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ABSTRACT The gut microbiota modulates obesity and associated metabolic phe-
notypes in part through intestinal farnesoid X receptor (FXR) signaling. Glycine-�-
muricholic acid (Gly-MCA), an intestinal FXR antagonist, has been reported to pre-
vent or reverse high-fat diet (HFD)-induced and genetic obesity, insulin resistance,
and fatty liver; however, the mechanism by which these phenotypes are improved is
not fully understood. The current study investigated the influence of FXR activity on
the gut microbiota community structure and function and its impact on hepatic
lipid metabolism. Predictions about the metabolic contribution of the gut microbiota
to the host were made using 16S rRNA-based PICRUSt (phylogenetic investigation of
communities by reconstruction of unobserved states), then validated using 1H nu-
clear magnetic resonance-based metabolomics, and results were summarized by us-
ing genome-scale metabolic models. Oral Gly-MCA administration altered the gut
microbial community structure, notably reducing the ratio of Firmicutes to Bacte-
roidetes and its PICRUSt-predicted metabolic function, including reduced production
of short-chain fatty acids (substrates for hepatic gluconeogenesis and de novo lipo-
genesis) in the ceca of HFD-fed mice. Metabolic improvement was intestinal FXR de-
pendent, as revealed by the lack of changes in HFD-fed intestine-specific Fxr-null
(FxrΔIE) mice treated with Gly-MCA. Integrative analyses based on genome-scale met-
abolic models demonstrated an important link between Lactobacillus and Clostridia
bile salt hydrolase activity and bacterial fermentation. Hepatic metabolite levels after
Gly-MCA treatment correlated with altered levels of gut bacterial species. In conclu-
sion, modulation of the gut microbiota by inhibition of intestinal FXR signaling alters
host liver lipid metabolism and improves obesity-related metabolic dysfunction.

IMPORTANCE The farnesoid X receptor (FXR) plays an important role in mediating
the dialog between the host and gut microbiota, particularly through modulation of
enterohepatic circulation of bile acids. Mounting evidence suggests that genetic ab-
lation of Fxr in the gut or gut-restricted chemical antagonism of the FXR promotes
beneficial health effects, including the prevention of nonalcoholic fatty liver disease
in rodent models. However, questions remain unanswered, including whether modu-
lation of FXR activity plays a role in shaping the gut microbiota community structure
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and function and what metabolic pathways of the gut microbiota contribute in an
FXR-dependent manner to the host phenotype. In this report, new insights are
gained into the metabolic contribution of the gut microbiota to the metabolic phe-
notypes, including establishing a link between FXR antagonism, bacterial bile salt
hydrolase activity, and fermentation. Multiple approaches, including unique mouse
models as well as metabolomics and genome-scale metabolic models, were em-
ployed to confirm these results.

KEYWORDS: bile acid, farnesoid X receptor, genome-scale metabolic models, gut
microbiota, metabolomics, nonalcoholic fatty liver disease

The increased prevalence of obesity and its related metabolic disorders continues
to be a major global health issue due to multiple factors, including genetics,

lifestyle, environmental chemical exposure, and diet (1–3). Obesity is considered a
major risk factor for chronic diseases such as type 2 diabetes mellitus, atheroscle-
rosis, and cancer (4, 5). From a metabolism perspective, obesity is the result of an
imbalance of energy intake and energy expenditure, thus leading to excess fat
storage in liver and adipose tissue, and subsequently it can promote multiple
metabolic disorders (6, 7).

Recent evidence suggests that modulation of farnesoid X receptor (FXR) signaling
has beneficial effects on the development of obesity (8–11). FXR is a bile acid-activated
nuclear receptor that regulates the homeostasis of bile acids, lipids, and glucose
(12–14). Endogenous ligands of FXR include bile acids such as cholic acid (CA),
chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA), and
ursodeoxycholic acid (UDCA) (14, 15). UDCA is used to treat human liver diseases, such
as nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH)
(16). Further, UDCA was found to improve NASH, insulin resistance, and high-fat diet
(HFD)-induced obesity through suppression of FXR signaling, which is manifested by a
significant reduction of FXR and fibroblast growth factor 19 (FGF19) levels coupled with
elevation of cholesterol 7�-hydroxylase (CYP7A1) expression in the intestine (17).
Interestingly, tauro-�-muricholic acid (T-�-MCA) was also identified as a naturally
occurring FXR antagonist that inhibits FXR signaling in vivo in mouse intestine (9, 18).
Previous studies showed that tempol, an antioxidant, and antibiotic treatments resulted
in reduction of the genus Lactobacillus, thus improving obesity, NAFLD, and insulin
resistance via inhibition of intestinal FXR signaling (9, 11). However, T-�-MCA is rapidly
metabolized in the ileum by bacterial bile salt hydrolase (BSH) through deconjugation,
yielding �-MCA and taurine (19–21). Therefore, a new high-affinity intestinal FXR
antagonist, glycine-�-muricholic acid (Gly-MCA), was designed that is structurally and
functionally similar to T-�-MCA and that demonstrated stability in the gut by its
resistance to hydrolysis by BSH. Gly-MCA improved HFD-induced obesity and insulin
resistance (11); however, the underlying mechanisms by which Gly-MCA alters the gut
microbiota population and its impact on host metabolism remain largely undeter-
mined.

In the current study, a combination of 16S rRNA gene sequencing, 1H nuclear
magnetic resonance (NMR)-based metabolomics, and genome-scale metabolic models
was used to investigate the alteration of the gut microbiota and host metabolome in
HFD-fed mice treated with Gly-MCA. Intestine-specific Fxr-null (FxrΔIE) mice fed an HFD
were also employed to explore the mechanism by which inhibition of FXR signaling
improves obesity-related metabolic disorders. In addition, the correlation between the
gut microbiome and host metabolome under Gly-MCA-treated conditions was analyzed
with the goal of identifying a specific host-microbiota signaling axis that contributes to
metabolic disorders, including obesity and NAFLD. This study provides new evidence
that Gly-MCA has beneficial effects on obesity through modulation of the gut micro-
biota and inhibition of intestinal FXR signaling.
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RESULTS
Gly-MCA modulates gut microbiota composition and related functional pathways.
Emerging evidence suggests that the intestinal microbiota may play a pivotal role in
the development of obesity (22). Here, generalized Unifrac analysis of 16S rRNA gene
sequencing results revealed distinct clustering of cecal communities isolated from
vehicle- and Gly-MCA-treated mice fed an HFD. Changes in the composition of the gut
microbiota induced by Gly-MCA were noted and revealed that the cecal community
structure in HFD-fed mice is altered following Gly-MCA treatment (Fig. 1A). However,
the treatment group that received GW4064 (a potent FXR agonist) plus Gly-MCA more
closely resembled the vehicle-treated mice than Gly-MCA-treated mice, thus suggesting
that activation of intestinal FXR by GW4064 reversed the changes in the gut microbiota
in the Gly-MCA-treated HFD-fed mice (Fig. 1A). The separation of samples in the
generalized UniFrac plot was likely due to the significant phylum-level shifts from
Firmicutes (fold change of 1.57) to Bacteroidetes (fold change of 1.99), with a reduction

FIG 1 Gly-MCA alters the gut microbiota population and composition. HFD-fed mice were treated for 5 weeks with Gly-MCA (10 mg/kg). (A) Generalized
Unifrac analysis of the total population of the gut microbiome of cecal contents from vehicle- and Gly-MCA-treated mice and mice treated with Gly-MCA
plus GW4064. (B) 16S rRNA gene sequencing analysis at the phylum level of the cecal contents and ratio of Firmicutes to Bacteroidetes. (C to E) 16S rRNA
gene sequencing analysis at the class (C), family (D) and genus (E) levels in the cecal contents. Data are presented as means � SD (n � 5 per group). *,
P < 0.05; **, P < 0.01 (compared with vehicle treatment). #, P < 0.05; ##, P < 0.01 (compared with Gly-MCA treatment of HFD-fed mice). Data were
analyzed with a one-way ANOVA with Tukey’s correction.
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of the Firmicutes/Bacteroidetes ratio observed in mouse cecum after Gly-MCA treatment
(Fig. 1B). Gly-MCA treatment was also associated with decreased phylum levels of
Actinobacteria, with a fold change of 11.47 (Fig. 1B; see also Fig. S1 in the supplemental
material). Furthermore, increases were observed in the classes Bacteroidia and Erysip-
elotrichia, while decreases were observed in the classes Clostridia, Actinobacteria, and
Bacilli in Gly-MCA-treated HFD-fed mice (Fig. 1C). In addition, Gly-MCA caused drastic
decreases of the levels of the families Lachnospiraceae and Lactobacillaceae of the
phylum Firmicutes. Gly-MCA also caused a significant elevation of Bacteroidaceae,
Erysipelotrichaceae, and Streptococcaceae in the phylum Bacteroidetes (Fig. 1D). At the
genus level, Gly-MCA-treated HFD-fed mouse cecal contents were abundant in Bacte-
roides, Oscillibacter, Barnesiella, and Streptococcus but depleted in Lactobacillus, En-
terorhabdus and Clostridium cluster IV in comparison with the vehicle-treated HFD-fed
mice (Fig. 1E; see also Fig. S1). Interestingly, all the significantly changed bacteria were
mostly reversed by the combination of Gly-MCA and GW4064 treatment (Fig. 1B to E).
These results suggest that Gly-MCA treatment modulates the gut microbiota commu-
nity in the cecal contents of HFD-fed mice.

To predict the abundance of gene families and related functional pathways of
microbial communities in the cecal contents, PICRUSt (phylogenetic investigation of
communities by reconstruction of unobserved states), a predictive metabolism ap-
proach, was performed based on the 16S rRNA gene sequencing and the Green Genes
database (Fig. 2). The results suggested that many bacterial pathways involved in
amino acid, carbohydrate, lipid, and energy metabolism were significantly modulated
by Gly-MCA treatment. The underlined pathways in Fig. 2 were supported by the
subsequent NMR-based metabolomics analyses (Fig. 3; see also Fig. S3 and S4 in the
supplemental material).

Gly-MCA reduces obesity through modulation of gut microbiota composi-
tion and intestinal FXR signaling. Previous studies demonstrated that intestinal FXR
modulation by agonist or antagonist resulted in a broad metabolic improvement of
NAFLD and obesity (10, 11, 23, 24). In the current study, a 1H NMR-based metabolomics
approach was used to measure metabolic alterations in the livers of HFD-fed mice
treated with Gly-MCA. Intestinal Fxr-null (FxrΔIE) mice and control (Fxrfl/fl) mice on an
HFD were used to determine the role of intestinal FXR in the Gly-MCA-improved
metabolic phenotype. 1H NMR spectra were recorded for liver extracts obtained from
the vehicle and Gly-MCA treatment groups (see Fig. S2 in the supplemental material).
The resonances were assigned to specific metabolites based on previous data and
further confirmed individually by a series of two-dimensional (2D) NMR experiments
(see Table S2 in the supplemental material) (25). The scores plot from a principal
component analysis (PCA) showed intergroup metabolic differences, where each point
represented a mouse liver metabolome and the distance between data points reflected
the scale of their metabolic differences (Fig. 3). This experiment revealed that Gly-MCA
treatment induced significant metabolic changes in the livers of HFD-fed mice (Fig. 3A),
whereas treatment with GW4064 reversed the changes found in the Gly-MCA-treated
HFD-fed mouse group (Fig. 3A). Furthermore, both HFD-fed FxrΔIE mice and Gly-MCA-
treated, HFD-fed Fxrfl/fl mice exhibited metabolic differences (Fig. 3B) in comparison
with Fxrfl/fl vehicle-treated mice, and no significant differences were observed in the
liver metabolome obtained from FxrΔIE mice with or without Gly-MCA treatment and
that of Gly-MCA-treated Fxrfl/fl mice (Fig. 3B).

Pair-wise comparative orthogonal projection to latent structures with discriminant
analysis (OPLS-DA) was conducted to uncover metabolic changes induced by Gly-MCA
and the aforementioned treatments (see Fig. S3 and S4 in the supplemental material).
Compared with the vehicle-treated control group, Gly-MCA treatment resulted in a
significant reduction in the levels of lipids, unsaturated fatty acids (UFA), triglycerides,
3-HB, and several amino acids, including alanine, lysine, glutamine, valine, leucine,
isoleucine, tyrosine, and phenylalanine (Fig. 4A; see also Fig. S3A). Gly-MCA treatment
also led to significant elevations of glucose, PC/GPC, and some nucleosides and
nucleotides, including inosine, UMP, UDP, AMP, and ADP in mouse liver (Fig. 4A; see
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also Fig. S3A). However, GW4064 treatment reversed these Gly-MCA-induced metabolic
changes, especially for lipid, UFA, and PC/GPC, which returned to their initial levels in
HFD-fed mice (Fig. 4A; see also Fig. S3B and C). Compared with Fxrfl/fl vehicle-treated
mice, FxrΔIE HFD-fed mice with or without Gly-MCA treatment and Gly-MCA-treated
Fxrfl/fl HFD-fed mice exhibited lower levels of lipids, UFA, lactate, 3-HB, alanine, glu-
tamine, and uridine, but higher levels of glycogen in the liver (Fig. 4B; see also Fig. S4A
and B). In particular, no significant differences were observed in the levels of these
metabolites obtained from the livers of FxrΔIE HFD-fed mice treated with or without
Gly-MCA versus Gly-MCA-treated Fxrfl/fl HFD-fed mice (Fig. 4B; see also Fig. S4C and D).

Compared with the vehicle-treated HFD-fed mice, Gly-MCA treatment significantly
decreased the levels of short-chain fatty acids (SCFAs, e.g., acetate, propionate, and
n-butyrate) coupled with elevated levels of oligosaccharides in the cecal contents
(Fig. 4C; see also Fig. S5A in the supplemental material). However, a significant reversal

FIG 2 PICRUSt analysis results of predicted functional pathways in the gut microbiota. Pathways are grouped based on the following categories: amino
acid metabolism (blue), carbohydrate and lipid metabolism (yellow), and energy metabolism (green). The pathway abundance values for control (red) and
Gly-MCA treatment (dark green) are representative of the amount of genes and normalized to the total number of genes present in a particular pathway
from each sample. These pathways were also ordered by decreasing coverage, which was calculated based on the total possible amount of genes
(according to the Metacyc database). The underlined predicted functional pathways highlighted were supported by metabolomics analyses of liver
extracts. All pathways shown are significant according to LEfSe. LEfSe uses the Kruskal-Wallis test and also the Wilcoxon test at a cutoff of 0.05 to
determine significant and biologically relevant pathways between two groups.
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in the levels of SCFAs and oligosaccharides was observed in the cecal contents of
HFD-fed mice treated with Gly-MCA plus GW4064 (Fig. 4C; see also Fig. S5B). These
results further suggest that Gly-MCA treatment modulates the gut microbiota and its
associated fermentation function.

To further explore the effect of Gly-MCA on the gut microbiota, a community
genome-scale metabolic model comprised of 10 representative species (see Table S3 in
the supplemental material) was compiled to analyze metabolites generated by the gut
microbiota (Fig. 5). Bile salt-hydrolyzing pathways were added to the metabolic models
of those representative organisms in the Clostridia class and Lactobacillus species to
account for any potential effects of Gly-MCA on BSH activity and the microbiome (19).
The community model was constrained by the ratios between the species abundances
from the 16S rRNA gene sequencing data for each sample (Fig. 5). Two working
hypotheses were incorporated into the model: (i) the total BSH activity was assumed to
be proportional to the abundances in the community of Clostridia and Lactobacillus; (ii)
the growth of the gut microbial community treated with Gly-MCA was inhibited by 5%,
based on experimental observations. In untreated samples, simulated maximum
growth of the gut microbiota requires the production of SCFAs and consumption of
amino acids, supporting the notion that amino acids act as the substrates rather than
products of the gut microbiota. In the treated samples, the required SCFA production
and amino acid consumption decreased. From the simulation results repeated with
various levels of maximum BSH activity (Fig. 5), as long as the BSH activity was not in
excess in all samples (i.e., the gut microbiota cannot consume high levels of bile salts
regardless of the Clostridia and Lactobacillus abundances), the predicted change in the
metabolite production and consumption showed a significant positive correlation (r �

0.63) with the measured levels of SCFAs and amino acids in the cecum. The exception
to this correlation was butyrate, which was predicted to have particularly high produc-
tion in one of the untreated samples. The change in the simulated metabolite produc-
tion and consumption in the presence of Gly-MCA can be attributed to the two model
assumptions. First, when the overall growth in the presence of Gly-MCA is inhibited by
5%, the consumption of SCFAs and the production of amino acids that are coupled to
microbial growth decrease, as expected when the biomass level is decreased. Second,
the decrease in BSH activity upon Gly-MCA treatment as a result of the decrease in the
abundances of Clostridia and Lactobacillus plays a role in the metabolite abundances
observed. The taurine released from taurine-conjugated bile salts provides extra carbon
and nitrogen that can support additional microbial growth. Sulfite, a product of taurine

FIG 3 NMR metabolomics analysis results for mouse liver metabolic profiling. (A) Three-dimensional PCA score
plot from hepatic metabolomes of vehicle-treated mice, Gly-MCA-treated mice, and Gly-MCA-treated mice
administered GW4064. (B) Three-dimensional PCA score plot from hepatic metabolomes of Fxrfl/fl and Fxr�IE

mice with and without Gly-MCA treatment.
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degradation, can act as an electron receptor for the gut microbiota. Without the
assumption that BSH activity is proportional to the abundance of Clostridia and
Lactobacillus, the model predicts a higher biomass yield of the gut microbiota in mice
on an HFD treated with Gly-MCA compared to that in the untreated group. The
decreased BSH activity limits the microbial growth in the treated samples, therefore
limiting those SCFA production and amino acid consumption levels coupled to micro-
bial growth (Fig. 5). The modeling analysis supports the hypothesis that Gly-MCA
inhibits the overall microbial fermentation and in particular the BSH activity associated
with Clostridia and Lactobacillus.

Long-chain fatty acids (LCFAs) are associated with the development of NAFLD and
hepatic steatosis. Here, total fatty acid composition was analyzed by gas

FIG 4 Gly-MCA efficiently ameliorates obesity-related metabolic disorders by FXR inhibition. Relative abundance of the significantly
changed metabolites in the liver obtained from vehicle-treated mice, Gly-MCA-treated mice, and Gly-MCA-treated mice administered
GW4064 (A); Fxrfl/fl and Fxr�IE mice with and without Gly-MCA treatment (B); SCFAs (acetate, butyrate, and propionate) and oligosaccharides
in the cecal contents from vehicle-treated mice, Gly-MCA-treated mice, and Gly-MCA-treated mice administered GW4064 (C). n � 5 mice per
group. Data are means � SD (n � 5 per group). *, P < 0.05; **, P < 0.01 (compared with vehicle treatment). #, P < 0.05; ##, P < 0.01
(compared with Gly-MCA treatment of HFD-fed mice). Data were analyzed via a one-way ANOVA with Tukey’s correction.
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chromatography-mass spectrometry (GC-MS), which revealed that Gly-MCA treatment
led to significant decreases in the levels of total fatty acids, including saturated fatty
acids (SFA), UFA, and polyunsaturated fatty acids (PUFA); GW4064 reversed these
changes in fatty acid levels (Fig. 6A) in the livers of HFD-fed mice. Furthermore, Gly-MCA
treatment also resulted in a significant reduction in LCFAs in the livers of Fxrfl/fl HFD-fed
mice, whereas the levels of LCFAs remained similar in the livers of Fxrfl/fl and FxrΔIE

HFD-fed mice upon Gly-MCA treatment and also in vehicle-treated HFD-fed FxrΔIE mice
(Fig. 6B).

To further investigate the mechanism by which Gly-MCA ameliorates obesity-related
metabolic disorders, the expression levels of mRNAs encoding enzymes involved in
lipid, bile acids, and glucose metabolism were determined. Gly-MCA treatment resulted
in significant downregulation in the expression of lipid and fatty acid synthesis-related
mRNAs, including sterol response element-binding protein 1c (Srebp1c), DNA fragmen-
tation factor �-like effector A (Cidea), fatty acid synthase (Fasn), and acetyl coenzyme A
(CoA) carboxylase 1 (Acaca), elongation of very-long-chain fatty acids protein 5 (Elovl5),
and elongation of very-long-chain fatty acids protein 6 (Elovl6) in the livers of HFD-fed
mice (see Fig. S6A and B in the supplemental material). A significant decrease in mRNAs
encoding the triglyceride and cholesterol biosynthetic enzymes, including diacylglyc-
erol O-acyltransferase 1 (Dgat1), diacylglycerol O-acyltransferase 2 (Dgat2), 3-hydroxy-
3-methylglutaryl-CoA reductase (Hmgcr), and 3-hydroxy-3-methylglutaryl-CoA synthase
1 (Hmgcs1) was also found in the livers of Gly-MCA-treated HFD-fed mice (see Fig. S6B).
Furthermore, the expression of mRNAs encoded by genes, such as Cyp7a1, Cyp7b1, and
Cyp27a1, involved in bile acid synthesis was significantly increased by Gly-MCA treat-
ment (see Fig. S6C). Consistently, our previous measurements of bile acid composition

FIG 5 Correlation between metabolite levels and profiles of metabolite consumption and production in the cecal
contents, as predicted by genome-scale metabolic modeling tested at different levels of maximum BSH activity. The heat
map of the Pearson correlation coefficients between the predicted production or consumption and the experimentally
measured levels across all 10 samples is shown for each of the short-chain fatty acids and amino acids. Statistical
significance was determined by transforming the Pearson r value into the t value, and then the t distribution was used
to find the P value. Correlation values above 0.63 are statistically significant (P < 0.05).
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revealed that Gly-MCA upregulated T-�-MCA and T-�-MCA levels in the ileum and liver
of HFD-fed mice (11). Interestingly, GW4064 treatment suppressed expression of all the
mRNAs that were increased after Gly-MCA treatment (see Fig. S6A to C). Similarly,
Gly-MCA treatment decreased the levels of mRNAs encoding lipid, fatty acid, triglyc-
eride, and cholesterol synthesis, whereas increased bile acid synthesis-related mRNAs
were found in the livers of HFD-fed Fxrfl/fl mice (see Fig. S6D to F). Compared with
HFD-fed Fxrfl/fl mice, HFD-fed FxrΔIE mice expressed significantly lower levels of mRNAs
encoded by genes involved in lipid, fatty acid, triglyceride, and cholesterol synthesis
but higher levels of bile acid synthesis-related mRNAs (see Fig. S6D to F). However, no
significant differences in the expression profiles of these genes in the liver (see Fig. S6D
to F) were observed between Gly-MCA-treated HFD-fed FxrΔIE mice and vehicle-treated

FIG 6 Gly-MCA efficiently improves fatty acid metabolism in HFD-induced obesity by FXR inhibition. Fatty acid composition in the liver of
vehicle-treated mice, Gly-MCA-treated mice, and Gly-MCA-treated mice administered GW4064 treatment (A) and in Fxrfl/fl and Fxr�IE mice with
and without Gly-MCA treatment (B). Fatty acids were extracted by the Folch method and quantified by GC-MS. Data are means � SD (n � 5
per group). *, P < 0.05; **, P < 0.01 (compared with vehicle treatment). #, P < 0.05; ##, P < 0.01 (compared with Gly-MCA treatment of HFD-fed
mice). Data were analyzed with a one-way ANOVA with Tukey’s correction.
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HFD-fed FxrΔIE mice. In addition, HFD-fed FxrΔIE mice exhibited significantly lower levels
of Srebp1 and Cidea, which are involved in lipid synthesis and inflammatory factors such
as LCN2, interleukin-1�, tumor necrosis factor alpha, and Saa1 in the adipose tissue in
comparison with levels in HFD-fed Fxrfl/fl mice (see Fig. S7 in the supplemental
material). However, no significant differences in the expression profiles of these genes
in the adipose tissues were observed between Gly-MCA-treated HFD-fed FxrΔIE mice
and vehicle-treated HFD-fed FxrΔIE mice. These data demonstrated that the improve-
ments of obesity-related metabolic disorders by Gly-MCA treatment are mainly due to
inhibition of intestinal FXR signaling.

Relationship between the gut microbiome and host metabolome after
Gly-MCA treatment. To explore the functional correlation between the gut micro-
biome changes and host metabolome alterations, a correlation matrix was generated
by calculating Pearson’s correlation coefficients. Clear correlations could be identified
between modulated gut microbiomes and altered metabolic profiles (r � 0.63 or �

�0.63). The resulting association maps indicated positive and negative correlations
between the levels of host liver metabolites and the gut microbiomes of Gly-MCA-
treated mice in comparison with vehicle-treated mice (Fig. 7A and B). Of particular note,
some metabolites, including lipid, UFA, PC/GPC, alanine, histidine, lysine, tyrosine,
phenylalanine, glutamine, glutamate, branched amino acids, pyruvate, nicotinamide,
3-HB, and glutathione, which decreased in the livers of HFD-fed mice after Gly-MCA

FIG 7 Relationship between gut microbiome and host metabolome. A Pearson correlation analysis was used to investigate the relationships between
bacterial populations and metabolite levels after Gly-MCA treatment (with and without GW4064). Statistical significance was determined by transforming
the Pearson r value into the t value and then using the t distribution to find the P value. Correlation values above 0.63 or below �0.63 were statistically
significant. Heat maps of the correlation between the gut microbiota and metabolites from Gly-MCA-treated mice (A and B) and Gly-MCA-treated and then
GW4064-treated mice (C and D). Results are shown for phyla (A and C) and genera (B and D).
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treatment, were negatively correlated with the presence of phylum Bacteroidetes
(Fig. 7A) and genera Streptococcus, Oscillibacter, Bacteroides, Clostridium cluster XVIII,
and Barnesiella (Fig. 7B) but positively correlated with the phyla Firmicutes, Actinobac-
teria, and Deferribacteres (Fig. 7A) and the genera Lactobacillus, Helicobacter, Enterorh-
abdus, and Clostridium IV (Fig. 7B). Furthermore, other metabolites, including choline,
taurine, glucose, and some nucleosides, which increased in the livers of Gly-MCA-
treated HFD-fed mice, were negatively correlated with the phyla Firmicutes and Acti-
nobacteria and at the genus level for Lactobacillus, Enterorhabdus, and Clostridium IV
but were positively correlated with the phylum Bacteroidetes and genera Streptococcus,
Oscillibacter, Bacteroides, Clostridium XVIII, and Barnesiella (Fig. 7A and B). However, no
significant correlation was observed between the gut microbiota and hepatic metabo-
lome in the Gly-MCA-treated HFD-fed mice after GW4064 administration (Fig. 7C and
D). These observations indicated that the significantly modulated gut microbiota after
Gly-MCA treatment correlated with the improvement of obesity-related metabolic
disorders in the liver.

DISCUSSION

Gly-MCA, a potent FXR antagonist, improves obesity, insulin resistance, and steatosis
(11). However, the underlying mechanisms and the role of the gut microbiota in the
metabolic effects of Gly-MCA remain undetermined. In the current study, modulation of
the gut microbiota by Gly-MCA and changes in cometabolites of host and gut micro-
biota were observed. At the phylum level, Gly-MCA-treated mice fed an HFD exhibited
lower proportions of Firmicutes and Actinobacteria but a higher proportion of Bacte-
roidetes than observed in vehicle-treated HFD-fed mice, indicating that the total
population of the gut microbiota was modulated following Gly-MCA treatment. More
recent evidence suggests that an increased ratio of Firmicutes to Bacteroidetes may
trigger primary contributions to the pathogenesis of obesity (26). In a murine model, it
was shown that the relative abundance of these two predominant members, Firmicutes
and Bacteroidetes, differs among lean and obese mice; the obese mouse has a higher
proportion of Firmicutes to Bacteroidetes (50% greater) than the lean mouse (27).
Previous studies in humans also revealed a lower proportion of Bacteroidetes and
higher proportion of Actinobacteria in obese versus lean Europeans or individuals of
African ancestry (28, 29). A previous study of Fxr-null mice (30) revealed that the relative
abundances of Bacteroidetes and Firmicutes were similar to what was observed with
Gly-MCA treatment in the current study. Here significant depletion of the class Clos-
tridia, family Lactobacillaceae and genus Lactobacillus was observed in HFD-fed mice
after Gly-MCA treatment, which is consistent with previous studies showing that
Lactobacillus populations are elevated in obese mice and decrease after gastric bypass
surgery (31, 32). Furthermore, members of the class Clostridia, family Lactobacillaceae,
and genus Lactobacillus were associated with BSH enzymatic activity, deconjugation of
taurine-conjugated bile acids, such as T-�-MCA, and the development of obesity (19).
A previous study reported that treatment of HFD-fed mice with antibiotics or the
antioxidant tempol resulted in a significant reduction of the genus Lactobacillus and its
BSH activity, coincident with accumulation of the endogenous FXR antagonist T-�-MCA
(9, 10). Microbial metabolism of T-�-MCA to �-MCA by BSH is associated with obesity,
insulin resistance, and fatty acid disease (9, 18). Importantly, T-�-MCA and �-MCA do
not exist in humans; thus, there is limited translational potential for T-�-MCA in
humans. Accordingly, Gly-MCA, a new high-affinity intestinal FXR antagonist, was
designed that is structurally and functionally similar to T-�-MCA and demonstrated
stability in the gut and resistance to hydrolysis into �-MCA by BSH and improvement
of HFD-induced obesity and insulin resistance (11). Furthermore, clinical studies
showed that ursodeoxycholic acid (UDCA), another FXR antagonist, has already been
used for NAFLD therapy (14, 15). These findings suggest that Gly-MCA might similarly
have translational potential for human obesity and NAFLD conditions.

Here, HFD-fed FxrΔIE mice exhibited a similar metabolic phenotype as both Fxrfl/fl

and FxrΔIE HFD-fed mice treated with Gly-MCA. Furthermore, administration of a
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synthetic high-affinity FXR agonist, GW4064, reversed the metabolic changes in livers of
Gly-MCA-treated mice fed an HFD. These observations indicated that the gut microbi-
ota contributing to the improvement of obesity by Gly-MCA requires intestinal FXR
signaling, which plays a central role in Gly-MCA efficacy. Consistently, a recent study
revealed that the altered gut microbiota in HFD-fed Fxr-deficient mice may directly
contribute to the obese phenotype (30). However, these data cannot exclude the
possibility that GW4064 treatment alone alters the gut microbiota population as a
result of modulation of hepatic FXR signaling.

Normally, HFD-induced obesity arises when energy intake, principally stored as
lipids, fatty acids, and triglycerides, exceeds energy expenditure (6). Here Gly-MCA
treatment induced a significant reduction of hepatic lipid and fatty acid levels, sug-
gesting efficient suppression of lipid and fatty acid synthesis in HFD-fed mice, which
was confirmed by the downregulation in expression of lipid and fatty acid synthesis-
related genes, including Srebp1c, Cidea, Fasn, Acaca, Elovl5, and Elovl6. Further, hepatic
triglyceride and cholesterol concentrations are another metabolic variable of obesity
and have been linked to large amounts of SCFAs, such as acetate, butyrate, and
propionate, providing an additional source of energy for the body (33). SCFAs are end
products of bacterial fermentation and are known to stimulate triglyceride and cho-
lesterol synthesis in the liver via binding to G-coupling proteins, such as GPCR41 and
GPCR43 (34, 35). In the current study, a significant depletion of SCFAs coupled with
elevation of glucose and oligosaccharides in the cecal contents of HFD-fed mice after
Gly-MCA treatment suggested suppression of bacterial fermentation by Gly-MCA, thus
inhibiting hepatic triglyceride and cholesterol de novo biosynthesis. Interestingly, a
previous study revealed that the genus Lactobacillus is positively correlated with
hepatic triglyceride biosynthesis (36), which is in agreement with the present results
that Gly-MCA decreased the family Lactobacillaceae and genus Lactobacillus in the cecal
contents and hepatic triglyceride levels. Genome-scale metabolic modeling of the gut
microbiota further supported and rationalized the observed changes in metabolites
and suppression of bacterial fermentation in cecal contents caused by Gly-MCA.
Decreasing the BSH activity proportionally with the abundances of Lactobacillus and
Clostridia decreases the SCFAs consumed and amino acids produced, mimicking the
changes in metabolite levels in cecal contents. The consistency between modeling
predictions and experimental observations led to new hypotheses regarding the
mechanism of Gly-MCA action and the effects of various levels of BSH activity on the
extent of suppressed bacterial fermentation.

Emerging findings in literature suggest a cross talk between the gut microbiota and
liver (gut-liver axis) that impacts the development of metabolic syndrome, including
obesity and fatty liver diseases (37). In this study, an integrative analysis demonstrated
a strong correlation between gut microbiota and obesity-related metabolic pathways,
such as lipid, glucose, and amino acid metabolism in the liver. For example, hepatic
lipid, fatty acids, and amino acids were negatively correlated with members of the
phylum Bacteroidetes and positively correlated with members of the phyla Firmicutes
and Actinobacteria in the cecal contents of HFD-fed mice after Gly-MCA treatment. In
particular, the genus Lactobacillus positively correlated with the levels of hepatic lipids,
fatty acids, and amino acids, indicating that the genus Lactobacillus may have a vital
role in host energy metabolism. Results from the present study demonstrate that the
gut microbiota-mediated pathways, including amino acid metabolism, carbohydrate
and lipid metabolism, and energy metabolism, are significantly modulated by Gly-MCA
treatment. Specifically, some amino acids, including glutamine, glutamate, histidine,
lysine, and branched-chain amino acids (BCAAs) metabolism and their degradation
were all increased in the guts of mice treated with Gly-MCA. This result is most likely
explained by the fact that these amino acids are decreased in the livers of Gly-MCA-
treated mice, as verified by 1H NMR metabolomics analyses. Of particular note, Gly-MCA
regulated energy homeostasis of HFD-diet fed mice and therefore amino acids, includ-
ing alanine, lysine, BCAAs, glutamine, tyrosine, and phenylalanine, major energy
sources for the whole body, were significantly affected by Gly-MCA treatment and
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moreso than others. Interestingly, almost all measured amino acids are negatively
correlated with Bacteroidetes, which significantly increased in the mice treated with
Gly-MCA. The increased levels of amino acid metabolism in the gut could be due at
least in part to the increased levels of Bacteroidetes species in the cecal content.
Similarly, the predicted pathways, such as glucose, the tricarboxylic acid (TCA) cycle,
lipid, and energy metabolism in the gut were also significantly modulated by Gly-MCA
and strongly supported by metabolomics results in the liver. These observations reveal
the underlying mechanism by which inhibition of intestinal FXR signaling by Gly-MCA
modulates the gut microbiota and improves host lipid metabolism, thus reducing
diet-induced obesity and fatty liver disease. In future studies, extension of genome-
scale metabolic modeling to include the host liver metabolism in modeling the
exchange between host and microbial metabolites will be a promising way to predict
and understand the observed correlation between the gut microbiota and host me-
tabolism, e.g., Lactobacillus and the levels of hepatic triglycerides and Bacteroidetes and
the levels of hepatic amino acids.

In conclusion, the present study revealed that modulation of the gut microbiota by
Gly-MCA improves diet-induced obesity and associated phenotypes through effects on
the host lipid metabolic profile. Notably, these altered obesity-related metabolic path-
ways were found to be highly associated with intestine-specific FXR signaling. These
findings demonstrated that Gly-MCA has beneficial effects on obesity through the
modulation of the gut microbiota and intestinal FXR signaling and could be developed
as a new drug to treat fatty liver disease.

MATERIALS AND METHODS
Animal studies. All animal studies were performed in accordance with the Institute of Laboratory Animal
Resources guidelines and reviewed and approved by the NCI Animal Care and Use Committee. Mice were
treated humanely and with regard for the alleviation of suffering. Male C57BL/6N mice (25 g body
weight; 6 weeks old) were obtained from the Mouse Repository (NCI, Frederick, MD). Littermate
intestine-specific Fxr-null (FxrΔIE) mice and control (Fxrfl/fl) mice were developed on a C57BL/6N genetic
background (over 10 generations). Mice were housed individually in their home cages in temperature-
and light-controlled rooms and given water and food ad libitum. All mice in this study were housed in
the same room of the same vivarium in order to avoid differences in gut microbiota. Dough pills
containing Gly-MCA synthesized as described previously (11) were prepared with tablet molds, and one
pill uniformly contained 0.25 mg Gly-MCA, thus providing a final dose of 10 mg/kg of body weight for
a mouse. The mice were trained to eat the dough pills prior to the study. A total of 15 mice fed an HFD
(60% kcal from fat; Bio-Serv, Inc.) were divided into 3 groups: vehicle, Gly-MCA, and GW4064 plus
Gly-MCA (for which each pill contained 0.25 mg GW4064 and 0.25 mg Gly-MCA) and treated for 5 weeks.
Similarly, a total of 20 male Fxrfl/fl and FxrΔIE mice fed an HFD were also divided into 4 groups with and
without Gly-MCA treatment for 8 weeks, respectively. Liver, intestine, and cecal content samples were
collected immediately following CO2 asphyxiation and stored at �80°C until analysis.

RNA isolation and quantitative real-time PCR. RNA was extracted from frozen liver tissues
(~50 mg) using TRIzol reagent (Invitrogen). cDNA was synthesized from 1 �g of total RNA using qScript
cDNA SuperMix (Quanta Biosciences), and the products were diluted to 1:10 before use in subsequent
reactions. Gene-specific primers were used in each reaction mixture, and all results were normalized to
the ribosomal protein �-actin mRNA (primer sequences can be found in Table S1 in the supplemental
material). Quantitative PCR (QPCR) assays were carried out using SYBR green QPCR master mix with an
ABI Prism 7900HT Fast real-time PCR sequence detection system (Applied Biosystems). The reactions
products were analyzed with the ΔΔCT method.

Gut microbiota analysis. The bacteria in the cecal contents were extracted using the EZNA stool
DNA kit (OMEGA bio-tek) according to the manufacturer’s instructions. All extracted DNA samples were
kept at �20°C until further analysis. PCR amplification was performed on the bacterial genomic DNA
samples by using the V4V4 primer set. PCR mixtures were initially heated to 94°C for 3 min, followed by
20 cycles of 94°C for 15 s, 55°C for 45 s, and 72°C for 60 s. Reactions were completed at 72°C for 8 min.
The PCR products (~350 bp) were run on a 1% agarose gel to check amplification. PCR products were
sent to the Penn State Genomics Core Facility (University Park, PA) for library preparation. Sequencing
was performed on an Illumina Miseq system. 16S rRNA gene sequencing analysis was performed using
the mothur platform (43) and aligned with the Green Genes and SILVA databases. A biom file was created
(using the Green Genes database) and then uploaded onto the Huttenhower galaxy page as described
previously (38). PICRUSt analysis was done on the biom file (39). The resulting biom file was then split
and analyzed with humann2 software (40). The resulting abundance files were combined and ordered
based on pathway description and coverage, in order to produce a summary of pathway abundance
values for each sample.

1H NMR-based metabolomics experiments. Sodium chloride, methanol, chloroform, K2HPO4, and
NaH2PO4 (all analytical grade) were obtained from Sigma-Aldrich Chemical Co. Ltd. (St. Louis, MO).
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Phosphate buffer (0.1 M K2HPO4 and NaH2PO4, pH 7.4) was prepared with K2HPO4 and NaH2PO4 for their
good solubility and low-temperature stability. Sodium 3-trimethylsilyl[2,2,3,3-d4] propionate (TSP-d4)
and D2O (99.9% in D) were purchased from Cambridge Isotope Laboratories (Miami, FL).

Liver tissues (~50 mg) were extracted three times with 600 �l of a precooled methanol-water mixture (2/1,
vol/vol) using the PreCellys tissue homogenizer (Bertin Technologies, Rockville, MD). After centrifugation at
11,180 � g for 10 min at 4°C, the combined supernatants were dried in a vacuum. Each of the aqueous
extracts was separately reconstituted into 600 �l phosphate buffer (K2HPO4/NaH2PO4, pH 7.4; 0.1 M; 50%
[vol/vol] D2O) containing 0.005% TSP-d4 as the chemical shift reference. Following centrifugation, 550 �l of
each extract was transferred into a 5-mm NMR tube for NMR analysis. The cecal content samples were directly
extracted three times with phosphate buffer. Briefly, samples (~50 mg) were mixed with 600 �l precooled
phosphate buffer, vortexed for 30 s, and subjected to three consecutive freeze-thaws, followed by homog-
enization using the Precellys tissue homogenizer. After centrifugation (11,180 � g, 4°C) for 10 min, the
supernatants (550 �l) were transferred into 5-mm NMR tubes for NMR analysis.

1H NMR spectra of liver and cecal content extracts were acquired at 298 K on a Bruker Avance III
600-MHz spectrometer (operating at 600.08 MHz for 1H and at 150.93 MHz for 13C) equipped with a
Bruker inverse cryogenic probe (Bruker Biospin, Germany). A typical one-dimensional NMR spectrum was
acquired for each of all samples, employing the first increment of the NOESY pulse sequence
(NOESYPR1D). The 90° pulse was adjusted to 10 �s for each sample, and the water signal was suppressed
with a weak continuous-wave irradiation. The 32 K data points were collected for each spectrum with a
spectral width of 20 ppm and recycle delay of 2 s. For the purposes of NMR signal assignments, a range
of 2D NMR spectra was acquired and processed for selected samples, including 1H-1H correlation
spectroscopy (COSY), 1H-1H total correlation spectroscopy (TOCSY), 1H-13C heteronuclear single quantum
correlation (HSQC), and 1H-13C heteronuclear multiple-bond correlation spectra (HMBC).

All free induction decay (FID) rates were multiplied by an exponential function with a 1-Hz line
broadening factor prior to Fourier transformation. The spectra were calibrated to TSP-d4 at � 0.00. After
manual phase and baseline corrections, each 1H NMR spectrum (� 0.5 to 9.5) was segmented into bins
with an equal width of 0.004 ppm (2.4 Hz) by using the AMIX software package (v3.8; Bruker Biospin,
Germany). Region � 4.60 to 5.15 was discarded for imperfect water saturation. Each bucketed region was
then normalized to the total sum of the spectral integrals to compensate for the overall concentration
differences prior to statistical data analysis.

Multivariate data analysis was carried out with SIMCAP� software (version 13.0; Umetrics, Sweden).
Briefly, PCA and OPLS-DA were conducted on the normalized NMR data. The OPLS-DA models were
validated using a 7-fold cross-validation method, and the quality of the model was described by the
parameters R2X and Q2 values (see Fig. S3 to 5 in the supplemental material). After back-transformation
of the loadings generated from the OPLS-DA, color-coded correlation coefficient loading plots (MatLab;
MathWorks Inc., Natick, MA) were employed to indicate the significance of the metabolite contribution
to the class separation, with a “hot” color (e.g., red) being more significant than a “cold” color (e.g., blue).
In this study, a cutoff value of |r| � 0.707 (r � 0.707 and r � �0.707) was chosen for the correlation
coefficient for significance based on the discrimination significance (P � 0.05).

Correlation analysis of gut microbiome and host metabolome. A Pearson correlation analysis was
used to investigate the relationships between bacterial populations and metabolite levels after Gly-MCA
treatment (with and without GW4064). Statistical significance was determined by transforming the Pearson
r values into t values and then using t distributions to determine P values. The equation used to find the
statistical significant cutoff was r � t ⁄ ��t2�n	2�, where r is the correlation value and n is the number of
subjects. In this experiment, n was equal to 10. The t value was found by using the Excel function tinv (0.05,
8), where 0.05 represents a P value of 0.05 and 8 is the degrees of freedom for this experiment.

GC-MS analysis of total fatty acid composition. The procedures of sample preparation and fatty
acid compositional measurements were carried out as described previously (25). In brief, liver tissues
(~50 mg) were mixed with 1 ml of a methanol-chloroform mixture (2/1, vol/vol) with addition of 5 �l
internal standards (50 �M C15:0 free fatty acid and the methyl ester of C17:0) and then homogenized using
the Precellys tissue homogenizer (Bertin Technologies, Rockville, MD). After centrifugation (20,187 � g,
4°C) for 15 min, the supernatant was collected. A 500-�l volume of saline (0.9%) was added into liver
extracts. After vortexing for 5 min and centrifugation (20,187 � g, 4°C) for 15 min, the organic layer was
transferred into 10-ml glass tube and dried with a brief nitrogen gas flush. After adding 1 ml methanol/
HCl (41.5 ml/9.7 ml) and vortexing for 5 min, the solution was incubated overnight at 60°C. The resultant
mixture was combined with 5 ml hexane and 5 ml saline. Following vortexing for 5 min, the top layer
was collected and dried with nitrogen gas. The resultant residues were redissolved in 200 �l hexane and
then transferred to an autosampler vial for GC-MS analysis. Fatty acid metabolites were measured on an
Agilent 7890A-5975C GC-MS system (Agilent Technologies, Santa Clara, CA). An HP-5MS (Agilent Tech-
nologies) capillary column (30 m, 0.25-mm inner diameter, 0.25-�m film thickness) was employed with
helium as a carrier gas at a flow rate of 1 ml/min. Sample injection volume was 0.5 �l with a pressure
pulsed split ratio (1:10 split, 10 lb/in2). The injection port and detector temperatures were 230°C and
250°C, respectively. The initial column temperature was 80°C, where it was held for 1 min, then increased
to 205°C at a rate of 20°C/min, then increased to 220°C at a rate of 2°C/min, and then increased to 310°C
at a rate of 15°C/min, where it was held for 2 min. Fatty acids were quantified by comparing integrated
peak areas following normalization to the internal standards.

Statistical data analysis. All the experimental values are presented as means � standard deviations
(SD). Graphical illustrations and statistical analyses were performed with GraphPad Prism version 6.0.
Multiple-group comparisons were performed via a one-way analysis of variance (ANOVA) with Tukey’s
correction, and P values of �0.05 were considered significant.

Zhang et al.

Volume 1 Issue 5 e00070-16 msystems.asm.org 14

msystems.asm.org


Genome-scale metabolic modeling. The profile of metabolite consumption and production by the
gut microbiome when subjected to a HFD was simulated for each wild-type sample treated with and
without Gly-MCA by the genome-scale metabolic models of 10 representative organisms spanning four
phyla: Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria (see Table S3 in the supplemental
material). For each sample, community growth was modeled as the maximization of the defined
metagenomics-based ratio of the representative organism’s biomass, using flux balance analysis (FBA)
(41). Flux variability analysis (FVA) was performed to compute the minimum production of short-chain
fatty acids and minimum consumption of amino acids by the community of organisms, with the
community biomass fixed at 100% or 95% of its maximum value (42). The Pearson correlation coefficient
between the predicted production or consumption and the experimentally measured levels across all 10
samples was calculated for each of the short-chain fatty acids and amino acids.

Accession number(s). All data have been deposited in NCBI’s Sequence Read Archive under the
accession number PRJNA342660.

SUPPLEMENTAL MATERIAL
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