as a categorical variable, using the inter-
quartile range (IQR) of CGM or WB atrophy in 
placebo-treated patients: Group 1, least 25% atro-
phy in placebo-treated patients; Group 2, IQR of 
atrophy in placebo-treated patients; Group 3, 
greatest 25% atrophy in placebo-treated patients. 
For CGM atrophy, groups were defined as 
⩽0.206% reduction from baseline (Group 1); 
0.207% to 1.879% reduction from baseline 
(Group 2); and ⩾1.880% reduction from baseline 
(Group 3). For WB atrophy, groups were defined 
as ⩽0.0064% reduction from baseline (Group 1), 
0.0065% to 0.66% reduction from baseline 
(Group 2); and ⩾0.67% reduction from baseline 
(Group 3). The probability of CDMS conversion 
was derived from Kaplan–Meier estimates and 
compared between groups using a Cox propor-
tional hazards model adjusted for region, treat-
ment, baseline monofocal/multifocal lesion status, 
and baseline CGMV or WBV.

The utility of CGM and WB atrophy versus MRI 
lesions (Gd+ and new/enlarging T2 lesions) as 
predictors of conversion to CDMS during years 
1–2 was assessed using Cox proportional hazards 
models. Models were adjusted for treatment arm, 
baseline monofocal/multifocal lesion status, 
region, baseline CGMV or WBV, baseline num-
ber of Gd+ lesions, annualized percent change in 
CGMV or WBV, cumulative number of new/
enlarging T2 lesions per scan, and cumulative 
number of Gd+ lesions per scan. C-statistics 
were calculated to assess the ability of CGMV or 
WBV change, new/enlarging T2 lesions per scan, 
and cumulative number of Gd+ lesions per scan 
(alone and in combination) to distinguish patients 
with and without CDMS. Values for this measure 
range from 0.5 to 1.0, with higher values indicat-
ing better predictive models.

Standard protocol approvals, registrations, and 
patient consents
The study was done in accordance with the 
International Conference on Harmonisation 
Guidelines for Good Clinical Practice, the 
Declaration of Helsinki, and local laws and 

regulations. Independent ethics committees or 
institutional review boards provided written 
approval for the study protocol and all amend-
ments. Participants provided written informed 
consent. This trial is registered with ClinicalTrials.
gov [ClinicalTrials.gov identifier: NCT00622700].

Data availability
Qualified researchers may request access to 
patient-level data and related study documents 
including the clinical study report, study protocol 
with any amendments, blank case report form, 
statistical analysis plan, and dataset specifica-
tions. Patient-level data will be anonymized and 
study documents will be redacted to protect the 
privacy of the trial participants. Further details on 
Sanofi’s data-sharing criteria, eligible studies, and 
process for requesting access can be found at 
https://www.clinicalstudydatarequest.com.

Results

Study population
The CGM analysis population included a total of 
485 patients, with 159, 156, and 170 receiving 
placebo, teriflunomide 7 mg, and teriflunomide 
14 mg, respectively. The WB analysis population 
included a total of 482 patients, with 159, 154, 
and 169 receiving placebo, teriflunomide 7 mg, 
and teriflunomide 14 mg, respectively. Baseline 
characteristics of the CGM and WB analysis pop-
ulations were similar across treatment arms 
(Table 1).

Patients were categorized into three groups based 
on CGMV and WBV loss in placebo-treated 
patients. Applying these thresholds to terifluno-
mide-treated patients, more were categorized into 
the group with the least atrophy (Group 1) versus 
most atrophy (Group 3). Baseline characteristics 
were similar across subgroups irrespective of teri-
flunomide dose in both the CGM and WB analy-
sis populations; the group with the most atrophy, 
however, had numerically more Gd+ lesions and 
higher lesion volume (Table 2).

Effect of teriflunomide on CGM and WB atrophy
Teriflunomide significantly slowed annualized 
CGM and WB atrophy during the core study 
(Figure 1). At all time points, teriflunomide 14 mg 
significantly reduced median percentage CGMV 
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change (month 6: 119.2% reduction, p = 0.0185; 
month 12: 61.4%, p = 0.0359; month 18: 66.8%, 
p = 0.0027; month 24, 40.2%, p = 0.0416; Figure 
1a) and WBV change (month 6: 87.4% reduc-
tion, p = 0.0244; month 12: 28.6%, p = 0.0286; 
month 18: 36.1%, p = 0.0003; month 24: 43.0%, 
p < 0.0001; Figure 1b) versus placebo. Results 

with teriflunomide 7 mg were similar, except that 
reductions with teriflunomide versus placebo were 
only statistically significant at months 18 and 24 
(Figure 1).

Overall, there was a significant cumulative treat-
ment effect of teriflunomide versus placebo on 

(a)

(b)

Figure 1.  Effect of teriflunomide on CGM and WB volume. Median percent change from baseline in CGM (a) 
and WB volume (b) over 2 years in patients receiving placebo, teriflunomide 7 mg, or teriflunomide 14 mg. 
Derived using rank ANCOVA adjusted for baseline value, 2D or 3D scan (for CGM), and adjusted for baseline 
value, time, optic neuritis status (Y/N), age, baseline monofocal/multifocal, interaction between time and 
treatment (for WB).
aRelative change compared with placebo.
CI, confidence interval; CGM, cortical gray matter; 2D, two-dimensional; 3D, three-dimensional; WB, whole brain.
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annualized CGMV and WBV change from base-
line over 2 years. In the placebo group, least 
squares (LS) mean change was −1.29% (CGMV) 
and −0.43% (WBV). LS mean change was 
−0.60% (CGM; p = 0.0089) and −0.29% (WB; 
p < 0.0001) in the teriflunomide 7 mg group and 
−0.64% (CGM; p = 0.0052) and −0.30% (WB; 
p < 0.0001) in the teriflunomide 14 mg group.

In patients with Gd+ lesions at baseline, CGM 
and WB atrophy were accelerated, whereas 
patients without Gd+ lesions at baseline did not 
experience this effect (Figure 2). No significant 
teriflunomide treatment effect on atrophy was 
observed for either Gd+ lesion subgroup [treat-
ment-by-subgroup interaction: p = 0.5195 
(CGM) and p = 0.2311 (WB)]. In patients with 
no baseline Gd+ lesions, CGMV loss (Figure 2a) 
was reduced significantly with teriflunomide 
14 mg versus placebo at all time points except 
month 24 (month 6, p = 0.0301; month 12, 
p = 0.0311; month 18, p = 0.0224). In patients 
with ⩾1 baseline Gd+ lesion, CGMV loss reduc-
tion did not reach statistical significance at any 
time point. With teriflunomide 7 mg versus pla-
cebo, the reduction in CGMV change was statis-
tically significant at month 18 (p = 0.0456), but 
not at other time points, in patients with no base-
line Gd+ lesions, and did not reach statistical sig-
nificance at any time point in patients with ⩾1 
baseline Gd+ lesion. WBV change (Figure 2b) 
was reduced significantly with teriflunomide 
14 mg versus placebo at all time points in patients 
with no baseline Gd+ lesions (month 6, 
p = 0.0284; month 12, p = 0.0013; month 18, 
p < 0.0001; month 24, p < 0.0001). In patients 
with ⩾1 baseline Gd+ lesion, the reduction did 
not reach statistical significance at any time point. 
With teriflunomide 7 mg versus placebo, there was 
a statistically significant reduction at months 18 
and 24 in both patients without baseline Gd+ 
lesions (p = 0.0004 and p < 0.0001, respectively) 
and patients with ⩾1 baseline Gd+ lesion 
(p = 0.0005 and p < 0.0001, respectively), but not 
at earlier time points.

Association between CGM or WB atrophy and 
CDMS conversion
Irrespective of treatment group, CGM and WB 
atrophy during years 1–2 was associated with 
conversion to CDMS during years 1–2 and years 
1–5. In the continuous analysis, for every 1% 
decrease in CGMV or WBV during years 1–2, the 

risk of CDMS conversion increased by 14.5% 
[CGM; hazard ratio (HR) 0.855, p = 0.0004] and 
47.3% (WB; HR 0.527, p < 0.0001) during years 
1–2, and by 6.6% (CGM; HR 0.934, p = 0.0570) 
and 35.9% (WB; HR 0.641, p = 0.0250) during 
years 1–5.

In the categorical analysis (Figure 3), patients 
with lower CGM atrophy during years 1–2 were 
significantly less likely to convert to CDMS dur-
ing years 1–2 compared with patients with the 
most CGM atrophy [Group 1 (least atrophy) 
versus Group 3 (most atrophy), 59% risk reduc-
tion (RR), p = 0.0014; Group 2 (intermediate 
atrophy) versus Group 3, 24% RR, p = 0.2757], 
and during years 1–5 (Group 1 versus Group 3, 
42% RR, p = 0.0138; Group 2 versus Group 3, 
33% RR, p = 0.0275; Figure 3a). Similarly, 
patients with lower WB atrophy during years 1–2 
were significantly less likely to convert to CDMS 
during years 1–2 compared with patients with the 
most WB atrophy (Group 1 versus Group 3, 58% 
RR, p = 0.0028; Group 2 versus Group 3, 54% 
RR, p = 0.0004; Figure 3b). The lower WB atro-
phy groups were also less likely to convert to 
CDMS during years 1–5, although the effect was 
statistically significant for Group 2 versus Group 3 
(42% RR, p = 0.0062) but not Group 1 versus 
Group 3 (29% RR, p = 0.1912).

Utility of CGM and WB atrophy versus MRI 
lesions as predictors of CDMS conversion
In Cox proportional hazard models of the CGM 
analysis population, development of CDMS was 
associated significantly with the cumulative num-
ber of new/enlarging T2 lesions per scan 
(HR = 1.25; p = 0.0003) but not with the cumula-
tive number of Gd+ lesions per scan (HR = 1.01; 
p = 0.8869), or the annualized percentage change 
in CGMV (HR = 0.95; p = 0.3727). When new/
enlarging T2 lesions, Gd+ lesions, and CGM 
atrophy were assessed separately for their ability to 
discriminate between patients who did or did not 
develop CDMS, the C-statistic for each parameter 
was poor (0.5638, 0.5641, and 0.5365, respec-
tively). However, the combination of all three 
parameters in a single Cox model increased the 
predictive utility (C-statistic, 0.6831; Supplemental 
Table e-1).

Similarly, in Cox proportional hazard models of the 
WB analysis population, development of CDMS 
was associated significantly with the cumulative 
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(a)

(b)

Figure 2.  Teriflunomide effect on CGM and WB volume depending on Gd+ lesions. Median percent change 
from baseline in CGM (a) and WB (b) over 2 years in patients receiving placebo, teriflunomide 7 mg, or 
teriflunomide 14 mg, stratified according to the presence or absence of baseline Gd+ lesions. Derived using 
rank ANCOVA adjusted for baseline value, 2D or 3D scan (for CGM), and adjusted for baseline value, time, optic 
neuritis status (Y/N), age, baseline monofocal/multifocal, interaction between time and treatment (for WB).
aVersus placebo.
CI, confidence interval; CGM, cortical gray matter; 2D, two-dimensional; 3D, three-dimensional; Gd+, gadolinium-
enhancing; RR, relative reduction; WB, whole brain.
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(a)

(b)

Figure 3.  Association between CGM or WB atrophy and CDMS conversion. Probability of relapse-determining 
conversion to CDMS over 5 years, irrespective of treatment, in groups defined by annualized percentage CGM 
(a) or WB (b) change from baseline in placebo-treated patients. Analysis based on pooled data from placebo 
and active treatment groups (total population). Categorization of patients into three groups was based on the 
annualized percentage change from baseline in CGMV or WB in placebo-treated patients. Probability plots 
were derived from Kaplan–Meier estimates. CI was calculated using normal approximation. Hazards ratio was 
derived using Cox proportional hazard model with region, baseline monofocal/multifocal status, baseline CGM 
(for a) or WB (for b) and quartile categories of last available CGM (for a) or WB (for b) percent change from 
baseline annualized to year 1 as covariates.
CDMS, clinically definite multiple sclerosis; CI, confidence interval; CGM, cortical gray matter; HR, hazard ratio; WB, whole 
brain.
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number of new/enlarging T2 lesions per scan 
(HR = 1.25; p = 0.0003), but not with the cumula-
tive number of Gd+ lesions per scan (HR = 1.00; 
p = 0.9720) or the annualized percentage change in 
WBV (HR = 1.01; p = 0.7567). When new/enlarg-
ing T2 lesions, Gd+ lesions, and WB atrophy were 
assessed for their ability to discriminate between 
patients who did or did not develop CDMS, the 
combination of all three parameters had the highest 
predictive utility (C-statistic, 0.6872; Supplemental 
Table e-2) versus individual parameters.

Discussion
Identification of patients with CIS who are at 
high risk of conversion to CDMS is critical to 
facilitate early intervention and mitigate disease 
progression. Previously, teriflunomide was shown 
to delay conversion to CDMS in patients with 
CIS, but effects on brain atrophy were not 
detected with methods used at the time.13

The present study assesses teriflunomide effects 
on brain atrophy in patients with CIS using a 
well-established MRI analysis technique for 
detecting longitudinal brain volume changes with 
a low error rate (SIENA), which has been used 
previously to show reduction in brain volume loss 
in teriflunomide-treated patients with relapsing 
MS.14 We observed that teriflunomide signifi-
cantly slowed CGM and WB atrophy over years 
1–2 of the TOPIC study compared with placebo. 
Teriflunomide 14 mg significantly reduced 
CGMV and WBV change at all time points com-
pared with placebo from baseline to year 2. 
Results for teriflunomide 7 mg were significant 
only at the 18- and 24-month timepoints. These 
data are consistent with previous studies showing 
greater overall efficacy of the 14-mg dose com-
pared with the 7-mg dose.13 CGM and WB atro-
phy was increased in patients with Gd+ lesions at 
baseline compared with patients without Gd+ 
lesions at baseline, suggesting those patients had 
more aggressive disease. Alternatively, it is possi-
ble that resolution of inflammation after treat-
ment initiation led to a higher pseudoatrophy 
effect. Numerical reductions in CGM and WB 
atrophy with teriflunomide versus placebo were 
apparent in both subgroups, although many com-
parisons did not reach statistical significance, 
potentially due to small numbers of patients in 
the subgroups and the relative resistance of CGM 
to pseudoatrophy compared with WB as we have 
previously shown.15

Collectively, these results extend previous find-
ings of a reduction in brain atrophy with teriflu-
nomide in patients with relapsing MS to those 
patients with CIS, and align with new data sug-
gesting that teriflunomide-treated MS patients 
had slower rates of whole brain, GM, WM, and 
thalamic atrophy over 12 months versus age- and 
sex-matched healthy controls.14–16,21 Moreover, 
compared with dimethyl fumarate, a recent head-
to-head study suggested that teriflunomide had a 
superior effect on the preservation of CGM and 
WB volume over 15−24 months.15,16

We also found that slower rates of CGM and WB 
atrophy in years 1–2 of the TOPIC study were 
associated with a lower risk of conversion to 
CDMS over the 1–2 and 1–5-year timeframes. 
For every 1% decrease in CGM, the risk of 
CDMS conversion increased by 14.5% (years 
1–2) and 6.6% (years 1–5), while for every 1% 
decrease in WB, the risk of CDMS conversion 
increased by 47.3% (years 1–2) and by 35.9% 
(years 1–5).

The increase in CDMS risk during years 1–5 was 
significant only for WB, not CGM. This may sug-
gest a nonlinear relationship between CGM atro-
phy and CDMS conversion, such that patients 
above a certain threshold of CGM loss have an 
increased risk of conversion. In the categorical 
analysis, patients with the least CGM and WB 
atrophy were significantly less likely to convert to 
CDMS compared with patients with the most 
CGM and WB atrophy, both during years 1–2 
and during years 1–5. Together with the primary 
finding from TOPIC that teriflunomide decreases 
the risk of conversion to CDMS,13 these findings 
highlight the clinical relevance of CGM atrophy 
in patients with CIS and link it to longer-term 
effects on conversion to CDMS. These results 
align with previous findings of an association 
between early GM atrophy and long-term disabil-
ity accumulation and cognitive impairment.3–5

A prediction model showed that CGM or WB 
atrophy was not, by itself, a significant predictor of 
CDMS conversion. However, when combined 
with the number of Gd+ lesions and new/enlarg-
ing T2 lesions in a single model, predictive utility 
increased, suggesting that simultaneous consider-
ation of all three parameters in patients with CIS 
can have clinical application in predicting risk for 
developing CDMS. Perhaps consistent with this, 
a new subtype of MS, referred to as myelocortical 
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MS, was recently identified and is characterized 
by demyelination of spinal cord and cortex in the 
absence of cerebral WM demyelination.22

In this study, CGM atrophy was assessed using 
SIENAX-MTP, an MRI image analysis tech-
nique that allows for longitudinal quantification 
of GM and WM atrophy.17 Similar to Jacobian 
integration and other inherently longitudinal 
techniques, this method links analyses between 
time points in one unified statistical model, rather 
than analyzing each image independently.23 This 
allows for improved precision, which is particu-
larly important for regions like the cortex that 
experience substantial partial voluming even on 
high-resolution MRI – a technique that has been 
shown to reduce classification errors between 
time points, decrease SD of longitudinal percent-
age volume changes, and improve effect size in 
detection of GM atrophy up to 68% compared 
with cross-sectional approaches.17,24

This analysis has certain limitations that should 
be taken into account when interpreting the find-
ings. First, the data set was not powered for these 
post hoc analyses. Second, in TOPIC, patients 
were diagnosed as having CIS or MS based on 
the 2005 McDonald criteria, which were in use at 
the time the core study was conducted (2008–
2012).19 Since then, there have been two addi-
tional revisions of criteria, one in 2011,20 and a 
most recent one in 2017.25 In these revisions, 
diagnosis of MS could be made in patients with 
CIS with only one MRI scan, which is key to ear-
lier diagnosis and subsequent therapeutic inter-
vention that could slow disease progression.26 
Thus, under current diagnostic guidelines 
(McDonald criteria, 2017 revision),25 some 
patients initially classified as having CIS would 
have been diagnosed with MS. However, it should 
be noted that the efficacy of teriflunomide in 
patients with CIS was confirmed when TOPIC 
data were reanalyzed using 2010 McDonald 
criteria, suggesting that the TOPIC population 
may still be representative of a contemporary CIS 
population.20,27 A third limitation is that the 
associations between CGM atrophy and conver-
sion to CDMS were determined using data from 
pooled treatment arms (teriflunomide and pla-
cebo), potentially confounding the association. 
Fourth, although treatment was considered as a 
covariate in the analysis, both transitioning from 
placebo to active drug after year 2 and the 
unblinding of patients could have impacted the 

findings. Fifth, following the original analysis, 
region was not considered as a covariate in the 
ANCOVA model.14 Sixth, thalamus and other 
deep GM structures were not considered in this 
analysis. As thalamic atrophy is also associated 
with the development of CDMS,11 future analy-
ses should explore the effect of teriflunomide on 
deep GM and the relationship between atrophy of 
those structures and conversion to CDMS. 
Finally, short-term pseudoatrophy may have had 
a confounding effect in the evaluation of the 
results. However, the fact that there was already 
significant difference of teriflunomide 14 mg in 
slowing down loss of brain volume versus placebo 
in the first 6 months would argue against this 
hypothesis. Similar results were found in the 
TEMSO trial, where teriflunomide showed a sig-
nificant decrease in brain volume loss compared 
with placebo, with no significant pseudoatrophy 
effect.28

This is the first study to assess the effect of teriflu-
nomide on CGM and WB atrophy in patients 
with CIS, and expands on the role that early CGM 
and WB atrophy play in MS disease progression. 
The findings support the clinical relevance of 
CGM and WB atrophy and early treatment with 
teriflunomide in patients with CIS.
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