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Abstract

Study objectives

Brain regulation of autonomic function in obstructive sleep apnea (OSA) is disrupted in a

sex-specific manner, including in the insula, which may contribute to several comorbidities.

The insular gyri have anatomically distinct functions with respect to autonomic nervous sys-

tem regulation; yet, OSA exerts little effect on the organization of insular gyral responses to

sympathetic components of an autonomic challenge, the Valsalva. We further assessed

neural responses of insular gyri in people with OSA to a static handgrip task, which princi-

pally involves parasympathetic withdrawal.

Methods

We measured insular function with blood oxygen level dependent functional MRI. We stud-

ied 48 newly-diagnosed OSA (age mean±std:46.5±9 years; AHI±std:32.6±21.1 events/

hour; 36 male) and 63 healthy (47.2±8.8 years;40 male) participants. Subjects performed

four 16s handgrips (1 min intervals, 80% subjective maximum strength) during scanning.

fMRI time trends from five insular gyri—anterior short (ASG); mid short (MSG); posterior

short (PSG); anterior long (ALG); and posterior long (PLG)—were assessed for within-

group responses and between-group differences with repeated measures ANOVA (p<0.05)

in combined and separate female-male models; age and resting heart-rate (HR) influences

were also assessed.

Results

Females showed greater right anterior dominance at the ASG, but no differences emerged

between OSA and controls in relation to functional organization of the insula in response to

handgrip. Males showed greater left anterior dominance at the ASG, but there were also no
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differences between OSA and controls. The males showed a group difference between

OSA and controls only in the ALG. OSA males had lower left activation at the ALG com-

pared to control males. Responses were mostly influenced by HR and age; however, age

did not impact the response for right anterior dominance in females.

Conclusions

Insular gyri functional responses to handgrip differ in OSA vs controls in a sex-based man-

ner, but only in laterality of one gyrus, suggesting anterior and right-side insular dominance

during sympathetic activation but parasympathetic withdrawal is largely intact, despite mor-

phologic injury to the overall structure.

Introduction

Cardiovascular disease (CVD) in obstructive sleep apnea (OSA) is difficult to treat [1, 2], possi-

bly due to long-term changes in the autonomic nervous system (ANS) that underpin high sym-

pathetic tone and disrupt blood pressure regulation [3]. Associations between OSA and

hypertension, coronary artery disease, stroke, arrhythmias and death are well established [4].

However, most studies exploring the comorbidities associated with OSA include both male

and female participants, and evidence of whether these links are affected by sex remain under

investigation [5]. A recent study of almost 2 million OSA subjects and 2 million matched con-

trols reported that hypertension was more prevalent in women than men in the condition [6].

Furthermore, there is evidence of a female predominance of OSA-related stoke as well as more

severe detrimental changes in endothelial function, peak blood flow, systemic inflammation,

and digital vascular function [7, 8]. Other clinical cardiovascular characteristics, such as morn-

ing BP patterns and responses to acute BP challenges in OSA also vary by sex [3, 9]. These dif-

ferences in physiologic responses between sexes in OSA presumably have an underlying

neural basis.

Our earlier work has shown some sex-specific effects of OSA on neural regulation of cardio-

vascular stimuli. We found central autonomic responses differed in male OSA versus healthy

groups [10–13]. Furthermore, although autonomic maneuvers such as the cold pressor test,

hand grip, and Valsalva maneuver evoked lower amplitude, delayed onset, and slower heart

rate changes in combined male and female OSA patients over healthy people [3, 14, 15], these

alterations were more pronounced in females with the sleep disorder. These autonomic dys-

functions may reflect sex-related central injury. There is also evidence that hormones play a

significant role in the development of OSA itself. For example, the prevalence of OSA increases

dramatically following menopause in females [16], and polycystic ovary syndrome which is

characterized by menstrual disturbances, excess androgen, and often obesity, is associated

with increased prevalence of OSA [17]. A considerable body of literature links alterations in

various hormones, including testosterone, with OSA [18], although mechanisms outlining

sex-based processes in that regulation have yet to be established.

The hypothalamus is a major regulator of hormone release, and this structure in turn

closely interacts with the anterior insula [19, 20]. The insula also has substantial projections to

brainstem output nuclei [21]; thus, the structure is a major contributor to autonomic regula-

tion [22, 23]. Multiple studies revealed that the insula as a whole shows significant OSA-related

fMRI signal changes [15, 24–27], structural injury or adaptations [28–33], reduced perfusion

[34], and altered metabolic state [35–37]. When considered across large scale networks, the
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resting connectivity of the insula consistently shows OSA-related differences [32, 33, 38], sug-

gesting either an insula-specific deficiency, or network-wide alterations. While precise regional

variations in insular changes in OSA are currently being explored, the insula contains various

regions with differing developmental beginnings and projection patterns. For example, the

posterior insula is granular/dysgranular in nature and projects to other high-order cortical

regions, whereas the anterior insular is predominantly agranular in nature and projects to

lower brain regions such as the amygdala, ventral striatum, and autonomic regulatory regions,

including the hypothalamus and various brainstem nuclei [19, 39]. These projection and mor-

phologic patterns leave a potential for sex to exert differential influences on autonomic pat-

terns in different regions.

To probe autonomic regulation, we used functional MRI (fMRI) measures of neural func-

tion during tasks that elicit an autonomic response [40]. Three standard autonomic challenges

often used in combination are the cold pressor, handgrip and Valsalva maneuver; other stan-

dard tests such as tilt, Mueller maneuver, or pharmacological manipulations are less amenable

to fMRI scanning [41]. The cold pressor, handgrip and Valsalva are all pressor challenges, that

is they raise blood pressure, but through different mechanisms. Thus, common fMRI patterns

across these challenges could be interpreted as reflecting blood pressure regulatory processes,

whereas challenge-specific responses could reflect task-related effects. Both cold pressor and

Valsalva challenges predominantly increase sympathetic activity during the active phase of the

challenge; whereas, the handgrip adds an element of parasympathetic withdrawal in the short

term (10 sec) [42–45].

In healthy adults, we showed the functional organization of the insular cortex is gyri-spe-

cific for the handgrip, a challenge that combines autonomic perturbation and an intentional

motor activity [46, 47]. Specifically, the anterior insula is more activated during the early, pre-

dominantly parasympathetic withdrawal phase [48, 49]. In contrast, the strain phase of the

handgrip challenge, which is associated with a moderate HR and sympathetic increase, elicited

the greatest responses in the middle insular gyri. These sex-specific neural patterns co-occur

with sex-specific peripheral differences, with females displaying HR smaller increases [3, 47].

The data are consistent with a recent human study showing tachycardic responses elicited by

stimulating the posterior insula and bradycardic responses from stimulating the more anterior

insular cortex [50]. The insula also displays a laterality effect, with the right side more closely

aligned with sympathetic, and the left side parasympathetic, activity changes [48, 51, 52]. Thus,

we expect insular responses to OSA during handgrip to differ by sex, hemisphere and gyral

subregions [46, 53].

The objective here was to determine the nature of insular functional organization during a

handgrip challenge in OSA, both controlling for sex statistically, and considering females and

males separately. This study was a secondary analysis of a dataset we collected earlier. Given

the anterior autonomic and left-sided parasympathetic role of the insula, and the reduced car-

diovascular responses to a handgrip in OSA, we hypothesized an anterior dominance of fMRI

responses in that condition, and since the left insula serves more- parasympathetic aspects, we

hypothesized a greater left-side response in affected subjects. Since cardiovascular responses

differ by sex in healthy people, we further hypothesized that alterations in insular organization

contributed to those sex differences in people with and without OSA.

Methods

Participants

We studied 111 adults consisting of 48 newly-diagnosed, untreated OSA patients (36 males, 12

females) and 63 healthy control participants (43 males, 23 females); details are in Table 1.
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Inclusion criteria for all participants included age 21–65 and weight <125kg (MRI constraint).

Participants in the control group were in good health and those in the OSA group had a diag-

nosis of OSA. Recruitment was principally via fliers posted at the UCLA Sleep Disorders sleep

clinic and on the campus and nearby communities, with additional fliers emailed or given in

person upon request based on word-of-mouth. OSA patients were recruited from the UCLA

Sleep Disorders Center from Dec 2005 to Aug 2008, and were recently (< 2 months) diag-

nosed with OSA according to the 1999 American Academy of Sleep Medicine guidelines based

on an in-clinic full polysomnography test [54]. After completing a phone screening (see S1

File), participants were invited to UCLA. At the visit prior to consenting, control participants

were screened for OSA using a semi-structured interview to assess daytime sleepiness, snoring,

bed partner report of breathing difficulties during sleep, and nighttime gasping episodes, and

referred to a full sleep study if those symptoms were present (see S1 File). Exclusion criteria for

all participants included other sleep disorders, major illness or head injury, stroke, major car-

diovascular disease, diabetes, current use of psychotropic or cardiovascular medications other

than statins, and diagnosed mental disorder. Exclusion criteria also included MRI contraindi-

cations, including metallic implants not classified as safe at 3 Tesla, pregnancy and claustro-

phobia. Within the larger OSA population the present OSA sample could be considered

representative of the minority of people who are relatively healthy and receiving standard

healthcare (no major comorbidities, no mental health diagnoses or medications, no autonomi-

cally-active anti-hypertensive medications, limited obesity, UCLA patients).

The procedures were approved by the UCLA Institutional Review Board. All participants

were provided a description of the procedures priori to visiting UCLA, and upon their visit

those procedures were reviewed and participants provided written, informed consent.

Table 1. Participant information.

All Male Female

CONTROL

Mean ± std

[Range] N = 63

OSA

Mean ± std

[Range] N = 48

p † OSA vs.

CONTROL

CONTROL

Mean ± std

[Range] N = 40

OSA

Mean ± std

[Range] N = 36

p † OSA vs.

CONTROL

CONTROL

Mean ± std

[Range] N = 23

OSA

Mean ± std

[Range] N = 12

p † OSA vs.

CONTROL

Age (years) 47.5 ± 8.8 [30.9–

65.8]

46.5 ± 9.0

[30.8–62.7]

0.57 45.9 ± 9.1 [30.9–

64.5]

44.9 ± 8.9

[30.8–62.7]

0.65 50.3 ± 7.8 [40.2–

65.8]

51.3 ± 7.9

[37.0–62.2]

0.73

BMI (m2/

kg)

24.7 ± 3.7 [16.6–

35.5]

30.5 ± 5.1

[21.3–43.2]

<0.001 25.2 ± 2.8 [17.6–

29.8]

29.6 ± 4.7

[21.4–43.2]

<0.001 23.94 ± 5.0

[16.6–35.5]

32.9 ± 5.7

[21.3–41.4]

<0.001

Resting HR

(bpm)

68.9 ± 11.6

[45.8–102.1]

71.7 ± 9.9

[51.6–93.5]

0.19 66.7 ± 11.1

[45.8–95.7]

72.8 ± 10.4

[53.1–93.5]

0.016 72.8 ± 11.5

[57.7–102.1]

68.2 ± 7.9

[51.6–82.3]

0.23

Sleep parameters for OSA

AHI

(events/

hour)

n/a 32.6 ± 21.1

[5.0–100.7]

n/a n/a 34.6 ± 19.7

[10.0–100.7]

n/a n/a 26.7 ± 24.8

[5.0–89.4]

n/a

SaO2

(minimum

%)

n/a 80.3 ± 9.4

[50.0–96.0]

n/a n/a 78.2 ± 9.4

[50.0–96.0]

n/a n/a 86.2 ± 6.4

[73.0–96.0]

n/a

SaO2

(mean%)

n/a 94.9 ± 1.9

[88.0–97.0]

n/a n/a 94.9 ± 2.0

[88.0–97.0]

n/a n/a 94.8 ± 1.5

[92.0–97.0]

n/a

Characteristics of OSA and control groups, with separation by sex. Group differences were tested with two-way ANOVA for OSA parameters, p values have been

indicated (italicized if� .05). HR was recorded in the scanner over 1 minute immediately prior to the first handgrip task. Sleep parameters were based on the patients’

polysomnographic study.
† p for two way ANOVA F-test, group comparison OSA vs. CONTROL

https://doi.org/10.1371/journal.pone.0246368.t001
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Measurements

Brain blood-oxygen level dependent (BOLD) fMRI signals were recorded in a 3.0 Tesla MRI

scanner (Siemens, Magnetom, Trio) with an 8-channel head coil. We used a standard echo-

planar imaging protocol (repetition time [TR] = 2000 ms; echo time [TE] = 30 ms; flip

angle = 90˚; matrix size = 64 x 64; field-of-view = 230 mm x 230 mm; slice thickness = 4.5

mm). A pulse oximeter (Nonin 8600FO) with a sensor on the left index finger was used to

record O2 saturation and heart rate, and the plethysmographic waveform (SaO2) was recorded

at 1 kHz. For spatial localization, two high resolution, T1-weighted anatomical images were

acquired with a magnetization prepared rapid acquisition gradient echo sequence (TR = 2200

ms; TE = 2.2 ms; inversion time = 900 ms; flip angle = 9˚; matrix size = 256 × 256; field-of-

view = 230 × 230 mm; slice thickness = 1.0 mm). These two scans were realigned and averaged

for each participant to result in one anatomical reference.

Protocol

Participants were asked to refrain from coffee and other substances with stimulants for 12

hours prior to the study. While lying in a scanner, following a 1 minute baseline, participants

performed four 16 s handgrips (80% subjective maximum grip strength) at 1 minute intervals

against a squeeze ball without metal components, with one minute baseline after the fourth

challenge. An air-filled plastic bag, connected to a pressure transducer, was placed in the par-

ticipants’ right hand. During the practice period, participants briefly squeezed at 100% subjec-

tive maximum strength at least two times and then at 80% for a 10–20 seconds. In the scanner,

a light signal was used to indicate the onset of each grip period. Participants were instructed to

squeeze to maintain the 80% pressure upon seeing the light signal. Participants practiced the

static handgrip exercise maneuver prior to scanning, both outside and supine inside the MRI

scanner. At least 30 min of rest (structural scanning) separated the practice from the trial peri-

ods. A pressure signal was monitored to verify that all participants performed the four static

handgrip exercise tasks at the correct time. Timing was synchronized to the fMRI scans.

Analysis: Physiology and participant characteristics

We measured HR from the SaO2 plethysmographic waveform using peak detection. The

median HR was calculated over the 60 second baseline period immediately prior to the first

handgrip. Age, BMI, HR, and sleep parameters for the OSA group were described and com-

pared with control groups using an ANOVA model. The full assessment of beat-to-beat HR

responses was presented earlier [3].

Analysis: MRI

We preprocessed the fMRI scans using SPM12 (https://www.fil.ion.ucl.ac.uk/spm). Images

were realigned for motion correction, and linear detrended over each series. For each partici-

pant, scans were spatially normalized in two steps, first coregistering the mean fMRI to the T1

anatomical scan and then warping to the “VBM8” template in Montreal Neurological Institute

(MNI) space based on the T1 “DARTEL” spatial normalization algorithm [55]. These steps

resulted in all participants’ fMRI images being in the template space.

The five major gyri were parcellated from the average of the high-resolution T1-weighted

scans: Three short (anterior) gyri and two long (posterior) gyri: anterior short gyrus (ASG),

mid short gyrus (MSG), posterior short gyrus (PSG), anterior long gyrus (ALG), and posterior

long gyrus (PLG). We included these regions as mask files in nifti format (S2 File). Two experi-

enced research team members determined the parcellation based on manual tracing with
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reference to a brain atlas [56]. The regions were outlined in normalized space; although this

approach is slightly less accurate than individual tracing, the resolution of the fMRI data (>50

mm3) relative to the anatomical scans (< 1 mm3) is such that any differences in accuracy

would not be meaningful. Signal intensity changes over time were extracted from each voxel in

each gyrus from the processed images. For each gyrus in each participant, a mean time trend

over all voxels was then calculated. Time trends were converted to percent change relative to

the mean of the 1-minute baseline period. For each participant, the signals from the four chal-

lenges were separated and averaged to create one single handgrip percent change time trend

that was passed to the group level analysis. While this averaging could theoretically result in

reduced sensitivity, in practice, the statistical approach we chose takes advantage of repeated

measures, and could detect small effect sizes.

To assess posterior-anterior effects, signal intensity changes were calculated relative to

those in the PLG. As discussed above, the importance of the anterior insula has been described

in clinical and animal studies. Our previous work showed this anterior-specific role could be

demonstrated by comparing the fMRI signal in the anterior vs poster-most insula (PLG), and

we repeated this technique here [46]. At each time point, signal intensity changes within the

PLG were subtracted from those in the ASG, MSG, PSG and ALG for each hemisphere so that

direct comparisons between these regions and the PLG could be assessed. Lateralization was

assessed by subtracting signal changes in each of the five left gyri from the corresponding gyri

on the right side; for example, ASG laterality was calculated by subtracting the left ASG time

trend from the right ASG time trend.

The resulting fMRI signals were assessed for within- and between-group differences using

repeated measures ANOVA (RMANOVA). The analysis was implemented with SAS “proc

mixed”, as described earlier [57, 58]. In brief, this approach assesses within-group changes and

between-group differences over time, with each 2 sec time-point during and after the challenge

assessed relative to baseline time-points. We applied the Tukey-Fisher criterion for multiple

comparisons; that is, we assessed the overall model for significance (p� 0.05), and then effects

of interest (time, group by time), before considering individual time-points of difference. The

latter tests are performed within the “proc mixed” procedure, as the output includes time-

point tests of significance (hence no post-hoc tests were needed). We assessed the effects in

combined male-female models with sex as a covariate and in sex-specific models.

The RMANOVA mixed model approach allows for continuous variables to be included, so

we performed secondary analyses of age and resting HR. We created four models that included

different age effects added to the main model (group + time + group x time):

1. Main + age: age effects independent of group over the entire protocol, independent of time;

2. Main + age + age x group: group-specific effects of age over the entire protocol, indepen-

dent of time;

3. Main + age + age x time: age effects on handgrip responses, independent of group.

4. Main + age + age x group + age x time + age x group x time: age effects on between-group

differences in handgrip responses.

We repeated these calculations for models with HR in place of age. For the purposes of this

study, we only focused on the within- and between-OSA and control group responses in the

different models. The age-by-time and HR-by-time measures are not independent of the main

effects of interest, but the degree to which these secondary models affect the within and

between-group p-values reflects potential associations between the clinical and fMRI

measures.
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Results

Participants

Table 1 shows participant characteristics. Age was similar between OSA and control groups,

and as expected, BMI was high in OSA over control. Unlike females, resting HR was higher in

male OSA compared with male control participants.

Resting and evoked HR responses

The HR response during the baseline, handgrip and recovery for the 4 challenges have been

shown previously [3]. Control and OSA groups displayed significant increases in HR during

each of the 4 handgrip periods (Fig 1). Splitting by sex, male OSA subjects had significantly

greater baseline HR compared with male controls, while female OSA subjects displayed

Fig 1. HR physiological changes moment to moment. The HR (beats per minute) were illustrated with the mean

(smooth lines) and stdev (faded lines) for control (grey) and OSA (black) groups in “all” (both sexes), males and

females. The four handgrip challenges, along with the baseline and recovery during the experiment have been

illustrated here. The first 60 seconds baseline denoted by the box was averaged to get the resting HR reported.

https://doi.org/10.1371/journal.pone.0246368.g001
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reduced baseline HR levels. Furthermore, while male OSA subjects displayed robust increases

in HR during each handgrip period, female OSA subjects show few such HR changes.

Intrinsic PLG changes in left and right insula

Table 2 and Fig 2 show the left and right insula intrinsic PLG responses. The overall model

was not significant for females (model statistics in Table 2). For males, the model was signifi-

cant, with a small decrease in signal intensity during each handgrip task. However, there were

no within- or between-group effects of the handgrip task (Table 2).

Laterality

Fig 3 shows the laterality of the insula responses during the handgrip, with positive values

reflecting right dominance. Table 3 shows the model statistics. The right-minus-left percentage

Table 2. Intrinsic PLG changes in the left and right insula.

p-values & model statistics for

RMANOVA

Model details All Male Female

Left PLG Right PLG Left PLG Right PLG Left PLG Right

PLG

Main model group, time group,

time

ChiSq (p value) 64.1

(<0.001)
52.35

(<0.001)
82.84

(<0.001)
62.78

(<0.001)
3.68

(0.30)

2.6 (0.45)

Fit (−2 log-likelihood) 23525.1 23750.3 16054.5 16214.9 7330 7390.3

Group effect p-value (mean over entire series

for each group)

0.73 0.71 0.92 0.87 N/A N/A

Handgrip response: within group Time (within-group effect of time) p-values

Main 0.49 0.48 0.31 0.11 N/A N/A

Age 0.49 0.48 0.31 0.11 N/A N/A

Age x Group 0.49 0.48 0.31 0.11 N/A N/A

Age x Time 0.81 0.81 0.49 0.52 N/A N/A

Age x Group x Time 0.81 0.81 0.49 0.52 N/A N/A

HR 0.49 0.48 0.31 0.11 N/A N/A

HR x Group 0.49 0.48 0.31 0.11 N/A N/A

HR x Time 0.36 0.45 0.53 0.64 N/A N/A

HR x Group x Time 0.36 0.45 0.53 0.64 N/A N/A

Handgrip response: between-group Time X Group (between-group effect of time)

p-values

Main 0.51 0.54 0.28 0.32 N/A N/A

Age 0.51 0.54 0.28 0.32 N/A N/A

Age x Group 0.51 0.54 0.28 0.32 N/A N/A

Age x Time 0.50 0.52 0.28 0.32 N/A N/A

Age x Group x Time 0.50 0.52 0.28 0.32 N/A N/A

HR 0.51 0.54 0.28 0.32 N/A N/A

HR x Group 0.51 0.54 0.28 0.32 N/A N/A

HR x Time 0.66 0.69 0.60 0.64 N/A N/A

HR x Group x Time 0.66 0.69 0.60 0.64 N/A N/A

Salient statistics and p-values from 9 RMANOVA models for left and right PLG in three sets (mixed, male, female). Full data are available online [59]. The main model

(bold) is the interaction of group-by-time (fMRI = group + time + group x time), and statics of significance and fit are in the top rows of the table. The “Group” effect is

the mean over the entire series and does not represent responses, and is not discussed. The two effects of interest “Time”, which represents within-group responses over

time, and “Time x Group”, which represents between-group differences in responses. The p-values for these effects are shown for the 9 models. All models include the

main effects plus additional mean or interaction terms. All interaction models also include means. For example, “Age x Time” is fMRI = group + time + group x time

+ age + age x time.

https://doi.org/10.1371/journal.pone.0246368.t002
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change fMRI signal for each gyrus is shown for all participants, and separately for males and

females. In the combined participants, and in the females there was no group difference in the

response of the right compared with the left during the handgrip for any insula gyri. That is,

the overall model statistics in Table 3 show that no between-group differences appeared in the

combined groups and in females. However, males showed a significant difference in OSA vs

control for the ALG insular gyrus. At the ASG anterior gyrus, there were significant right acti-

vation effects by 0.2% in females, whereas males showed a significant left activation by 0.2% at

the initial 8s of sympathetic activation phase for handgrip. However, these opposite lateraliza-

tion effects were not significantly different in OSA vs controls. The influence of age or HR on

the main effects was noted where p-values changed substantially. These covariates did modify

the time it took for the subject to respond to the handgrip task.

Left side anterior-posterior organization

Fig 4 represents the left insula anterior-to-posterior functional organization during handgrip,

with positive values representing greater anterior dominance. Table 4 shows the model statis-

tics. The mean±SEM percentage change fMRI signal for each of left ASG, MSG, PSG and ALG

with respect to PLG is shown for all participants, and separately for males and females. The sig-

nal intensity in the left ASG changes during handgrip were approximately 0.5% higher relative

to those changes in the left PLG in both control and OSA groups for both males and females.

The overall model statistics in Table 4 show that no between-group differences between con-

trols and OSA appeared in the combined, males or females groups for the left ASG, MSG, PSG

or ALG. The males and females showed sympathetic activation effects in the initial sympa-

thetic phase of handgrip at the left insula. The influence of age or HR on the main effects was

noted where p-values changed substantially.

Fig 2. PLG intrinsic changes in left and right insula. Left and right hemisphere fMRI signals of PLG are

demonstrated for combined (top panel), males (middle panel) and females (bottom panel). The graphs reflect baseline

(group mean ± SE), averaged over challenges, with time-points of significant increase or decrease relative to baseline

within-group, and time-points of between-group differences (RMANOVA, p< 0.05).

https://doi.org/10.1371/journal.pone.0246368.g002
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Right side anterior-posterior organization

Fig 5 represents the right insula anterior-to-posterior functional organization during handgrip,

with positive values representing greater anterior dominance. Table 5 shows the model statis-

tics. The percentage change fMRI signal for each of right ASG, MSG, PSG and ALG with

respect to right PLG is shown for all participants, and separately for males and females. Similar

to the left side, while signal intensity during a handgrip was greater in right ASG (by 0.4% in

females and by 0.2% in males), relative to the right PLG, there were no significant differences

between the control and OSA groups. The other three gyri did not respond significantly to the

handgrip task. Table 5 shows that no between-group differences appeared in the combined,

male or female groups. However, unlike the left insula, age did not impact the right insula’s

anterior dominance of ASG during the handgrip task in females. Although in males, the inter-

action of age by time (meaning age influences on handgrip responses) affected all within-

group effects at the ASG anterior gyrus, but age had no influence on any between-group

effects. The interaction of resting HR and time (meaning HR influence on handgrip responses)

influenced within-group effects for females and males in the ASG.

The full model results, including averaged timetrends as presented in the Figs, are available

in a data repository [59].

Fig 3. Lateralization by gyri. Right hemisphere fMRI signals relative to left hemisphere for all gyri (group mean ± SE),

averaged over challenges, with time-points of significant increase or decrease relative to baseline within-group, and time-

points of between-group differences (RMANOVA, p< 0.05) for the right-left laterality insular gyri responses in

participants (all in left, male in middle and females in right columns respectively).

https://doi.org/10.1371/journal.pone.0246368.g003
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Consistent with prior studies in healthy people [46], we showed functional anterior-poste-

rior and right-left organization of functional responses of gyri within the insula to a handgrip

autonomic challenge. We observed minimal differences between OSA and control partici-

pants, suggesting that previously-described insular dysfunction occurs across the whole struc-

ture [15, 24–27]. Sex differences were apparent as previously shown, with anterior-most gyri

exhibiting enhanced right-sided activation in females, and greater left-side activation in males

[47]. We did not see substantial differences between OSA and controls in either combined-sex

or separate male and female analyses. Age and resting HR showed associations with the magni-

tude of fMRI response to handgrip, but these associations did not change the patterns of gyral

organization in OSA over control.

Discussion

Increased anterior insular activity during the handgrip occurs in OSA and healthy groups,

consistent with the established autonomic function of this sub-region found in both human

neuroimaging and animal lesion studies [46, 48]. The absence of substantial OSA-related dif-

ferences within the insula occurred despite other studies showing functional variations in

Fig 4. Anterior-posterior organization of left insula. Left hemisphere fMRI signals relative to PLG such that positive

change reflects anterior dominance. Baseline (group mean ± SE), averaged over challenges, with time-points of

significant increase or decrease relative to baseline within-group, and time-points of between-group differences

(RMANOVA, p< 0.05) for the anterior-posterior responses by the left insular gyri in participants (all in left, male in

middle and females in right columns respectively).

https://doi.org/10.1371/journal.pone.0246368.g004
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Table 4. Left insula anterior-posterior fMRI organization with respect to PLG.

Model details All Male Female

ASG MSG PSG ALG ASG MSG PSG ALG ASG MSG PSG ALG

Main model:

group, time

ChiSq (p value) 72.54

(<0.001)
66.82

(<0.001)
52

(<0.001)
55.07

(<0.001)
68.07

(<0.001)
56.94

(<0.001)
39.3

(<0.001)
43.18

(<0.001)
12.98

(<0.01)
13.46

(<0.01)
16.13

(0.001)
15

(0.002)
Fit (−2 log-

likelihood)

13329.1 21139.5 26125.2 26548.5 9352.3 14636.2 18108.8 18403.8 3973.1 6411.7 7852.4 7971

Group effect p-

value (mean over

entire series for

each group)

0.83 0.72 0.97 0.73 0.92 0.92 0.88 0.76 0.85 0.33 0.62 0.89

Handgrip

response:

within-group

Time (within-

group effect of

time) p-values

Main <0.001 0.35 0.81 0.81 <0.001 0.32 0.77 0.68 0.054 0.57 0.77 0.78

Age <0.001 0.35 0.81 0.81 <0.001 0.32 0.77 0.68 0.054 0.57 0.77 0.78

Age x Group <0.001 0.35 0.81 0.81 <0.001 0.32 0.77 0.68 0.054 0.57 0.77 0.78

Age x Time 0.26 0.55 0.55 0.26 0.47 0.36 0.16 0.20 0.50 0.44 0.38 0.30

Age x Group x

Time

0.26 0.55 0.55 0.26 0.47 0.36 0.16 0.20 0.50 0.44 0.38 0.30

HR <0.001 0.35 0.81 0.81 <0.001 0.32 0.77 0.68 0.054 0.57 0.77 0.78

HR x Group <0.001 0.35 0.81 0.81 <0.001 0.32 0.77 0.68 0.054 0.57 0.77 0.78

HR x Time 0.68 0.31 0.36 0.40 0.83 0.23 0.38 0.38 0.32 0.81 0.84 0.78

HR x Group x

Time

0.68 0.31 0.36 0.40 0.83 0.23 0.38 0.38 0.32 0.81 0.84 0.78

Handgrip

response:

between-

group

Time X Group

(between-group

effect of time) p-

values

Main 0.81 0.40 0.60 0.60 0.97 0.32 0.80 0.84 0.44 0.91 0.68 0.57

Age 0.81 0.40 0.60 0.60 0.97 0.32 0.80 0.84 0.44 0.91 0.68 0.57

Age x Group 0.81 0.40 0.60 0.60 0.97 0.32 0.80 0.84 0.44 0.91 0.68 0.57

Age x Time 0.57 0.38 0.38 0.57 0.97 0.35 0.80 0.84 0.42 0.93 0.69 0.58

Age x Group x

Time

0.57 0.38 0.38 0.57 0.97 0.35 0.80 0.84 0.42 0.93 0.69 0.58

HR 0.81 0.40 0.60 0.60 0.97 0.32 0.80 0.84 0.44 0.91 0.68 0.57

HR x Group 0.81 0.40 0.60 0.60 0.97 0.32 0.80 0.84 0.44 0.91 0.68 0.57

HR x Time 0.90 0.57 0.73 0.73 0.99 0.59 0.95 0.96 0.21 0.82 0.42 0.27

HR x Group x

Time

0.90 0.57 0.73 0.73 0.99 0.59 0.95 0.96 0.21 0.82 0.42 0.27

Salient statistics and p-values from 9 RMANOVA models for left insula anterior-posterior organization in three sets, namely “all” (both sexes), female and male. Full

data are available online [59]. The main model (bold) is the interaction of group-by-time (fMRI = group + time + group x time), and measures of significance and fit are

in the top rows of the table. The “Group” effect is the mean over the entire series and does not represent responses, and is not discussed. The two effects of interest

“Epoch”, which represents within-group responses over time, and “Epoch x Group”, which represents between-group differences in responses. The p-values for these

effects are shown for the 9 models. All models include the main effects plus additional mean or interaction terms. All interaction models also include means. For

example, “Age x Time” is fMRI = group + time + group x time + age + age x time.

https://doi.org/10.1371/journal.pone.0246368.t004
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networks containing the structure [32, 33, 38]. Together with existing evidence, the present

findings therefore suggest that within-structure organization of the insula is intact in OSA, but

function of the structure as a whole is impaired.

The insula plays a key role in cardiovascular regulation, and hence is relevant to this main

comorbidity of OSA. Primate studies have revealed that the anterior, agranular insula receives

inputs from brainstem regions such as the nucleus of the solitary tract (NTS) and sends direct

projections to caudal regions including the midbrain periaqueductal gray, parabrachial

nucleus and NTS [60]. A motor command alone can evoke increased heart rate and blood

pressure [61], even if the target muscle is paralyzed [62, 63], and animal electrophysiological

studies have revealed that unmyelinated and small-diameter myelinated nerve fibers are

responsible for muscle contraction-evoked cardiovascular and respiratory responses [64, 65].

Furthermore, these muscle afferents project to the premotor sympathetic neurons in the ros-

tral ventrolateral medulla (RVLM) via the NTS [66], and healthy individuals show increased

signal intensity changes in the parabrachial nucleus, NTS and RVLM during static handgrip

[67]. As discussed previously [68], the insula modulates autonomic function via projections to

autonomic outflow regions in the brainstem, often indirectly via the hypothalamus [21]. The

Fig 5. Anterior-posterior organization of right insula. Right hemisphere fMRI signals relative to PLG such that positive change

reflects anterior dominance. Baseline (group mean ± SE), averaged over challenges, with time-points of significant increase or

decrease relative to baseline within-group, and time-points of between-group differences (RMANOVA, p< 0.05) for the anterior-

posterior responses by the right insular gyri in participants (all in left, male in middle and females in right columns respectively).

https://doi.org/10.1371/journal.pone.0246368.g005
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Table 5. Right insula anterior-posterior fMRI organization with respect to PLG.

Model details All Male Female

ASG MSG PSG ALG ASG MSG PSG ALG ASG MSG PSG ALG

Main model:

group, time

ChiSq (p value) 205.5

(<0.001)
76.74

(<0.001)
58.29

(<0.001)
58.18

(<0.001)
175.52

(<0.001)
59.34

(<0.001)
48.71

(<0.001)
48.1

(<0.001)
29.72

(<0.001)
29.33

<0.001)
15.75

(0.001)
16.9

(<0.001)
Fit (−2 log-

likelihood)

3633.6 15660 24697.8 28268.3 2740.1 10938.2 17143.6 19610.7 1007.2 4661.5 7392.7 8443.7

Group effect p-

value (mean

over entire

series for each

group)

0.40 0.72 0.76 0.55 0.47 0.72 0.61 0.44 0.25 0.20 0.68 0.67

Handgrip

response:

within-

group

Time (within-

group effect of

time) p-values

Main <0.001 <0.001 0.64 0.84 <0.001 0.016 0.59 0.59 <0.001 <0.001 0.45 0.76

Age <0.001 <0.001 0.64 0.84 <0.001 0.016 0.59 0.59 <0.001 <0.001 0.45 0.76

Age x Group <0.001 <0.001 0.64 0.84 <0.001 0.016 0.59 0.59 <0.001 <0.001 0.45 0.76

Age x Time 0.02 0.43 0.20 0.35 0.14 0.56 0.14 0.32 0.006 0.43 0.32 0.25

Age x Group x

Time

0.02 0.43 0.20 0.35 0.14 0.56 0.14 0.32 0.006 0.43 0.32 0.25

HR <0.001 <0.001 0.64 0.84 <0.001 0.016 0.59 0.59 <0.001 <0.001 0.45 0.76

HR x Group <0.001 <0.001 0.64 0.84 <0.001 0.016 0.59 0.59 <0.001 <0.001 0.45 0.76

HR x Time 0.85 0.62 0.84 0.73 0.84 0.73 0.73 0.72 0.73 0.17 0.54 0.75

HR x Group x

Time

0.85 0.62 0.84 0.73 0.84 0.73 0.73 0.72 0.73 0.17 0.54 0.75

Handgrip

response:

between-

group

Time X Group

(between-group

effect of time)

p-values

Main 0.85 0.57 0.69 0.67 0.80 0.51 0.80 0.90 0.92 0.71 0.46 0.36

Age 0.85 0.57 0.69 0.67 0.80 0.51 0.80 0.90 0.92 0.71 0.46 0.36

Age x Group 0.85 0.57 0.69 0.67 0.80 0.51 0.80 0.90 0.92 0.71 0.46 0.36

Age x Time 0.85 0.55 0.66 0.65 0.78 0.54 0.81 0.91 0.86 0.75 0.47 0.35

Age x Group x

Time

0.85 0.55 0.66 0.65 0.78 0.54 0.81 0.91 0.86 0.75 0.47 0.35

HR 0.85 0.57 0.69 0.67 0.80 0.51 0.80 0.90 0.92 0.71 0.46 0.36

HR x Group 0.85 0.57 0.69 0.67 0.80 0.51 0.80 0.90 0.92 0.71 0.46 0.36

HR x Time 0.92 0.74 0.81 0.78 0.94 0.77 0.95 0.98 0.73 0.52 0.20 0.13

Salient statistics and p-values from 9 RMANOVA models for right insula anterior-posterior organization in three sets (mixed, male, female). Full data are available

online [59]. The main model (bold) is the interaction of group-by-time (fMRI = group + time + group x time), and statics of significance and fit are in the top rows of

the table. The “Group” effect is the mean over the entire series and does not represent responses, and is not discussed. The two effects of interest “Time”, which

represents within-group responses over time, and “Time x Group”, which represents between-group differences in responses. The p-values for these effects are shown

for the 9 models. All models include the main effects plus additional mean or interaction terms. All interaction models also include means. For example, “Age x Time” is

fMRI = group + time + group x time + age + age x time.

https://doi.org/10.1371/journal.pone.0246368.t005
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hypothalamus, in particular, is tightly linked with sympathetic activity and has direct projec-

tions to and from the insula [19, 69–72]. This close connection pattern is consistent with rest-

ing state neuroimaging studies that revealed altered baseline function in insular cortices and

altered functional connectivity from the insula to other autonomic-related brain regions in

OSA [25, 26], so a next area of investigation might be studies of functional interactions

between insular, hypothalamic and brainstem activity during autonomic responses.

The magnitude of the fMRI responses to the task and of group differences was in the order

of 0.3%, as seen in the time trends. For neuroimaging studies generally, a change of 1% in the

BOLD signal is considered close to maximal, and the effects seen here are consistent with mod-

erate effect sizes [73, 74]. Additionally, some effect sizes were minimal as the hypothesized dif-

ferences were not observed; these negative findings were included in the results.

While a role for the brainstem in generating cardiovascular changes to muscle contractions

is clear, cardiovascular changes can also occur during imagination of muscle contraction, that

is without peripheral input [75]. The insular cortex and anterior cingulate cortex (ACC) have

been implicated in integrating motor command and cardiovascular changes during exercise,

which is supported by numerous brain imaging investigations [67, 75–77]. The anterior insu-

lar also receives inputs from and projects to the ACC, and cardiovascular changes during

imagined movement are apparently associated with activity changes in the ACC and insular

cortex [75]. The findings from previous studies are consistent with the data presented here;

that is, during a handgrip challenge, the increase in HR is associated with signal intensity

changes within the anterior agranular insula and not in other more-posterior regions of the

structure.

While only limited evidence exists on neural function-related sex differences in OSA, here,

we found that both OSA and control females showed higher anterior signal dominance in

both left and right insulae during an autonomic challenge. However, relative to control partici-

pants, OSA males showed left sided anterior dominance. This influence did not appear to be

modulated by resting HR. However, resting HR was high in male, but not female in OSA rela-

tive to healthy groups, which could reflect different resting sympathetic tone, and potentially

contribute to a sex-specific ceiling effect in fMRI responses. Given previous resting-state and

neurotransmitter findings of the insula in OSA [25, 26, 35–37], the question arises for future

studies whether the baseline neural state is altered in a different manner in OSA females and

males. Estrogen exerts sympathetic influences on the insula [78]. Furthermore, these effects

appear to be mediated by GABA, and given the lower GABA in OSA, complex interactions

between estrogen and OSA-related GABA reductions affecting autonomic regulation by the

insula could arise. This left-sided parasympathetic and right-sided sympathetic insular lateral-

ity is more a bias than an absolute distinction between sympathetic and parasympathetic activ-

ity, since there are common cardiovascular responses to stimulation across multiple insular

regions [50, 79]. Oppenheimer and colleagues [51] showed lateralization in insular cortex

stimulation-elicited differential cardiovascular rhythm changes in epileptic patients, with right

insula stimulation triggering sympathetic and left insula, parasympathetic effects. Removal of

the right insula in rats leads to increased parasympathetic activity [80]. Under these assump-

tions, the findings suggest that males showed more parasympathetic withdrawal and females

showed more sympathetic activation during the handgrip task, consistent with previous find-

ings [47]. Consistent with our study in healthy individuals [46], here we report that the direc-

tion of left-right organization is similar in both OSA and control groups, with higher activity

on the right side only for the females and not males.

Interpretation of these findings is limited by several factors. The handgrip task was short,

and likely did not elicit metabolic effects or the increase in sympathetic activity found in

healthy people. The grip strength was a subjective rating, but a percentage of maximum is the
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standard approach for handgrip tasks; this issue may have added variability to the data. The

sample was originally powered for OSA-control differences, but not sex-specific effects; never-

theless, since we know there are sex differences in OSA and healthy cardiovascular and neural

function, we decided to provide sex-specific results. Another limitation due to the original

study intent is the lack of information in females on menstrual cycle, menopausal status, or use

of hormones; these factors are all associated with autonomic influences [81, 82]. Sleep study

parameters were based on the sleep study reports provided, and did not typically include quan-

tification of awakenings, sleep onset latency, sleep efficiency or other parameters. Sleep quality

in particular has been associated with changes in insular function [83]. With respect to neuro-

imaging, insula cortex folding is not constant across people, and the gyri are likely accurate

only to within a few mm; fMRI signals are also limited in spatial accuracy due to the diffuse

nature of the BOLD effect. Finally, representation of the OSA group to the broader patient

population is limited.

In conclusion, functional response organization of gyri within the insular cortex is not sub-

stantially altered during a handgrip challenge in OSA subjects. This finding is similar to the

lack of substantial OSA differences in those gyri in response to a Valsalva maneuver, and sug-

gests that the anterior and right dominance of responses within the insula to autonomic sti-

muli may remain largely intact in the condition. It appears that in response to the motor

driven handgrip task the autonomic functional organization of insular gyri appear muted and

only the central command motor task aspect of the insula appears to differ in male OSA sub-

jects compared to controls. Females showed higher anterior and right fMRI signal dominance

in insula gyri compared with males, but the sample was insufficiently large to generalize with

confidence. Since central autonomic regulation is impaired in OSA, given the peripheral weak-

ened responses, questions remain regarding the resting state functional activity and connectiv-

ity with other autonomic regions such as the hypothalamus and brainstem.
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