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The most common form of malignant renal neoplasms is renal cell carcinoma (RCC), which is classified into several different
subtypes based on the histomorphological features. However, overlaps in these characteristics may present difficulties in the
accurate diagnosis of these subtypes, which have different clinical outcomes. Genomic and molecular studies have revealed unique
genetic aberrations in each subtype. Knowledge of these genetic changes in hereditary and sporadic renal neoplasms has given
an insight into the various proteins and signalling pathways involved in tumour formation and progression. In this review, the
genetic aberrations characteristic to each renal neoplasm subtype are evaluated along with the associated protein products and
affected pathways. The potential applications of these genetic aberrations and proteins as diagnostic tools, prognostic markers, or
therapeutic targets are also assessed.

1. Introduction

The incidence of kidney cancers has been increasing steadily
in developed countries over the past decade and new reports
show similar trends in developing countries [1–3]. Renal
cell carcinoma (RCCs) form the majority of malignant
kidney neoplasms and are grouped into a few different
subtypes based on their histomorphological features. The
most common subtype is clear cell RCC (ccRCC), followed
by papillary (pRCC), chromophobe (chRCC), and collecting
duct RCC (CDRCC). Renal oncocytoma (RO) is a benign
renal neoplasm with histological similarities to chRCC [4].
Accurate identification of these subtypes is important for
diseasemanagement as each subtype has a different biological
and clinical behaviour. Cancer is often described as a genetic
disease, caused by genetic alterations which regulate cell
growth [5–7]. Hence, distinctive genetic aberrations in each
RCC subtype affect the clinical course and prognosis of
the tumour. The majority of RCCs are sporadic while only

approximately <3% are hereditary [8, 9]. Although less
frequently encountered, hereditary RCCs play a significant
role in the understanding of genetic changes and pathways
affecting tumour progression (Table 2).

Genetic alterations such as duplication, deletion, translo-
cation, hypermethylation, or mutations result in the acti-
vation or inactivation of genes and the over- or underex-
pression of the corresponding proteins in RCCs. Genetics
analysis helps in the identification of tumours in situations
where histology and immunohistochemistry (IHC) profiles
do not provide a clear distinction between the subtypes.
Conventional methods for analysis include chromosomal
comparative genomic hybridization (CGH), fluorescent in
situ hybridization (FISH), G banding, and polymerase chain
reaction (PCR) based loss of heterozygosity (LOH) analysis.
Newer technologies such as array CGH (aCGH), single
nucleotide polymorphisms (SNP) arrays, and next generation
sequencing (NGS) have allowed for high throughput analyses
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of known aberrations as well as identification of novel genetic
alterations.

In this review, the various genetic aberrations associated
with familial and sporadic clear cell, papillary, chromophobe,
collecting duct RCCs, and oncocytoma will be explored,
along with the prognostic, diagnostic, and therapeutic impli-
cations of these genes.

2. Clear Cell Renal Cell Carcinoma (ccRCC)

Clear cell RCC is the most frequent subtype of renal cancer,
accounting for 80–90% of all RCCs [10]. Originating from
renal proximal tubules, ccRCC cells have abundant clear
cytoplasm, a result of high glycogen and lipid content.
Eosinophilic or granular cells may be present, due to a higher
number of mitochondria [11]. Clear cell RCC has a metastatic
rate of 15.3–21.5% at presentation and a 5-year cancer specific
survival of 71–81.3% [12–14].

2.1. Von Hippel-Lindau (VHL) Gene. Themost common and
characteristic genetic changes in ccRCCs are aberrations such
as LOH, hypermethylation, or mutation in 3p chromosome
region, which are found in up to 91% of the tumours
[15–17]. The VHL gene, a tumour suppressor gene (TSG)
located at 3p25 loci, is one of the earlier genes associated
with ccRCC. This gene was first discovered in patients with
VHL disease, an autosomal dominant hereditary syndrome
that predisposes affected individuals to cancers such as
pheochromocytomas, hemangioblastomas, and ccRCC [18].
Up to 75% of patients with VHL syndrome develop ccRCC,
a leading cause of death in these patients [19, 20]. However,
only approximately 1.6% of all ccRCC cases are associated
with hereditary VHL syndrome [21]. Interest in VHL grew
when the majority of sporadic ccRCC cases were also found
to contain VHL aberrations.

The VHL protein (pVHL) functions to ubiquitinate
proteins and mark them for degradation, with hypoxia
inducible factor 𝛼 (HIF𝛼) being a well-researched target
involved in tumourigenesis [22–24]. HIF𝛼 is a transcription
factor controlling angiogenesis, glucose uptake, cell pro-
liferation, and apoptosis through downstream targets like
vascular endothelial growth factor (VEGF), platelet-derived
growth factor (PDGF), transforming growth factor alpha
(TGF𝛼), and C-X-C chemokine receptor type 4 (CXCR4)
[25–27]. Under normal oxygen conditions, HIF𝛼 is degraded
by pVHL but when oxygen is low, HIF𝛼 is allowed to
accumulate, inducing transcription of genes that improve
cell proliferation, oxygen delivery, and angiogenesis [22–
24]. Inactivation of VHL, which occurs through mutation,
deletion, or methylation, causes the accumulation of HIF𝛼
under normal oxygen conditions and encourages tumour
growth. Individuals with VHL disease have one wild type
VHL allele and one inactivated VHL allele [28]. According
to the Knudson two-hit model, biallelic VHL inactivation
is achieved when the remaining copy is inactivated by
spontaneous mutation [28, 29]. Sporadic renal tumours
require spontaneous mutation of two wild type VHL alleles
[30].

VHL genetic changes are believed to be exclusively asso-
ciated with ccRCC but van Houwelingen and colleagues have
detectedVHLmutations in 15%of non-ccRCCs froma cohort
of sporadic RCC patients in Netherlands.They noted that the
percentage of patients with VHL mutation was significantly
higher for ccRCC compared to RCCs of other histological
types [31]. Other studies however found no VHLmutation in
other subtypes [32–34].

Inactivation of VHL may play an important role in the
pathogenesis of ccRCC, but the association of VHL status
with clinicopathological parameters and disease progression
is still unclear and contradictory. Some studies showed that
the presence or absence of VHL alterations does not affect
tumour stage, grade, or prognosis [35–37]. It has also been
shown that there is no correlation between VHL mutation
or methylation status with angiogenesis and proliferation of
ccRCC [35, 38]. Brauch et al. and Schraml et al. reported an
association of tumour VHL alterations with advanced stage
and adverse prognosis [35, 39]. In contrast, several other
studies revealed favourable prognosis for tumours with VHL
inactivation or alteration [40–44].These contradictory prog-
nostic findings could be a result of complex transcriptional
or posttranscriptional responses in addition to the various
genetic aberrations which contribute to the heterogeneous
characteristics of RCCs [35]. It is postulated that the VHL
independent activation of other signal transduction pathways
such as themammalian target of rapamycin (mTOR), nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-
𝜅B), signal transducer and activator of transcription 3 (STAT-
3), or epidermal growth factor receptor (EGFR) pathways
could be responsible for tumour progression and tumours
activated by several different mechanisms could be more
aggressive [42]. Moreover, ccRCC tumours caused by VHL
syndrome are of lower grade, less likely to metastasize, and
have better 10-year survival compared to sporadic VHL
RCCs, whichmay harbour other predisposingmutations [21].

Nevertheless, the discovery of the VHL gene in famil-
ial and sporadic ccRCC has revolutionised treatment for
advanced RCC. Targeted therapy aiming at suppressing
angiogenesis through VEGF or PDGF mediated pathways
has replaced immunotherapy such as interferon alpha (IFN𝛼)
and interleukin-2 (IL-2) as treatment for metastatic RCC.
The current FDA approved targeted therapy drugs for RCC
which are the tyrosine kinase inhibitors (sunitinib, sorafenib,
pazopanib, and axitinib), monoclonal antibody to VEGF
(bevacizumab), and the mTOR inhibitors (temsirolimus and
everolimus) [45]. Targeted therapy has improved treatment
outcome as the overall and cancer specific survival of
metastatic RCC patients has improved in the targeted therapy
era compared to the immunotherapy era [46, 47].

2.2. Chromosome 3 Translocations. A number of studies have
reported hereditary ccRCC associated with translocation of
chromosome 3, thus supporting the role of chromosome
3 in the pathogenesis of ccRCC. Cohen et al. (1979) first
discovered a reciprocal translocation at (3;8)(p14.2;q24) in
a family with hereditary ccRCC [48]. A possible gene of
interest, FHIT, has been identified in that chromosome 3
region, which will be discussed in the next section. Since
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then, other constitutional translocations in chromosome
3 regions have been reported. These translocations such
as t(1;3)(q32;q13), t(2;3)(q33;q21), t(2;3)(q35;q21), t(3;6)(q12;
q15), and t(3;8)(p13;q24) were found in familial ccRCC [49–
54]. In some familial chromosome 3 translocations iden-
tified, t(3;4)(p13;p16), t(3;4)(q21;q13), t(3;6)(p13;q25), and
t(3;15)(p11;q21), only one family member developed ccRCC
[55–57]. The involvement of several TSG genes has been
suggested, for example, t(1;3)(q32;q13) (NORE1 and LSAMP),
t(2;3)(q33;q21) (DIRC1), t(2;3)(q35;q21) (DIRC2 and DIRC3),
and t(3;8)(p14.2;q24) (FHIT and TRC8). However, these
translocations result from different breakpoints and some
translocations had no identifiable breakpoint associated
genes [52, 53, 58]. Hence, a three-step model has been
proposed for familial chromosome 3 translocation ccRCC.
The first step is inherited translocation of chromosome 3,
followed by the loss of the 3p segment, and finally somatic
mutation of the remaining 3p allele, which may contain the
VHL gene or other TSGs located at 3p [54, 59].

2.3. Fragile Histidine Triad (FHIT). Although VHL plays a
significant role in our understanding of ccRCC, it is not
the only genetic aberration in chromosome 3p region. In
ccRCC with 3p deletion with and without VHL alterations,
inactivation of TSGs at 3p12-p21 appears to play a role in
tumourigenesis [33, 60]. Numerous studies have been carried
out to identify potential TSGs along this region. One such
gene is FHIT located in the 3p14.2 region. Chromosomal
translocation at t(3;8)(p14.2;q24) was first described in hered-
itary RCC and a common region of loss in chromosome 3
was found in sporadic ccRCC [61–64]. FHIT gene has been
identified at this locus in several othermalignancies including
lung, breast, cervical, gastric, and bladder cancers [65–69].
The FHIT gene encompasses the chromosomal fragile site
FRA3B, a frequently observed breakpoint in many cancers
including RCC [70, 71]. As a result of inactivation, FHIT
protein expression is low or absent in most ccRCC tumours
[72–74].

The specific function of the FHIT protein is still unclear,
but studies have demonstrated the role of the FHIT gene
in tumour suppression. For example, there was an increase
in formation of spontaneous tumours and susceptibility
to carcinogen-induced tumours in FHIT knockout mice
compared to mice with functional FHIT [75, 76]. There is
a significant correlation between low or absence of FHIT
protein expression and low grade and early stage ccRCC
tumours indicating that LOH of FHIT may play a role in
early tumour development [73, 74, 77, 78]. Interestingly,
Ramp et al. reported that higher FHIT protein expression
is linked to poorer patient survival and is an indepen-
dent prognostic marker in ccRCCs [73]. Although FHIT
is lower in ccRCC compared to normal kidney, higher
FHIT levels in higher grade and stage tumours do not
support the tumour suppressor function of FHIT [72–74].
Ramp et al. suggested that reversible epigenetic inactivation
such as gene hypermethylation or posttranslational events
may reactivate FHIT as the tumour progresses [73, 77].
However, there has yet to be conclusive evidence for these
mechanisms.

2.4. Ras Association Domain Family 1A (RASSF1A). Another
TSG associated with ccRCC in 3p chromosome region is
RASSF1A gene located at 3p21.3. RASS1A protein regulates
microtubule formation, cell cycle control, and apoptosis
[79]. Reintroduction of RASSF1A in lung and breast cancer
cell lines inhibited cell cycle progression and proliferation
[80]. RASS1A is inactivated by hypermethylation in the
promoter region and this is frequently seen in ovarian,
breast, and lung tumours, including ccRCC [81–83]. Peters
et al. found significantly increased methylation in ccRCC
tumours compared to normal tissues but also detected a
subgroup of methylated sequences in the normal tissue
[84]. The normal tissue was obtained from histologically
benign region of the tumour bearing kidney, suggesting that
hypermethylation of RASSF1A is involved in early tumour
formation of RCC [84]. In ccRCC patients, hypermethyla-
tion of the RASSF1A promoter was significantly associated
with advanced stage, higher grade, and unfavorable patient
survival [85, 86]. Tezval et al. reported that most ccRCC
tumours have low RASS1A protein expression but a subset of
tumours with increased expression is associated with higher
stage and grade [87]. This is somewhat contradictory to the
tumour suppressor function of the protein. More studies
on protein expression of RASSF1A in ccRCC tumour tissue
are needed to understand its effect on patient prognosis.
Although less frequently reported, RASSF1A inactivation
is also found in approximately 44% of papillary RCC
[88].

2.5. Chromatin Modification Genes. Recently, NGS or exome
sequencing studies have discovered several novel genes
involved in chromatin modification which are mutated in
ccRCC [89–91]. The newly identified genes are polybromo-1
(PBRM1), AT-rich interactive domain-containing protein 1A
(ARID1A), BRCA1 associated protein-1 (BAP1), SET domain-
containing 2 (SETD2), and lysine- (K-) specific demethylase
5C (KDM5C) [89–93]. PBRM1 mutations are found in up
to 41% of ccRCC, making it the second most mutated gene
after VHL [90]. PBRM1, BAP1, and SETD2 are all located
near the 3p21 region and, similar to VHL, are proposed to be
inactivated through the Knudson two-hit model [94]. As loss
or deletion of 3p chromosome region is common in ccRCC,
inactivation of these genes is achieved by further mutations
in the remaining allele [90].

The discovery of these frequently mutated genes along
with advances in NGS technology has led to interest in
intratumour heterogeneity analysis in ccRCC. This provides
an insight into the various mutations that may take part in
tumour initiation or progression and possibly aid in fine
tuning targeted therapy in the future. Multiple regions from a
single tumour regionwere subjected to sequencing andmuta-
tions were mapped onto a phylogenic tree to illustrate the
evolution ofmutational events. Early or ubiquitousmutations
are located at the trunk while subsequent or intratumour
subclonalmutations are located at the branches. A ubiquitous
mutation is found in all regions of a tumour analysed,whereas
subclonal mutations are only found in a subpopulation of
tumour cells [94, 95].
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VHL was mapped as a ubiquitous driver mutation in 64–
100% of ccRCC tumours analysed by Gerlinger et al. and
Sankin et al. [95, 96]. BAP1, PBRM1, SETD2, and KDM5C
mutations were found in different subclones in the same
tumour, indicating that these were later mutations [95, 96].
However, PBRM1 was also a ubiquitous mutation in 20–30%
of ccRCC tumours analysed [95, 96]. Sankin et al. reported
an increased mutation frequency in intratumour multiregion
analysis, compared to earlier large scale sequencing studies
[96]. This was especially observed in nonubiquitous muta-
tions, such as SETD andKDM5C [96].They suggested that the
actual mutation rate may be higher than reported in earlier
studies, but this will have to be validated in a larger sample
sizedmultiregion sequencing analysis. Althoughmost studies
have focused onmutations of these genes in sporadic ccRCC,
germline PBRM1 and BAP1 mutations have been detected in
familial ccRCC [97, 98]. Germline BAP1 mutation also pre-
disposes affected individuals to uveal melanoma, malignant
pleural mesothelioma, and cutaneous melanoma [99].

These chromatin modification genes function as TSGs
and have been implicated in other cancers, such as ARID1A
and SETD2 in breast cancer and KDM5C in prostate cancer
[100–102]. Alterations of the chromatinmodification proteins
could lead to disruptions of transcriptional regulation and
tumour formation [92]. For example, silencing of PBRM1
in ccRCC cell lines increased proliferation and migration,
supporting its role as a TSG [90]. In a RCC cell line with
BAP1mutation, 769-P, cell proliferation was inhibited by the
introduction of wild type BAP1 [91].

The roles of these chromatin modification genes and
their proteins products are not fully understood yet, but
various studies have shown that the mutational status of
these genesmay possess prognostic influence on ccRCC. Low
PBRM1 expression was reported to correlate with advanced
stage, higher Fuhrman grade, and worse disease specific
survival [103, 104]. In contrast, Hakimi et al. and Sato et
al. found no relationship between disease-free or disease
specific survival and PBRM1 mutational status [105, 106].
BAP1 loss was associated with metastasis, advanced stage
and Fuhrman grade, sarcomatoid differentiation, and worse
overall and disease specific survival [91, 105, 107, 108]. Com-
pared to tumours exclusively mutated for PBRM1, tumours
with BAP1 only mutation conferred adverse clinicopatho-
logical features and prognosis [109, 110]. Based on these
findings, BAP1 mutational status appears to be a strong
prognostic indicator for ccRCC. Low ARID1A mRNA and
BAF250a (protein product of ARID1A) levels also correlated
with higher stage, grade, and worse prognosis while SETD2
mutation was associated with worse disease specific survival
[93, 105, 111].

2.6. Other Genetic Aberrations. Other genetic aberrations of
interest, such as changes at chromosome regions 5q, 8p, 9p,
and 14, may affect the prognosis of ccRCC. Copy number
gains at 5q conferred a favourable prognosis whereas a loss
had an adverse effect [112–114]. LOH in 8p, 9p, and 14q
has been associated with higher grade, stage, unfavourable
prognosis, and tumour recurrence [115–121]. Potential can-
didate genes include CDK2NA (cyclin-dependent kinase

inhibitor 2A) at 9p21 and HIF1A at 14q23.2 [118, 119,
121]. CDK2NA encodes the p16 tumour suppressor protein
which plays an important role in cell cycle regulation by
preventing cells progressing from G1 phase to S phase
[122].

Recent sequencing, transcriptome, and integrated data
analyses have revealed frequently mutated signalling path-
ways in ccRCC such as the phosphoinositide 3-kinase PI3K-
AKT-mTOR and p53 pathways [106, 123]. The PI3K-AKT-
mTOR pathway, which regulates angiogenesis, cell cycle
progression, and proliferation, is a target formTOR inhibitors
temsirolimus and everolimus. Together, genes involved in
the pathway, consisting of MTOR, PTEN, PIK3CA, AKT2,
and others, have alterations in 26–28% of ccRCC tumours
[106, 123]. These findings provide concrete evidence on
the genetic changes directly associated with the PI3K-AKT-
mTOR pathway in ccRCC. Targeted therapy with mTOR
inhibitors in RCC was based on the understanding that
elevated HIF could induce the PI3K/AKT pathway and
promote angiogenesis [124]. Alterations of the genes found
in the p53 signalling pathway, which includes TP53 and
CDK2NA, could be detected in 40%of tumours [106].Thep53
pathway plays a role in apoptosis, inhibition of angiogenesis,
and genomic stability. Knowledge in deregulated signalling
pathways would help in providing patients with personalised
targeted therapy and improving treatment outcome.

Differential Diagnosis

Clear Cell Tubulopapillary RCC. Clear cell tubulopapillary
RCC is a recently identified RCC subtype comprising of
cells with clear cytoplasm and papillary architecture. It is
often reported in patients with end stage kidney disease
but has been found in normal functioning kidneys and is
typically low grade [125]. Although clear cell tubulopapil-
lary RCC mimics ccRCC and pRCC histologically, it has
a different genetic profile from both subtypes [126]. Clear
cell tubulopapillary RCCs lack deletions of 3p typical of
ccRCC or gains of chromosome 7 and loss of chromosome
Y characteristic of pRCC [126–128]. In addition, clear cell
tubulopapillary RCC lacks VHL mutation commonly found
in the ccRCC subtype [129].

3. Papillary Renal Cell Carcinoma (pRCC)

Papillary RCC is the second most common subtype, making
up approximately 10% of all RCCs. Papillary RCC is charac-
terised by tumour cells arranged in tubulopapillary architec-
ture. Delahunt and Eble have proposed the subclassification
of pRCCs into two histological groups, type 1 and type 2 [130].
Type 1 tumours are characterised by small cells with scant
cytoplasm and small nuclei while type 2 tumours have large
cells with plentiful eosinophilic cytoplasm and large spherical
nuclei. Type 2 tumours are generally more aggressive, with
more advanced grade and stage than type 1 tumours [130, 131].
Compared to ccRCC, pRCCs have a better prognosis with a
metastatic rate of 3.4–14.9% at presentation and 5-year cancer
specific survival of 79.4–91% [12–14].
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3.1. Chromosomes 7 and 17. PapillaryRCCs frequently display
gains of chromosomes 7 and 17 [132–134]. Trisomies 7 and 17
discovered in small papillary renal cell neoplasia indicate that
these genetic alterations may be involved in initial tumour
development [135]. Based on past studies, polysomy 7 is not
a reliable predictor of survival, stage, grade, or proliferation
rate of papillary renal tumours [132, 133, 136, 137]. Polysomy
7 in ccRCC however was correlated with higher stage and
grade [133]. The prognostic value of polysomy 17 in pRCC
is contradictory. Balint et al. found no significant association
between chromosome 17 gains and tumour grade or size [132].
In contrast, Gunawan et al. and Klatte et al. significantly
correlated chromosome 17 polysomy with lower stage, less
lymph node, and distant metastases, as well as a favourable
survival [137, 138].

3.2. MET Protooncogene. At present, only one gene on chro-
mosome 7 has been positively identified and linked to pRCC.
Hereditary pRCC (HPRC) associated with type 1 tumours
is caused by the mutation of the MET protooncogene at
7q31. An activating missense mutation of theMET gene and
duplication of chromosome 7 along with the mutated MET
gene were postulated to increase the oncogenic effect ofMET
[139, 140]. MET mutation associated hereditary pRCC and
sporadic pRCC are typically low grade, bilateral tumourswith
multiple lesions [8, 9, 141]. The protein product of the MET
gene is c-met, a hepatocyte growth factor receptor (HGFR).
Binding of the hepatocyte growth factor (HGF) or c-met to
theMET receptor induces several biological responses which
promote oncogenesis, including cell motility, cell differen-
tiation, proliferation, angiogenesis, and invasion [142]. The
role of c-met in pRCC has not been clearly elucidated but
in hereditary pRCC it is suggested that germline mutations
of the MET gene promote proliferation, tubulogenesis, and
tumour initiation [143].

MET mutation is estimated to be present in 5–21.6% of
sporadic pRCC [8, 108, 139, 141]. A recent study by Albiges
et al. reported copy number gains of MET in 46% of type II
pRCC and in 81% of type I pRCC [108]. The c-met protein is
strongly expressed in 80–90% of pRCC, indicating a role of
MET copy number gains in protein activation [108, 143, 144].
Interestingly, there is no significant difference between c-met
expressions in type 1 and type 2 pRCC although tumours with
MET mutations favour the type 1 histology [141, 143, 144].
Sweeney et al. found a significant correlation between c-met
expression and higher tumour stage and a trend towards
a favourable overall survival rate for patients with c-met
negative tumours [143]. To date, no other studies have shown
prognostic association of c-met protein or MET gene in
pRCC. In contrast, c-met expression is lower in ccRCC
but studies have shown significant correlation of positive c-
met immunoreactivity with metastasis and higher grade and
stage [144, 145]. A recent study by Gibney et al. reported
a correlation of higher c-met expression with higher grade
and stage and worse disease specific survival in RCCs [146].
This may not be specific to pRCCs as they analysed all RCC
subtypes, including a majority of ccRCC [146]. Regardless
of the prognostic significance, the c-met signalling pathway
appears to be an attractive target for pRCC. Phase II clinical

trials of c-met pathway inhibitors, volitinib and foretinib, are
currently ongoing for advanced pRCC [147, 148].

3.3. Fumarate Hydratase (FH). BesidesMET mutation asso-
ciated HPRC, another form of hereditary pRCC is found in
the autosomal dominant syndrome, hereditary leiomyomato-
sis, and renal cell carcinoma (HLRCC). Affected individuals
are predisposed to develop cutaneous leiomyomas, uterine
fibroids, and type 2 pRCC [149]. Renal tumours in HLRCC
patients are characteristically solitary and unilateral with a
propensity for nodal or distant metastasis [150, 151]. In rare
cases, renal tumours are of collecting duct RCC histology
[149, 152]. Germline mutation of the FH gene has been
identified and mapped to chromosome 1q42-43 [152, 153].
Fumarate hydratase (FH) protein is an enzyme responsible
for converting fumarate to malate in the Krebs cycle. As
a consequence of missense, frameshift, insertion/deletion,
nonsense, or complete deletions of the FH gene, enzymatic
activity of FH is significantly decreased [154]. Loss of FH
activity causes the accumulation of fumarate, which can act
as a competitive inhibitor of HIF prolyl hydroxylase (HPH)
[155]. HPH degrades hypoxia inducible factors (HIFs) in nor-
moxia conditions; hence elevated levels of fumarate result in
stabilization and accumulation of HIFs [155]. Elevated HIFs
promote angiogenesis and tumour progression. Compared to
VHL andMET, mutation of FH in sporadic RCC is very rare
[156]. For example, according to the COSMIC (Catalogue of
Somatic Mutations in Cancer) database, FH mutations were
found in 3 out of 1383 renal tumours analysed [157].

3.4. Other Genetic Aberrations. Deletions are often found
in chromosomes X and Y of pRCC tumours. The effects of
these chromosomal losses in pRCC are not well documented
in literature and no TSG has been identified yet. Only
one study, by Jiang et al., has significantly linked losses of
chromosome Xp with shorter patient survival [158]. Besides
gains of chromosomes 7 and 17, gains of chromosomes 12, 16,
and 20 and loss of chromosome Y have also been detected in
renal papillary adenomas, suggesting that these chromosomal
alterations may be involved in early neoplastic changes in
pRCC [159, 160]. Multiregion sequencing analysis confirmed
that gains in chromosomes 7, 12, 16, and 17 are ubiquitous
early events in pRCC tumourigenesis [161]. BAP1, SETD2,
ARID2, and the Nrf2 pathway genes (KEAP1, NHE2L2, and
CUL3) were identified as pRCC driver mutations, often
found in tumour subclones. ARID2 forms the subunit of the
SWI/SNF chromatin-remodeling complex and is functionally
related to ARID1A, while the NrF2 pathway protects cells
against oxidative stress and regulates cell survival [161, 162].
However, less than 10% of pRCC harboured these mutations
[161]. Most genetic changes were in the form of somatic copy
number alterations, which were predominantly copy number
gains, but the genes associated with these copy number
alterations have yet to be identified [161].

Other chromosomal aberrations in pRCC are as listed
in Table 1. Among these, loss of 9p may be a promising
prognostic marker as Gunawan et al. and Klatte et al. asso-
ciated the loss with higher stage, lymph node involvement,
and increased risk of death from pRCC [137, 138]. Allelic
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Table 2: Hereditary RCCs and their related genetic aberrations.

Tumour type Syndrome Clinical manifestation Chromosome Candidate gene

ccRCC

Von Hippel-Lindau
(VHL)

Retinal, cerebellar and spinal
hemangioblastoma; pheochromocytoma;
pancreatic, epididymal and renal cysts;
hemangiomas of the adrenals, liver, and
lungs; endolymphatic sac tumours;

cystadenoma of the epididymis or broad
ligament and ccRCC (40–75%) [19, 20]

3p25 VHL

Constitutional
chromosome 3
translocation

ccRCC
Various

breakpoints in
chromosome 3

Possible breakpoint
associated genes:

NORE1, LSAMP, DIRC1,
DIRC2, DIRC3, FHIT,

TRC8
Possible known

common gene lost from
translocation: VHL

pRCC

Hereditary papillary
RCC (HPRC) pRCC 7q31 MET

Hereditary
leiomyomatosis and
RCC (HLRCC)

Cutaneous leiomyomas, uterine fibroids,
type II

Renal tumours (14–18%) for example
pRCC and CDRCC [149, 152, 154, 203]

1q42-43 FH

chRCC or RO Birt-Hogg-Dubé (BHD)

Skin fibrofolliculomas, pulmonary cysts,
spontaneous pneumothorax, and renal
cancer (20–29%) (chRCC, RO, ccRCC

and pRCC) [204–206]

17p11.2 BHD, FLCN

alteration of 3p, which is characteristic of ccRCC, is also
found in pRCC, although the incidence is lower [137, 185].
Loss of 3p in pRCCwas associated with worse prognosis such
as higher T stage and grade, lymph node involvement, distant
metastasis, larger tumour size, and worse survival [137].

Differential Diagnosis

(i) Type 1 and 2 pRCC. Besides histological differences, types
1 and 2 pRCC may have some distinguishable patterns of
chromosome aberrations. Some studies showed no difference
in polysomies 7 and 17 frequency in types 1 and 2 tumours
[132, 135] but others reported higher frequency of chromo-
somes 7 and 17 gains in type 1 compared to type 2 [137,
138, 158, 184–186]. Additionally, type 2 tumours have been
shown to contain more chromosomal irregularities than type
1 tumours [137, 138, 186]. For example, type 2 tumours have
a higher frequency of chromosomes 3p, 8, and 18 losses and
1q, 2, and 8q gains [137, 138, 184, 186]. However, no specific
chromosomemarker that can distinguish the twopRCC types
has been identified.

(ii) Metanephric Adenoma. Metanephric adenoma is a rare
neoplasm of the kidney which has morphological similar-
ities to pRCC. The tumours comprise of small basophilic
cells arranged in a tubulopapillary pattern [207]. Most
metanephric adenomas are benign with good prognosis but
metastases have been reported in a few cases [208, 209].
Reports of chromosomes 7 and 17 gains and chromosome
Y loss are conflicting in metanephric adenoma. Brown et al.
found chromosomes 7 and 17 gains and sex chromosome loss

in most of the 11 metanephric adenoma tumours analysed
[210]. However, other more recent studies have reported no
abnormalities in chromosomes 7, 17, X, or Y [207, 211, 212].
Brunelli et al. suggested that Brown et al. may have chosen
a low threshold for chromosomal gains without normal
tissue controls, resulting in the overestimation of chromo-
some gains [212]. Other genetic aberrations in metanephric
adenoma are gains of chromosome 19 and deletions in
chromosome 2 [211, 213–215].

Recently, an activating missense mutation in the BRAF
gene was discovered, which could be specific to metanephric
adenoma [215, 216]. The substitution of valine for glutamic
acid in the BRAF gene results in the V600E variant protein,
which has increased activation potential compared to the
wild type BRAF [216]. It is interesting to note that the BRAF
gene is located at 7q34, but no other RCC subtypes show
BRAF mutation, except for one detection in a pRCC [216–
218]. The BRAF protein regulates the MAPK/ERK kinase
pathway, promoting cell proliferation and cell survival [219].
Due to the benign nature of metanephric adenoma, the con-
stitutive activation of the MAPK/ERK kinase pathway may
be inhibited by p16, which is overexpressed in metanephric
adenomas [216]. The p16 tumour suppressor protein was
suggested to be activated as a self-limiting mechanism to the
MAPK/ERK kinase pathway [216].

(iii) Clear Cell Tubulopapillary RCC. As mentioned previ-
ously, clear cell tubulopapillary RCC lacks gains in chromo-
somes 7 and 17 and loss of chromosome Y frequently found
in pRCC [126].
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(iv) Mucinous Tubular and Spindle Cell Carcinoma (MTSCC).
Mucinous tubular and spindle cell carcinoma (MTSCC) is a
newly recognized RCC subtype in the World Health Orga-
nization (WHO) 2004 classification [220]. The prognosis for
MTSC is generally favourable as tumours are usually of low
pathological stage at diagnosis [221]. It shares some immuno-
histochemical and histological features with pRCC, particu-
larly the type 1 pRCC variants [221]. FISH analysis found no
gains of chromosomes 7 and 17 and loss or chromosome Y
in ten MTSCC tumours [222]. However, separate analyses by
other groups showed gains in chromosomes 7 and/or 17 in
their MTSCC cases [223–226]. Hence, chromosomes 7 and
17 status may not be suitable for differentiating pRCC and
MTSCC. The loss of chromosome Y has only been reported
in one MTSCC [226]. Other genetic alterations reported in
MTSCC include losses of chromosomes 1, 4, 6, 8, 9, 13, 14, 15,
and 22 [227].

(v) Xp11.2 Translocation RCC. This subtype, like MTSCC,
was a new addition in the WHO 2004 classification [220].
Xp11.2 translocation RCCs predominantly affect children and
adolescents but are found in adults as well [228]. Clinically
aggressive metastatic cases have been reported [228, 229].
Xp11.2 translocation RCC cells havemixed papillary or nested
structure and eosinophilic cytoplasmwhichmay bemistaken
for pRCC. Xp11.2 translocation RCCs are characterised and
identified by balanced translocations of the transcription
factor E3 (TFE3) gene on chromosome Xp11.2, resulting
in gene fusions of the TFE3 gene [230, 231]. Depending
on the breakpoint of the reciprocal gene, there are six
known different TFE3 gene fusion combinations [230]. The
gene fusions lead to overexpression of TFE3 protein and
immunoreactivity with TFE3 protein is a distinguishing
feature of Xp11.2 translocation RCCs [232].

4. Chromophobe Renal Cell
Carcinoma (chRCC)

Chromophobe RCC, arising from the intercalated cells of the
renal collecting ducts, represents 5% of RCC cases. Histologi-
cally, chRCC can be grouped into the classic, eosinophilic, or
mixed variants. Chromophobe RCC cells are large and polyg-
onal with distinct cell borders and irregular, wrinkled nuclei.
The classic variant has pale, finely granular cytoplasm while
the eosinophilic variant has granular eosinophilic cytoplasm
[201]. Clinical outcome is similar for the different variants
[233]. Compared to other RCC subtypes, chRCC has a more
positive clinical outcome as it is less likely to metastasize
[233, 234]. Metastasis at presentation is approximately 2.5–
2.8% and disease progression after surgical resection occurs
in 4.1–16.3% of chRCC patients [233, 235].

4.1. Birt-Hogg-Dubé (BHD) Gene. Hereditary chRCC is
found in individuals with Birt-Hogg-Dubé syndrome (BHD).
BHD is an autosomal dominant disorder characterised by
benign skin lesions (fibrofolliculomas, trichodiscomas, and
acrochordons), renal tumours, pulmonary cysts, and sponta-
neous pneumothorax. Renal tumours of different histologies

such as ccRCC, pRCC, chRCC, and oncocytoma have been
reported in BHD sufferers with chRCC and oncocytomas
being the predominant types [204]. Germlinemutation of the
BHD or folliculin (FLCN) gene was discovered and mapped
to chromosome 17p11.2 in families with BHD syndrome
[205, 236]. LOH, frameshift, ormissensemutations inactivate
the BHD gene, decreasing BHD mRNA levels and folliculin
protein expression [237, 238]. The function of the folliculin
protein has not been completely elucidated but studies have
shown that folliculin plays a role in mTOR complex 1
(TORC1) regulation [239, 240]. Kidney specific BHD knock-
out mice developed polycystic kidneys with upregulation of
the Akt-mTOR signalling pathway, providing a link between
BHD loss and renal oncogenesis [239, 240]. Unlike the VHL
gene in ccRCC, BHDmutation is rarely reported in sporadic
renal tumours; hence the role of folliculin in sporadic RCC
is unclear [241, 242]. However, Gad et al. reported BHD
mutations in 10.9% of chRCC and 5.6% of oncocytomas from
their case series of sporadic renal tumours [191].

4.2. Other Genetic Aberrations. Common genetic alterations
found in sporadic chRCCare the LOHat chromosomes 1, 2, 6,
10, 13, 17, and 21 [187, 188, 243, 244]. There is no difference in
chromosomal loss pattern between eosinophilic and classic
variants of chRCC [189]. One frequently mutated candi-
date gene identified in sporadic chRCC is TP53 at 17p13.1
[191–193]. The TP53 TSG, which is commonly implicated
in cancers, regulates cell cycle arrest, apoptosis, and cell
differentiation, preventing impaired DNA from being passed
on to the daughter cells [245]. Davis et al. identifiedmutations
of PTEN in chRCC but an earlier study by Sükösd et al.
found no PTEN mutation in chRCC [192, 246]. Currently, no
other candidate genes have been confirmed yet. Information
on the prognostic value of genetic alterations in chRCC is
scarce, possibly because of the low metastasis rate and good
prognosis in chRCC. Gains of chromosomes 1–4, 6–12, 14,
15, and 17 were associated with sarcomatoid transformation
in chRCC but there was no relation between chromosome
change and the Paner grading system [61, 190]. This grading
system, proposed byPaner et al., provides superior prognostic
value in chRCC, compared to the Fuhrman grading system
commonly used for ccRCC and pRCC [247].

Differential Diagnosis

Renal Oncocytoma. Chromophobe RCC and RO pose a
diagnostic challenge as both tumours have morphological
overlaps. Correct diagnosis is important because RO is largely
benign while chRCC is malignant. Losses of chromosomes 2,
6, 10, 13, 17, and 21, found in up to 93% of chRCCs, are not
features of ROs and could be used to differentiate the two
tumour types [243, 244, 248].

5. Renal Oncocytoma (RO)

Renal oncocytomas are benign neoplasms accounting for 3–
7% of renal neoplasms. Originating from the collecting ducts,
RO cells are arranged in a nested, tubular, or trabecular archi-
tecture with abundance of granular eosinophilic cytoplasm
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and round uniform nuclei [4]. To date, there has only been
one histologically confirmed case of metastatic RO [249].

5.1. Genetic Aberrations. Similar to chRCC, BHD syndrome
predisposes affected individuals to develop RO, but BHD
mutation is seldom found in sporadic cases [241]. Other
genetic alterations characteristic of ROs are losses at chro-
mosomes 1, 14, and Y, as well as chromosome rearrangement
at 11q13 [194, 196, 197, 244, 250]. Rearrangement of cyclin
D1 (CCND1) gene has been linked to the translocation at
11q13 [198, 250]. ROs with rearrangement at 11q13 have been
reported along with overexpression of cyclin D1, the protein
product of CCDN1 gene [198, 250]. Cyclin D1 is involved
in the regulation of cell cycle in the G1-S phase and is
found to be overexpressed in a few tumours such as B-
cell lymphoma, breast cancer, and squamous cell carcinoma
[251]. Dysregulation of cyclin D1 may contribute to the
overproliferation of cells leading to RO formation.

Differential Diagnosis

Chromophobe RCC. As illustrated previously, losses of chro-
mosomes 2, 6, 10, 13, 17, and 21 in chRCC distinguishe
RO from chRCC. Both RO and chRCC contain loss of
chromosome 1. It was proposed that chromosome 1 loss
may represent a common early event in the tumourigenesis
of both RO and chRCC [197, 248]. Additional losses of
chromosomes 2, 6, 10, 13, 17, and 21 in RO may lead to
malignant transformation to chRCC [197, 248, 252].

6. Collecting Duct Renal Cell
Carcinoma (CDRCC)

Collecting duct RCC is an uncommon histological subtype,
accounting for 0.4–1.8% of all RCCs [253]. CDRCC cells
have a tubulopapillary or hobnail structure, with eosinophilic
cytoplasm and large nuclei. CDRCC is clinically aggressive
with a higher metastatic rate and poorer prognosis compared
to other RCC subtypes [253]. Patients are often diagnosed at
an advanced stage, including 32–45% with distant metastasis
and 42–44% with positive lymph nodes [253, 254].

6.1. Genetic Aberrations. A cytogenetics study found mono-
somies 1, 6, 14, 15, and 22 in three CDRCC tumours [202].
Another recent study in 29CDRCC tumours reported genetic
losses at 8p, 16p, 1p, and 9p and gains in 13q [201]. Loss of
chromosome 3 is rarely reported inCDRCCwhereas frequent
loss of chromosome 1 is similarly seen in RO and chRCC,
both originating from the renal collecting duct [255]. Hence,
loss of chromosome 1 might be more characteristic of renal
tumours from the collecting duct whereas chromosome 3p
loss ismore typical of renal tumours from the proximal tubule
[256]. Steiner et al. detected a region of genetic loss at 1q32.1-
32.2 in 69% of CDRCC but no TSG has been identified yet
[256].

Due to the rarity of CDRCC, knowledge on genetic
aberrations and the role they play in pathogenesis of the
tumour is lacking. A better understanding of the contribution

of genetic alterations inCDRCCwould be interesting because
of the aggressive behaviour of the disease.

Differential Diagnosis

(i) Upper Urinary Tract Urothelial Carcinoma. Upper urinary
tract urothelial carcinoma (UUTUC) and CDRCC display
some similarities in histology and immunoreactivity and
hence may present some difficulties in diagnosis [257]. A
cytogenetic comparison of UUTUC and CDRCC showed
distinct genetic alterations in the two tumour types [201].
CDC showed frequent losses at 8p, 16p, 1p, and 9p and gains at
13q while UUTUC showed losses at 9q, 13q, and 8q and gains
at 8p [201].

(ii) Renal Medullary Carcinoma. Renal medullary carcinoma
(RMC) is a rare, highly aggressive form of kidney cancer
with predominance in individuals with sickle cell trait.
Renal medullary carcinoma and CDRCC are both aggressive
with some similarities in morphology and immunoreactivity
[258]. Swartz et al. analysed 9 RMC tumours for genetic
aberrations but found only loss of chromosome 22 in one
case [259]. The lack of genetic losses or gains was surprising
given that RMCs are aggressive and are closely associated
with sickle cell trait [259]. Gatalica et al. evaluated 3 patients
with RMC for chromosomal abnormalities and compared
their results with findings of other publications on RMC
and CDRCC cytogenetics [260]. They concluded that no
consistent chromosomal abnormalities were observed in
RMCs or CDRCC [260]. However, limited studies due to the
rarity of both tumour types may have contributed to these
inconsistent findings.

(iii) Tubulocystic Renal Cell Carcinoma. Tubulocystic RCCs
are characterised by multiple tubules and cysts with bubble-
wrap appearance, eosinophilic cytoplasm, and presence of
hobnail cells [261]. It was originally thought to originate
from the collecting duct and was classified as low grade
CDRCC due to its indolent clinical behaviour [262]. Recent
analyses have suggested that tubulocystic RCC might be of
proximal tubule origin from its immunostaining profile and
ultrastructural features (Pax 2 positivity and presence of short
microvilli with brush border structure) [261, 263]. Zhou et al.
and Al-Hussain et al. reported either gains of chromosomes
7 or 17 and loss of chromosome Y in their case series of
tubulocystic RCC tumours, indicating similarities to pRCC
[263, 264]. The tumours that they analysed consisted of areas
with coexisting pRCC or CDRCC morphologies [263, 264].
However, another case series by Amin et al. found none
of these chromosomal anomalies typical of pRCC [261]. A
possible reason for this discrepancy could be that the tumours
analysed byAmin et al. were purely tubulocystic RCCwithout
coexisting pRCC morphology. More studies are required for
a clearer understanding of genetic changes in these tumours.

7. Conclusions

Each RCC subtype has a distinctive pattern of genetic aber-
rations, although there are some overlaps in chromosomal
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and genetic changes. These genetic changes may play an
important role in tumourigenesis and affect the progression
or prognosis of the tumour. However, most genetic studies
were concentrated on ccRCC and pRCC as they are two
most common forms of RCC. More studies on other RCC
subtypes are needed to identify the specific genetic changes
which may be involved in tumourigenesis. Recent genetic
studies have employed gene sequencing or gene expression
profiling for discovery of novel gene mutations which could
identify possible differentially expressed proteins in RCC
subtypes. These proteins can be part of an immunoreactivity
panel for diagnosis of RCC subtypes. Hence, detection of
genetic or chromosomal changes could be a useful diagnostic
or prognostic tool as adjunct to conventional immuno-
histochemistry and histology. Identification of frequently
mutated genes and affected signalling pathways also allows
for development of new therapeutic targets or personalised
targeted therapy for better management of advanced RCC.
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