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Mycobacterium sp.Spyr1 is a newly isolated strain that occurs in a creosote contaminated site 
in Greece. It was isolated by an enrichment method using pyrene as sole carbon and energy 
source and is capable of degrading a wide range of PAH substrates including pyrene, fluoran-
thene, fluorene, anthracene and acenapthene. Here we describe the genomic features of this 
organism, together with the complete sequence and annotation. The genome consists of a 
5,547,747 bp chromosome and two plasmids, a larger and a smaller one with sizes of 
211,864 and 23,681 bp, respectively. In total, 5,588 genes were predicted and annotated. 
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Introduction 
Strain Spyr1 (=LMG 24558, =DSM 45189) is a new 
strain which based on its morphological and ge-
nomic features, belongs to the genus Mycobacte-
rium [1]. It was isolated from Perivleptos, a creo-
sote polluted site in Epirus, Greece (12 Km North of 
the city of Ioannina), where a wood preserving in-
dustry was operating for over 30 years. Strain 
Spyr1 is of particular interest because it is able to 
utilize a wide range of PAH substrates as sole 
sources of carbon and energy, including pyrene, 
fluoranthene, fluorene, anthracene and acenap-
thene. Microbial degradation is one of the major 
routes by which Polycyclic Aromatic Hydrocarbons 
(PAHs) can be removed from the environment. 
Strain Spyr1 metabolizes pyrene to 1-Hydroxy-2-
naphthoic acid which subsequently is degraded via 
o-phthalic acid, a pathway also proposed for other 

Mycobacterium strains [1] exhibiting desirable PAH 
degradation properties as follows. Complete degra-
dation of pyrene at concentrations 80 mg/L oc-
curred within eight days of incubation in the dark 
[1]. The extrapolated degradation rate for the 
growth-phase can be averaged to 10 gml-1day-1, a 
value similar to that reported for other Mycobacte-
rium species [2,3]. Addition of vitamins or trace 
amounts of yeast extract were not required for the 
growth of Spyr1 on any PAH, unlike other Mycobac-
terium spp. [4]. Use of free or entrapped cells of 
strain Spyr1 resulted in total removal of PAH from 
spiked soil samples [1]. Here a summary classifica-
tion and a set of features for strain Spyr1, along 
with the description of the complete genome se-
quence and annotation are presented. 
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Classification and Features 
The phylogenetic tree of strain Spyr1 according to 
16S rDNA sequences is depicted in Figure 1. 
The sequence identity of the 16S rRNA genes of 
strain Spyr1 to those from the two M. gilvum 
strains is 99%, while the average nucleotide iden-
tity (ANI) [5] between strain Spyr1 and M. gilvum 
PYR-GCK is 98.5. This information indicates that 
Spyr1 is a strain of M gilvum. Accordingly, we pro-
pose the renaming of the Spy1 strain to M. gilvum 
Spyr1. The ANI values between strain Spyr1 and 
other sequenced Mycobacteria are depicted in 
Figure 2. 
Strain Spyr1 is an aerobic, non-motile rod, with a 
cell size of approximately 1.5-2.0 × 3.5-5.0 μm and 
produces only a weakly positive result under 
Gram staining. (Figure 3). Colonies were slightly 
yellowish on Luria agar. The temperature range 
for growth was 4-37°C with optimum growth at 
30-37°C. The pH range was 6.5-8.5 with optimal 
growth at pH 7.0-7.5. Strain Spyr1 was found to be 

sensitive to various antibiotics, the minimal inhi-
bitory concentrations were reported as follows: 
chlorampenicol 10 mgL-1, erythromycin 10 mgL-1, 
rifampicin 10 mgL-1 and tetracycline 10 mgL-1. 
Catalase and nitrate reductase tests were positive, 
whereas arginine dihydrolase, gelatinase, lipase, 
lysine and ornithine decarboxylase, oxidase, 
urease, citrate assimilation and H2S production 
tests were negative. No acid was produced in the 
presence of glucose, lactose, sucrose, arabinose, 
galactose, glycerol, myo-inositol, maltose, manni-
tol, raffinose, sorbitol, sucrose, trehalose and xy-
lose (see also Table 1). 

Chemotaxonomy 
Strain Spyr1 major fatty acids are C16:1 (16.7%), 
C16:0 (32,9%), C18:1(47.5%), C18:0 (1.0%) and C19:0 
cyclo(1.1%). The major phospholipids were phos-
phatidylethanolamine (PE), phosphatidylglycerol 
(PG) and diphospatidylglycerol (DPG) (80.4, 4.7 
and 15.0% respectively). 

 

 
Figure 1. Phylogenetic location of strain Spyr1 among other Mycobacterium species. Corynebacterium glutami-
cum was used as the outgroup. The scale bar indicates the number of substitutions per nucleotide position 
(Number of bootstrap analysis: 1000). 
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Table 1. Classification and general features of strain Spyr1 according to the MIGS recommendations [6] 
MIGS ID Property Term Evidence code 

 

Current classification 

Domain Bacteria TAS [7] 

Phylum Actinobacteria TAS [8] 

Class Actinobacteria TAS [9] 

Subclass Actinobacteridae TAS [9,10] 

Order Actinomycetales TAS [9-12] 

Suborder Corynebacterineae TAS [9,10] 

Family Mycobacteriaceae TAS [9-11,13] 

Genus Mycobacterium TAS [11,14,15] 

Species Mycobacterium gilvum TAS [11,13] 

strain Spyr1 TAS [1] 

 Gram stain Weakly positive TAS [1] 

 Cell shape irregular rods TAS [1] 

 Motility Non motile TAS [1] 

 Sporulation nonsporulating NAS 

 Temperature range mesophile TAS [1] 

 Optimum temperature 30°C TAS [1] 

 Salinity normal TAS [1] 

MIGS-22 Oxygen requirement aerobic TAS [1] 

 
Carbon source 

Pyrene, fluoranthene, phenanthrene, anthracene, 
glucose, yeast extract 

TAS [1] 

 
Energy source 

Pyrene, fluoranthene, phenanthrene, anthracene, 
glucose, yeast extract 

TAS [1] 

MIGS-6 Habitat Soil TAS [1] 

MIGS-15 Biotic relationship Free-living NAS 

MIGS-14 Pathogenicity none NAS 

 Biosafety level 1 NAS 

 Isolation Creosote contaminated soil TAS [1] 

MIGS-4 Geographic location Perivleptos, Epirus, Greece TAS [1] 

MIGS-5 Sample collection time April 2000 TAS [1] 

MIGS-4.1 Latitude 39.789 NAS 

MIGS-4.2 Longitude 20.781 NAS 

MIGS-4.3 Depth 10-20 cm TAS [1] 

MIGS-4.4 Altitude 500 m TAS [1] 

Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-
traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally 
accepted property for the species, or anecdotal evidence). These evidence codes are from of the Gene Ontology 
project [16]. 
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Figure 2. ANI values between Mycobacterium sp. Spyr1 and other Mycobacteria. The red line 
is drawn at ANI 95 a suggested threshold for species. 

 
Figure 3. Scanning electron micrograph of Mycobacterium gilvum strain Spyr1. 
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Genome sequencing information 
Genome project history 
This organism was selected for sequencing on the 
basis of its biodegradation capabilities, i.e. meta-
bolizes phenanthrene as a sole source of carbon 
and energy. The genome project is deposited in 
the Genome OnLine Database [17] and the com-

plete genome sequence is deposited in GenBank. 
Sequencing, finishing and annotation were per-
formed by the DOE Joint Genome Institute (JGI). 
A summary of the project information is shown in 
Table 2. 

Table 2. Genome sequencing project information 
MIGS ID Property Term 

MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Tree genomic libraries: Sanger 9 kb pMCL200, 
fosmids and 454 standard library 

MIGS-29 Sequencing platforms ABI3730, 454 GS FLX 
MIGS-31.2 Sequencing coverage 10.26 × Sanger; 43.3 × pyrosequence 
MIGS-30 Assemblers Newbler version 1.1.02.15, Arachne 
MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 
 Genbank ID CP002385, CP002386, CP002387 
 Genbank Date of Release December 21, 2010 
 GOLD ID Gc01567 
 NCBI project ID 28521 
 Database: IMG 649633070 
MIGS-13 Source material identifier DSM 45189 
 Project relevance Bioremediation, PAH degradation 

Growth conditions and DNA isolation 
Mycobacterium gilvum Spyr1, DSM 45189 was 
grown aerobically at 30°C on MM M9 containing 
0.01% (w/v) pyrene. DNA was isolated according 
to the standard JGI (CA, USA) protocol for bacterial 
genomic DNA isolation using CTAB. 

Genome sequencing and assembly 
The genome of Mycobacterium gilvum Spyr1 strain 
was sequenced using a combination of Sanger and 
454 sequencing platforms. All general aspects of 
library construction and sequencing can be found 
at the JGI website [18]. Pyrosequencing reads 
were assembled using the Newbler assembler ver-
sion 1.1.02.15 (Roche). Large Newbler contigs 
were broken into 6,290 overlapping fragments of 
1,000 bp and entered into assembly as pseudo-
reads. The sequences were assigned quality scores 
based on Newbler consensus q-scores with mod-
ifications to account for overlap redundancy and 
to adjust inflated q-scores. A hybrid 454/Sanger 
assembly was made using the Arachne assembler 
[19]. Possible mis-assemblies were corrected and 
gaps between contigs were closed by editing in 
Consed, with custom primer walks from sub-

clones or PCR products. A total of 346 Sanger fi-
nishing reads were produced to close gaps, re-
solve repetitive regions, and raise the quality of 
the finished sequence. The error rate of the com-
pleted genome sequence is less than 1 in 100,000. 
Together, the combination of the Sanger and 454 
sequencing platforms provided 53.56 x coverage 
of the genome. The final assembly contains 61,443 
Sanger reads and 1,300,893 pyrosequencing 
reads. 

Genome annotation 
Genes were identified using Prodigal [20] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [21]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, Uni-
Prot, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Comparative analysis was per-
formed within the Integrated Microbial Genomes 
(IMG) platform [22]. 
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Genome properties 
The genome consists of a 5,547,747 bp long circu-
lar chromosome with a G+C content of 68% and 
two plasmids (Figures 4-6, Table 3). The larger is 
211,864 bp long with 66% G+C content and the 
smaller 23,681 bp with 64% G+C content (Table 3 
and Figure 4, Figure 5 and Figure 6) Of the 5,434 

genes predicted, 5,379 were protein-coding genes, 
and 55 RNAs; 30 pseudogenes were also identi-
fied. The majority of the protein-coding genes 
(67.3%) were assigned a putative function while 
the remaining ones were annotated as hypotheti-
cal proteins. The distribution of genes into COGs 
functional categories is presented in Table 4. 

 

 
Figure 4. Graphical circular map of the chromosome of strain Spyr1. From outside to the center: Genes on 
forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes 
(tRNAs green, rRNAs red, other RNAs black), GC content, GC skew. 
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Figure 5. Graphical circular map of first plasmid of strain Spyr1. From outside to the center: 
Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG 
categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew. 

 
Figure 6. Graphical circular map of second plasmid of strain Spyr1. From outside to the center: 
Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG cat-
egories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew. 
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Table 3. Genome Statistics 
Attribute Value % of Total 
Genome size (bp) 5,783,292 100.00% 
DNA coding region (bp) 5,256,086 90.88% 
DNA G+C content (bp) 3,918,840 67.76% 
Number of replicons 1  
Extrachromosomal elements 2  
Total genes 5,434 100.00% 
RNA genes 55 1.01% 
rRNA operons 2  
Protein-coding genes 5,379 98.99% 
Pseudo genes 30 0.55% 
Genes with function prediction 3,657 67.30% 
Genes in paralog clusters 403 7.42% 
Genes assigned to COGs 4,038 74.31% 
Genes assigned Pfam domains 4,188 77.07% 
Genes with signal peptides 1,617 29.76% 
Genes with transmembrane helices 1,185 33.80% 
CRISPR repeats 0  

 

Table 4. Number of genes associated with the general COG functional categories 

Code value %age Description 
J 154 3.4 Translation, ribosomal structure and biogenesis 
A 20 0.4 RNA processing and modification 
K 398 8.7 Transcription 
L 305 6.7 Replication, recombination and repair 
B 1 0.0 Chromatin structure and dynamics 
D 34 0.7 Cell cycle control, cell division, chromosome partitioning 
Y 0 0.0 Nuclear structure 
V 46 1.0 Defense mechanisms 
T 193 4.2 Signal transduction mechanisms 
M 176 3.9 Cell wall/membrane/envelope biogenesis 
N 10 0.2 Cell motility 
Z 1 0.0 Cytoskeleton 
W 0 0.0 Extracellular structures 
U 38 0.8 Intracellular trafficking, secretion and vesicular transport 
O 132 2.9 Posttranslational modification, protein turnover, chaperones 
C 303 6.6 Energy production and conversion 
G 198 4.3 Carbohydrate transport and metabolism 
E 320 7.0 Amino acid transport and metabolism 
F 81 1.8 Nucleotide transport and metabolism 
H 170 3.7 Coenzyme transport and metabolism 
I 412 9.0 Lipid transport and metabolism 
P 216 4.7 Inorganic ion transport and metabolism 
Q 362 7.9 Secondary metabolites biosynthesis, transport and catabolism 
R 636 14.0 General function prediction only 
S 351 7.7 Function unknown 
- 1,396 25.7 Not in COGs 
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