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Background: Still’s murmur is the most prevalent innocent heart murmur of

childhood. Auscultation is the primary clinical tool to identify this murmur as

innocent. Whereas pediatric cardiologists routinely perform this task, primary

care providers are less successful in distinguishing Still’s murmur from the

murmurs of true heart disease. This results in a large number of children with

a Still’s murmur being referred to pediatric cardiologists.

Objectives: To develop a computer algorithm that can aid primary care

providers to identify the innocent Still’s murmur at the point of care, to

substantially decrease over-referral.

Methods: The study included Still’s murmurs, pathological murmurs, other

innocent murmurs, and normal (i.e., non-murmur) heart sounds of 1,473

pediatric patients recorded using a commercial electronic stethoscope. The

recordings with accompanying clinical diagnoses provided by a pediatric

cardiologist were used to train and test the convolutional neural network-

based algorithm.

Results: A comparative analysis showed that the algorithm using only the

murmur sounds recorded at the lower left sternal border achieved the

highest accuracy. The developed algorithm identified Still’s murmur with 90.0%

sensitivity and 98.3% specificity for the default decision threshold. The area

under the receiver operating characteristic curve was 0.943.

Conclusions: Still’s murmur can be identified with high accuracy with the

algorithm we developed. Using this approach, the algorithm could help to

reduce the rate of unnecessary pediatric cardiologist referrals and use of

echocardiography for a common benign finding.
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Introduction

Still’s murmur is the most prevalent innocent heart murmur

of childhood (1). It is a low-pitched, musical, early-to-mid

systolic murmur primarily heard at the lower left sternal border

(LLSB) (2–6). It is ∼50 times more common than murmurs of

congenital heart disease (7). It does not reflect any abnormality

and does not require any treatment.

Auscultation is the primary clinical tool to identify this

murmur as innocent (8, 9). Whereas pediatric cardiologists

routinely perform this task, primary care providers (PCPs) have

significantly less success in distinguishing Still’s murmur from

the murmurs of true heart disease (9, 10). Their identification

accuracy is higher (although still poor) for pathological

murmurs (41%) and other innocent murmurs (45%) (11).

Multiple studies report that only cardiologists can reliably

distinguish different murmur types with a stethoscope (3, 4, 11–

14). Currently, when a PCP hears a Still’s murmur in a child,

they will consider referring the child for expert consultation,

even when symptoms are absent (15). Uneven referral patterns

suggest that not all children with Still’s murmur are referred, and

that PCPs vary greatly in deciding whom to refer (14). Those

children who are referred undergo consultations and associated

tests whichmay be costly and waste healthcare resources, and are

a source of avoidable anxiety for children and families (16, 17).

Most heart murmurs, including Still’s murmur, are

characterized by several features including the location on

the chest where they are heard and the timing of the murmur

signal within the cardiac cycle. A cardiac cycle is marked by the

S1 (onset of systole) and S2 (onset of diastole) sounds. Still’s

murmur’s signal has a distinctive diamond-shaped envelope

of a relatively pure low frequency that occurs shortly after S1.

These stereotypical features allow for robust classification of

Still’s murmur (18). Pathological murmurs, conversely, can vary

widely in their frequency content and timing, depending on

the lesion. From a classification standpoint, this large variation

renders it very challenging to correctly identify pathological

murmurs automatically by specific diagnosis.

Computer-aided auscultation is an area of active research

(19–21). Classification methods include support vector machine

(SVM), artificial neural network (ANN), hidden Markov model,

and k-nearest neighbor, among others (19, 20). More recently,

with the emergence of deep learning and growing availability

of heart sound data, new classification approaches employing

convolutional neural networks (CNNs) are being proposed

(22, 23).

Abbreviations: ANN, artificial neural network; AUC, area under the curve;

CNN, convolutional neural network; LLSB, lower left sternal border; PCP,

primary care provider; SM, classified as Still’s murmur; PPM, classified as

potentially pathological murmur; ROC, receiver operating characteristic.

Multiple prior studies have attempted to make a specific

diagnosis for each pathological murmur (24–29). This task is

complex and of limited clinical value. A child with a pathological

murmur of any etiology needs to be seen by a pediatric

cardiologist who will employ detailed echocardiography and

other tests to confirm the diagnosis before initiating treatment

(3). The focus of our work has been automated algorithmic

identification of Still’s murmur, specifically. We have reported

an algorithm for segmenting cardiac cycles and identifying Still’s

murmur using traditional machine learning (18, 30). With the

acquisition of additional data, we describe here a deep-learning

algorithm based on a CNN framework. As in our previous work,

the algorithm performs a binary classification to distinguish

Still’s murmur from all other pediatric heart murmurs.

Materials and methods

Heart sound recordings

For algorithm development, we used the Murmur Library,

a database of deidentified recordings of pediatric heart sounds

and murmurs compiled by one of the authors (RWD), a board-

certified pediatric cardiologist with>40 years of experience. The

recordings were obtained from supine pediatric subjects, 2–17

years of age, with parental consent (31), using a commercially

available electronic stethoscope (Model 4100, 3M Littmann,

St. Paul, MN). For each murmur recording, the definitive

clinical diagnosis was documented. All suspected pathological

murmurs were confirmed by echocardiography. For Still’s and

other innocent murmurs, we used the pediatric cardiologist’s

diagnosis, including the findings of an echocardiogram if

performed. The study was approved by the Children’s National

Hospital Institutional Review Board.

We identified 1,473 applicable recordings in the Murmur

Library and binned them into three classes: no murmur, Still’s

murmur, and murmurs other than Still’s (see Table 1). The last

class included predominantly pathological murmurs and some

innocent murmurs that were not Still’s murmurs. A detailed

breakdown of murmur types for this class is provided in Table 2.

The typical length of a recording was 7–15 s, and they came from

all four typical chest locations for cardiac auscultation: right

upper sternal border, left upper sternal border, LLSB, and apex.

Because Still’s murmur is best heard at the LLSB, we also formed

a subset of LLSB-only recordings. This allowed us to investigate

classification strategies based on the recording location.

Algorithm overview

The overall goal of the algorithm was to perform a binary

classification on heart sound recordings, with two possible

outputs: Still’s murmur (SM) or potentially pathological mumur
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TABLE 1 Number of heart sound recordings organized by clinical

diagnosis and recording location used in the study.

Recording

location

No

murmur

Still’s

murmurs

Murmurs

other than

Still’s

Total

All locations 321 270 882 1,473

LLSB 254 232 323 809

(PPM). We tested four classification strategies using different

subsets of the data, using the same overall structure of

the algorithm (see Figure 1). Each single cardiac cycle was

individually classified. Consequently, every recording went

through preprocessing to identify and prepare individual cycles

for classification.

A heart sound recording was first bandpass filtered to

remove any acquisition noise and to focus on frequencies of

interest. The bandpass filter was a 4th-order Butterworth filter

with a passband of 40–500Hz. The filter design was informed by

the fact that the normal heart sound frequencies range from 20

to 200Hz. The frequency of Still’s murmur varies between 90 and

170Hz, and pathological murmurs are in the range of 80–500Hz

(32). The next step was the application of a previously reported

segmentation technique that identified S1 and S2 sound lobes in

the recording and used them to identify individual cardiac cycles

(18, 30). We defined a cardiac cycle as the period between the

onsets of two consecutive S1 sounds.

A heart sound recording can either be successfully

segmented or fail segmentation. If a recording is successfully

segmented, it proceeds to the next stage of the algorithm

comprising feature extraction and classification. If a recording

fails segmentation, there is a high probability that S1 and S2

sounds are indistinguishable from the surrounding murmur

and heart sound signals and cannot be identified. This happens

chiefly for holosystolic or continuous murmurs, which at the

LLSB are pathological. Recordings with excessive acquisition

noise that cannot be removed by the bandpass filter can also

cause segmentation failure.When segmentation fails, we directly

classify the recording as PPM because segmentation rarely

fails for Still’s murmur recordings. Note that designating a

recording of a suspected pathological murmur or suboptimal

sound quality as PPM follows the status quo and no harm

is done. In these cases, the provider will be expected to use

the current clinical standard to determine the next course

of action.

The classification was performed using a CNN. The feature

extraction step was to prepare each cardiac cycle for input

to the CNN, and required transforming each heart-cycle

signal to a spectral image (i.e., a spectrogram). Segmented

cardiac cycles were converted into grayscale spectrograms that

varied in length due to their varying durations. To generate

TABLE 2 Distribution of pathological and innocent murmurs other

than Still’s at all locations (N = 882).

Ventricular septal defect 296

Venous hum 102

Pulmonic stenosis 100

Patent ductus arteriosus 56

Aortic stenosis 46

Tricuspid regurgitation 40

Mitral regurgitation 38

Innocent right ventricular outflow murmur 37

Atrial septal defect 35

Subaortic stenosis 26

Pulmonic regurgitation 21

Aortic insufficiency 12

Shunt 10

Pulmonary artery branch stenosis 9

Tetralogy of Fallot 5

Multiple aortopulmonary collaterals 4

Pulmonic stenosis and atrial septal defect 4

Supravalvular aortic stenosis 4

Physiologic peripheral pulmonary artery stenosis 3

Pulmonic stenosis and tetralogy of Fallot 3

Pulmonary artery branch stenosis 3

Mitral stenosis 3

Tricuspid stenosis 3

Aortic insufficiency and VSD 2

Aortic stenosis and aortic insufficiency 2

Arteriovenous malformation 2

Coronary artery fistula 2

Hypertrophic obstructive cardiomyopathy 2

Interrupted aortic arch complex 2

Atrioventricular canal 1

Aortic valve replacement 1

Double-chambered right ventricle 1

Left ventricular assist device 1

Left ventricular outflow tract 1

Mitral valve prolapse 1

Pulmonic stenosis and insufficiency 1

Subaortic stenosis with right bundle branch block 1

Subpulmonic stenosis 1

Supravalvular pulmonic stenosis 1

fixed-sized spectrograms irrespective of the cycle length, the

original spectrograms were resampled to a 55 × 129 grid

size and then converted to the decibel scale and normalized.

The normalization was further necessary to reduce the size

of the input image to the CNN and thus have a small

architecture that avoided overfitting and the need for additional

training data.
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CNN classification

For our binary classification problem—SM or PPM—we

developed a five-layer CNN. The CNN architecture consisted

of an input layer, three convolution layers, two hidden layers,

and an output layer. The input to the CNN was a spectrogram

as described. Each of the three convolution layers consisted

of a two-dimensional convolution “ReLU” activation function,

max pooling, and padding as “same.” Following the convolution

layers, the model had two fully connected layers, each of which

had 64 units with “ReLU” activation function. The output layer

was a single-neuron layer with sigmoid as an activation function.

The loss function was a modified cross-entropy function to

deal with the unbalanced data set. The optimizer was simple

momentum optimizer, and the learning rate was set to 0.9 with

an exponential decay.

The output of the CNN varied between 0 and 1 which

we associated with the probability of an input cardiac cycle

with Still’s murmur. A value closer to 1 meant that the cycle

had a high probability of being a Still’s murmur, whereas a

value closer to 0 meant that it was something other than

a Still’s murmur. The default threshold for a cardiac cycle

to be labeled as either SM or PPM was 0.5. The threshold

was also varied to create a receiver operating characteristic

(ROC) curve and calculate its area under the curve (AUC).

The final classification of a recording depended on the majority

decision from all cardiac cycles present in the recording. The

CNN was developed and trained using TensorFlow (33) on an

Nvidia GeForce RTX 2080 graphics computing unit with 12

GB memory.

Training and validation set formation

We compared four different classification strategies that

were designed to investigate the effects of recording location and

of including normal (i.e., non-murmur) heart sound recordings

in training and testing. This allowed training and testing of

the algorithm with different subsets of the data. The process of

forming the training and validation sets in each case followed

the same procedure. Twenty percent of the Still’s murmur

recordings and 20% of other murmur recordings were randomly

selected to form a validation set; the remaining 80% formed

the training set. We further utilized a five-fold cross-validation

strategy, whereby we created five sets of training and validation

sets, with each validation set including a unique set of 20%

of the Still’s murmur and other murmur recordings. Thus, the

CNN was trained five times using different training sets and

tested five times as well for each classification strategy. The

data preparation for this cross-validation procedure is shown

schematically in Figure 2.

The time to train each CNN model was ∼4min. Recordings

in both training and validation data sets went through the same

processing steps outlined in Figure 1. The final performance

figures were arrived at by aggregating the results of all five

FIGURE 1

Algorithm flowchart.

FIGURE 2

Schematic showing formation of training and validation sets for 5-fold cross validation.
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validation sets from the five folds. An advantage of cross-

validation was that each recording was used once for testing the

classifiers. The inference time for testing (i.e., classifying) a single

recording was∼1.2 s.

Test set formation

We found that the best performance was achieved when

the algorithm was trained and tested using only murmur

recordings (i.e., excluding non-murmur heart sound recordings)

obtained at the LLSB (see Results below). Therefore, we further

explored this strategy, forming a test set comprised of 60

Still’s murmurs and 60 pathological murmurs from 120 unique

patients that were recorded at the LLSB and had confirmatory

echocardiograms. The distribution of pathological murmurs in

this set mirrored their distribution in our database (see Table 3).

The specific breakdown of the 60 pathological murmurs by

diagnosis is provided in Table 4. The test set did not include any

innocent murmurs other than Still’s murmur. Such murmurs

(e.g., venous hum) are generally not heard at the LLSB and

represent a small minority of the innocent murmurs referred to

our outpatient service. The training set was formed using the

remaining data.

Results

By design, our algorithm performed a binary classification.

In clinical terms, we defined the algorithm result as positive

TABLE 3 Distribution of pathological and innocent murmurs other

than Still’s at LLSB (N = 323).

Ventricular septal defect 244

Tricuspid regurgitation 30

Pulmonic stenosis 11

Atrial septal defect 6

Aortic stenosis 6

Mitral regurgitation 5

Patent ductus arteriosus 4

Tetralogy of Fallot 3

Pulmonic regurgitation 3

Subaortic stenosis 2

Tricuspid stenosis 2

Aortic insufficiency 2

Aortic stenosis and aortic insufficiency 1

Pulmonic stenosis and regurgitation 1

Hypertrophic obstructive cardiomyopathy 1

Multiple aorticopulmonary collateral arteries 1

Supravalvular aortic stenosis 1

when its output was SM. The negative result, therefore, was the

designation of a murmur as PPM. Following this convention,

a true positive is a known Still’s murmur correctly classified as

SM, and a true negative occurs when the algorithm correctly

identifies a recording known not to be Still’s murmur as PPM.

It follows that a false negative is a known Still’s murmur wrongly

designated as PPM, and a false positive is a murmur which is not

Still’s, wrongly classified as SM.

Segmentation results

Because our classification is based on analysis of individual

cardiac cycles, in Table 5, we present the result of segmentation

and the number of available examples with which the

CNN was trained and tested. Note that the recordings in

which segmentation failed did not contribute to the cardiac

cycle count.

Five-fold experiment

Table 6 lists the classification performance of the

algorithm, using the default decision threshold of 0.5,

under the four testing strategies. The algorithm performed

better when the training and test data included only the

LLSB recordings (right column). The best performance

was achieved when training and testing of the algorithm

was further constrained to only murmur recordings, both

innocent and pathological but excluding normal, non-murmur

recordings.

TABLE 4 Distribution of pathological murmurs in the test set (N = 60).

Ventricular septal defect 41

Tricuspid regurgitation 5

Pulmonic stenosis 2

Atrial septal defect 1

Aortic stenosis 1

Mitral regurgitation 1

Patent ductus arteriosus 1

Tetralogy of Fallot 1

Pulmonic regurgitation 1

Tricuspid stenosis 1

Aortic insufficiency 1

Pulmonic stenosis and regurgitation 1

Hypertrophic obstructive cardiomyopathy 1

Multiple aorticopulmonary collateral arteries 1

Supravalvular aortic stenosis 1
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TABLE 5 Number of cardiac cycles recorded, by location and diagnostic category.

Recording location No murmur Still’s murmurs Murmurs other than Still’s Total

All locations 2,476 2,544 7,377 12,397

LLSB 1,936 2,237 3,303 7,476

TABLE 6 Performance (sensitivity, specificity, accuracy) of the

algorithm with five-fold cross-validation for the four Still’s murmur

identification strategies.

Testing strategy All locations LLSB only

All (Murmur+ No-murmur) recordings 82.6, 89.4, 88.1% 88.4, 93.4, 92.7%

Murmurs only recordings 85.2, 93.4, 91.5% 93.9, 93.7, 93.8%

Note the best performance (shown in bold) was obtained when classifying murmur-only

LLSB recordings.

Test set results

The classification result on the test set is presented in

Figure 3. The horizontal axis depicts the clinically confirmed

groups of 60 Still’s murmurs (green) and 60 pathological

murmurs (red). The vertical axis represents the probability of a

recording being Still’s murmur. The figure also shows the default

decision threshold (0.5) separating the SM and PPM classes. All

but 14 recordings in the test set were successfully segmented.

When a recording fails segmentation, it is automatically assigned

a probability value of 0, and is classified as PPM. This could

occur, for example, with a holosystolic murmur or a continuous

one. Thirteen of 60 pathological murmur recordings failed

segmentation and were directly and correctly classified as PPM.

Of the 60 Still’s murmur recordings, one failed segmentation

and, consequently, was misclassified as PPM.

The algorithm produced 54 true positives, 1 false positive,

59 true negatives, and 6 false negatives. These translate to

the algorithm achieving a sensitivity of 90.0% (54 of 60

Still’s murmurs correctly identified) and specificity of 98.3%

(59 of 60 pathological murmurs correctly identified). The

corresponding accuracy was 94.2%. When the recordings that

failed segmentation were excluded from the calculation of

performance parameters, the sensitivity was 91.5% (54 of 59

Still’s murmurs correctly identified), the specificity was 97.9%

(46 of 47 pathological murmurs correctly identified), and the

overall accuracy was 94.3%. As is evident, the effect of excluding

failed segmentation cases was a slight gain in sensitivity coupled

with a slight loss in specificity.

Figure 4 shows representative true positive, false positive,

true negative and false negative recordings, with the probabilities

of each individual cardiac cycle containing a Still’s murmur.

Among the six false negatives, i.e., Still’s murmurs that were

identified as PPM, one was due to segmentation failure and five

FIGURE 3

Scatter plot showing the classification of known Still’s murmurs

(in green) and known pathological murmurs (in red) in the test

set. The algorithm classified the murmurs above the dashed line

as SM and below it as PPM.

others were misclassified after successful segmentation. When

the segmentation failure case was inspected, it was observed that

the recording had excessive noise. The other five Still’s murmurs

had been labeled as atypical by the cardiologist. The one false

positive case was a recording of mild tricuspid regurgitation with

murmur signal similar to that of a Still’s murmur, albeit slightly

higher pitched.

We then studied the effect of varying the decision threshold;

the corresponding ROC curve is shown in Figure 5. The AUC

was 0.943. Note the default decision threshold of 0.5 was set a

priori, and the CNN was trained using this threshold.

Discussion

Our goal was to develop an algorithm that could aid PCPs in

identifying Still’s murmur as benign at the point of care to reduce

over-referral of children with normal hearts, without eliminating

those with true heart defects. The need for auscultation aimed at

differentiating between innocent and pathological murmurs, as

opposed to aiming at specific cardiac diagnoses, is central to the

current PCP practice model in the United States (34).

In our implementation, the highest identification accuracy

was achieved when the algorithm was trained and tested
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FIGURE 4

Representative true positive, false positive, true negative, and false negative examples with segmented S1 and S2 sounds and the probabilities of

each cardiac cycle being a Still’s murmur.

FIGURE 5

ROC curve for the Still’s murmur identification algorithm tested

on the test set.

utilizing LLSB-only murmur recordings. The comparative

analysis informed the design of our second experiment, testing

the algorithm on an independent test set of echocardiography-

confirmedmurmurs. This “LLSB-andmurmurs-only” strategy is

appropriate for the intended clinical application, as LLSB is the

most common location at which PCPs consistently examine the

heart, and limiting the recording to a single location minimizes

acquisition time (35).

The deep-learning approach presented here was slightly

less accurate than our previously reported SVM and ANN

classification methods (AUC of 0.943 vs. 0.966) (18). This trend

is reflected in sensitivity (90 vs. 84–93%) and specificity (98.3 vs.

91–99%) figures as well. Our previous study used a significantly

smaller dataset, hand-crafted features, and employed leave-one-

out strategy for testing the algorithm. The present study took

a more rigorous and reproducible approach involving a larger

dataset and an independent test set. As with most applications,

we believe deep learning is a superior approach in the long

term as it is not based on manually identified features. More

importantly, we believe that deep learning will have a higher

performance ceiling compared with SVM and ANNmethods.

Deep learning is data-intensive; our approach of performing

the classification on individual cardiac cycles allowed us to have

a dataset sufficient in size for training and testing the CNN.

Because murmur characteristics vary beat-to-beat, we believe

that this approach is not only desirable from a deep-learning

perspective but also helps to achieve robust classification.

Murmur libraries, some open-access, exist, but they are small

and diverse in disease distribution and patient characteristics,

and do not focus on pediatric murmurs (36, 37). It may be

possible to utilize them in the future for training a learning-

based algorithm, but this task remains difficult and of limited

value at present.
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We defined a positive result as indicative of Still’s murmur

and a negative result as indicative of a potentially pathological

murmur. In general, clinicians think of sensitivity as correct

identification of pathology, as opposed to non-pathology.

But since the purpose of our algorithm is to identify non-

pathological (i.e., obvious Still’s) murmurs, and weed out

a significant proportion of them, the terms sensitivity and

specificity have been applied with their standard definitions.

Therefore, to compare our results to traditionally reported

classification performance numbers, the terms “sensitivity” and

“specificity” must be reversed. A direct comparison with other

methods also needs to take in account that the PPM class

includes innocent murmurs that are not Still’s. The proportion

of this group of murmurs is significantly smaller than that of

Still’s murmurs in both incidence and those referred to pediatric

cardiologists (1).

The notable prior studies on pediatric heart murmur

classification have reported varied approaches, numbers of

recordings, and results. Pretorius et al. reported a sensitivity

of 91% and specificity of 94% in identification of pathological

murmurs utilizing an ensemble ANN classifier and using

recordings from 381 patients, from one of four chest

locations (23). In another study, Pyles et al. reported 78.5%

sensitivity and 92.6% specificity in identifying pathological

murmurs from 149 subjects (21). Evaluation of a commercially

available computer-aided auscultation software program on

126 subjects yielded a sensitivity of 83.9% and a very low

specificity of 30.3% in identification of pathological murmurs

against echocardiography (38). More recently, Thompson et al.

reported achieving 93% sensitivity and 81% specificity for

identifying pathological cases in a comparatively larger set of

recordings from 603 predominantly pediatric patients (39).

These studies focus on detection of pathological murmurs

with the goal of maximizing sensitivity. By focusing on

Still’s murmur, our algorithm takes a different approach.

Nevertheless, our algorithm incorrectly labeled only one

pathological murmur (mild tricuspid regurgitation), and that

was one of questionable clinical import and unlikely to

alter management.

In the future, going beyond a binary classification may be

possible, but, at this point, the losses in sensitivity and specificity

would outweigh the benefits of adding other innocent murmurs,

as Still’s murmur is by far the largest cause of pediatric cardiology

over-referrals. We can only speculate as to why that is, but we

believe it is that most primary care providers caring for children

auscultate chiefly—or perhaps only—over the precordium. The

other two common innocent murmurs between ages 2 and

18 are the venous hum, which is heard at the right upper

sternal border to the mid-right clavicle, and the innocent right

ventricular outflow murmur often heard in older children, at

the left upper sternal border, usually only supine. Atypical

Still’s murmurs will be classified by the algorithm as PPM.

Our goal is not to remove all Still’s murmurs from the referral

cases, but rather to cull out the obvious, typical ones. This

should have a substantial impact on referral patterns and use

of resources.

Our algorithm’s 90% sensitivity is high enough to ensure that

the vast majority of Still’s murmurs will be correctly recognized.

As a decision support system, it could have a considerable

impact on clinical practice by reducing the currently high rate

of Still’s murmur referrals made to pediatric cardiologists. In

this context, specificity is critically important so as to minimize

false negatives which could have negative clinical consequences.

We note that the adoption of mandated critical congenital heart

disease (CCHD) screening in the newborn in the United States

substantially reduces the stakes in misclassifying a pathological

murmur, as this screening selects out the vast majority of serious

congenital heart defects before discharge home from the birth

hospital (40).

Our approach would not identify some lesions such as atrial

septal defects (ASDs), which are among the latest-diagnosed

congenital cardiac heart defects in the current practice model,

often missed until adulthood. This delay in diagnosis rarely, if

ever, causes harm. Our approach might also be less accurate for

cardiac murmurs due to acquired heart disease (e.g., rheumatic

fever) and to those structural heart defects presenting later

in childhood (e.g., discrete subaortic stenosis). Given the low

incidence of such lesions in the U.S. population, we did not

evaluate the accuracy of our algorithm in these settings. Subjects

<2 years were not included in this study. In this age group,

given the high sensitivity of newborn CCHD screening, critical

congenital heart disease very rarely presents with a murmur in

an asymptomatic child.

In conclusion, Still’s murmur is responsible for a

large over-referral problem in the United States. We have

developed a deep-learning algorithm capable of identifying

this murmur with high accuracy. The algorithm has the

potential to serve as decision support in reducing the

rate of unnecessary pediatric cardiologist referrals and

use of echocardiography for a common benign finding.

The future directions of our study include additional data

acquisition, algorithmic improvements, prospective testing

of the algorithm on recordings made in pediatric cardiology

clinics against the findings of pediatric cardiologists, and

the demonstration of acceptability of this new model to the

PCP population.
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