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Abstract Meiotic homologous recombination is a specialized
process that involves homologous chromosome pairing and
strand exchange to guarantee proper chromosome segregation
and genetic diversity. The formation and repair of DNA
double-strand breaks (DSBs) during meiotic recombination
differs from those during mitotic recombination in that the
homologous chromosome rather than the sister chromatid is
the preferred repair template. The processing of single-
stranded DNA (ssDNA) formed on intermediate recombina-
tion structures is central to driving the specific outcomes of
DSB repair duringmeiosis. Replication protein A (RPA) is the
main ssDNA-binding protein complex involved in DNA me-
tabolism. However, the existence of RPA orthologs in plants
and the recent discovery of meiosis specific with OB domains
(MEIOB), a widely conservedmeiosis-specific RPA1 paralog,
strongly suggest that multiple RPA complexes evolved and

specialized to subdivide their roles during DNA metabolism.
Here we review ssDNA formation and maturation during mi-
totic and meiotic recombination underlying the meiotic spe-
cific features. We describe and discuss the existence and prop-
erties of MEIOB and multiple RPA subunits in plants and
highlight how they can provide meiosis-specific fates to
ssDNA processing during homologous recombination. Un-
derstanding the functions of these RPA homologs and how
they interact with the canonical RPA subunits is of major
interest in the fields of meiosis and DNA repair.
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Meiosis is the central process of sexual reproduction. During
this specialized cell division program, the genome of diploid
germ cells is halved to produce haploid gametes. This process
requires the pairing and formation of a physical link (chiasma)
between homologous chromosomes (homologs). These
events are established during meiotic prophase I, which is
subdivided into four stages (for review see Page and Hawley
2003). Prophase begins with the formation of programmed
DNA double-strand breaks (DSBs) during the leptotene stage.
During the zygotene and pachytene stages, these DSBs are
progressively repaired by homologous recombination (HR),
a process that promotes and completes homolog pairing (Wei-
ner and Kleckner 1994; Kauppi et al. 2013). Chiasmata are the
product of crossovers (COs) formed during the pachytene
stage. Only a subset of DSBs are repaired with a reciprocal
exchange of chromosome arms to form a CO, whereas the
remaining DSBs are repaired without reciprocal exchange to
form noncrossovers (NCOs). COs are tightly regulated as
shown by their controlled number and non-random distribu-
tion along chromosomes (Anderson et al. 1999; Martini et al.
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2006; Cole et al. 2012). It is now evident that numerous fac-
tors are necessary to control the proper progression of meiotic
HR and drive the maturation of intermediates to specific out-
comes (for review seeYouds and Boulton 2011). First, meiotic
DSBs are programmed and formed through the action of sev-
eral factors including the conserved topoisomerase-like
transesterase SPO11, which bears the catalytic activity. DSB
initiation was recently shown to be under feedback control by
Tel1/ATM kinase (Carballo et al. 2013; Lange et al. 2011;
Garcia et al. 2015). During a later step, the conversion of
pre-crossover intermediates into COs has been demonstrated
to depend on the coordination of a number of proteins (De
Muyt et al. 2014; Holloway et al. 2014; Qiao et al. 2014).

Single-stranded DNA (ssDNA) is generated at multiple steps
during HR (see Fig. 1) and requires specific factors for its for-
mation, signal transduction, protection, and disappearance.
Among these factors, Replication Protein A (RPA) is the prin-
cipal ssDNA-binding complex and is essential for mitotic
growth and meiotic progression (Soustelle et al. 2002). Howev-
er, recent studies have highlighted the involvement of additional
RPA homologs specifically during meiosis, notably meiosis
specific with OB domains (MEIOB) a new meiosis-specific
paralog of the largest subunit of RPA (Souquet et al. 2013;
Luo et al. 2013). In this review we discuss the potential specific
roles of RPA and its homologs to better understand the regula-
tion of ssDNA-containing meiotic recombination intermediates.

Roles of ssDNA during homologous recombination

During the mitotic cell cycle

ssDNA formation is a common feature of DNAmetabolism. It
is generated during DNA replication, repair, and recombina-
tion (Mehta and Haber 2014). During HR, ssDNA is formed
on different intermediates and bound by dedicated proteins
that ensure its protection and signaling and the subsequent
steps of DNA processing. HR begins with the production of
3′-ssDNA tails to invade duplex DNA during the homology
search. Subsequently, D-loop formation and migration gener-
ate additional ssDNA. Shortly after formation, DSBs are rec-
ognized by the MRN complex (MRE11, RAD50, and NBS1)
to initiate 5′->3′- resection (Ivanov et al. 1994; Tsubouchi and
Ogawa 1998). To protect ssDNA from degradation and re-
move secondary structures that would prevent the loading of
recombinase proteins, the RPA complex binds the resected
DNA (Alani et al. 1992; Sugiyama et al. 1997; Wang and
Haber 2004). RPA is subsequently replaced by the RAD51
recombinase to form a presynaptic nucleofilament in a
BRCA2- and Rad52-dependent manner in mammals and
yeast, respectively, with the help of RAD51 paralogs (Sung
1997; Gasior et al. 2001; Jensen et al. 2010; Suwaki et al.
2011; Gaines et al. 2015). In eukaryotic cells, it is assumed

that RPA loading precedes RAD51 loading. However,
RAD51 can be loaded on ssDNA in the absence of RPA if
the ssDNA is free of secondary structures (Heyer and
Kolodner 1989; Sung 1994; Sugiyama et al. 1997; Gaines
et al. 2015). The large subunit of RPA interacts with RAD51
through its N-terminal region and co-localizes to sites of DNA
damage; however, it remains unclear whether RPA and
RAD51 coexist in the nucleofilament (Golub et al. 1998;
Tarsounas et al. 2003; Haber 2014).

Owing to its DNA strand-pairing activity, the nucleofilament
invades a homologous DNA duplex to initiate DNA synthesis
from the invading 3′-OH end using the donor sequence as the
template. Genetic evidences have revealed that the mismatch
repair machinery (MMR) inhibits recombination between mod-
erately divergent regions (Evans and Alani 2000). Studies with
mismatches containing substrates incubated in human cell ex-
tracts have shown that RPA is recruited at mismatch sites prior
to MMR-specific members (Guo et al. 2006). Moreover, the
in vitro reconstitution of MMR reaction with purified hMMR
proteins has provided evidence that RPA forms part of the com-
plex that initiates mismatch-provoked excision, suggesting that
RPA plays a role in the early steps of the MMR. It remains
unclear whether RPA collaborates with the MMR machinery
in mismatch tolerance during the search for homologous se-
quences that occurs during HR. Furthermore, whether RPA
ensures this role on the nucleofilament or after loading onto
the D-loop formed during strand exchange is an open question.
Evidence for the presence of RPA on the D-loop has been
provided by several observations (Wang and Haber 2004). Bio-
chemical assays showed that RPA strongly enhances strand
exchange by stabilizing RAD51-dependent pairing after strand
invasion and stimulates DNA synthesis through its interaction
with DNA polymerases alpha and delta after invasion (Eggler
et al. 2002; Sneeden et al. 2013). RPA-dependent strand inva-
sion stabilization is achieved by preventing reversal of the
strand exchange reaction. Chromatin immunoprecipitation of
RPA performed in Saccharomyces cerevisiae revealed that
RPA is retrieved on both the donor and the recipient sequences
with time differences confirming the presence of RPA first on
the broken strand and then on the D-loop in vivo (Wang and
Haber 2004). Moreover, in vitro studies have indicated that
RPA favors strand annealing directed by yeast or human
RAD52 (Sugiyama et al. 1998; Jensen et al. 2010). Finally,
the importance of RPA during second-end capture has been
demonstrated by biochemical assays performed with the
S. cerevisiae rfa1-t11 mutant. This mutant supports the
RAD52-dependent loading of RAD51 and strand invasion but
exhibited failure in second-end capture (Sugiyama et al. 2006).

During prophase I of meiosis

Even though meiotic and mitotic HR share common features
and factors, several facets of HR differ. DSBs are programmed
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during meiosis and involve the presence of specific factors at
DSB sites, including before DSB formation. Our knowledge
regarding the proteins required for meiotic DSB formation
comes mostly from studies performed in S. cerevisiae, which
has at least nine proteins that are essential to this process,
whereas only three have so far been identified in mice. In
S. cerevisiae, Mer2 is loaded onto chromatin to coordinate
DNA replication and DSB formation in a phosphorylation-
dependent manner (Henderson et al. 2006; Murakami and
Keeney 2014). The remaining proteins are subsequently load-
ed to induce DSB formation through the catalytic activity of
Spo11. Interestingly, the MRX complex (Mre11, Rad50, and
Xrs2) which is involved in ssDNA formation to produce an
ssDNA 3′ end during mitotic HR, is essential for DSB forma-
tion in S. cerevisiae and Caenorhabditis elegans (Borde
2007). This observation indicates that a complex loaded on
broken ends during mitotic HR to initiate ssDNA processing
is present before DSB formation during meiotic HR. Conse-
quently, the chromatin context in which ssDNA processing
occurs differs between both types of HR. Interestingly, al-
though RPA foci are detected on unsynapsed chromosomes
suggesting the presence of RPA on ssDNA before strand in-
vasion, the precocious formation of numerous and bright
RAD51 foci at the time the first RPA foci are detected may
bring into question whether RPA binding on ssDNA precedes
the loading of recombinases during meiotic HR in mammals
as observed during mitotic HR (Plug et al. 1998; Moens et al.
2002; Oliver-Bonet et al. 2007 and personal observation E.A.,

EM). Of note, RPA foci have been observed on chromosome
spreads performed in a rad50S mutant of S. cerevisiae. This
mutant is unable to process DNA after DSB formation and is
not expected to produce ssDNA suggesting that normal resec-
tion is not required to recruit RPA to DSB sites (Gasior et al.
1998). This finding could be explained through the direct
interaction described betweenMRE11 and RPA or by nonspe-
cific DNA degradation (Gasior et al. 1998).

Unlike mitotic recombination, meiotic recombination ex-
hibits preference to use as the repair template a DNA sequence
present on the homologous chromosome rather than a DNA
sequence on the sister chromatid and favors the formation of
COs (Schwacha and Kleckner 1994; Cole et al. 2014). In
addition to RAD51, most organisms possess the meiosis-
specific DMC1 recombinase, which is essential together with
RAD51 for proper strand invasion (Bishop et al. 1992;
Yoshida et al. 1998). Studies performed in S. cerevisiae and
Arabidopsis thaliana suggest that during meiotic HR, RAD51
would preferentially play an accessory role to allow DMC1
recombinase activity (Cloud et al. 2012; Da Ines et al. 2013).
These observations suggest that RAD51 and DMC1 can load
together on both broken ends after DSB formation. However,
the distances observed between RAD51 and DMC1 foci by
immunolocalization in A. thaliana support the hypothesis that
distinct filaments would be formed on each end (Kurzbauer
et al. 2012). Although a strong effort has been made to deci-
pher the formation, maintenance, and dynamics of the
RAD51/DMC1 nucleofilament, further investigations remain

Crossover (CO)Noncrossover (NCO) Noncrossover (NCO)

RAD51, DMC1, RPA(?)  helicase

 helicase

looking for an homologous sequence

stabilization

= ssDNA

Fig. 1 Meiotic recombination and ssDNA. Meiotic double strand breaks
are repaired as crossovers (CO) or non-crossovers (NCOs) through
different intermediates. After DSBs formation, resection is initiated to
form 3′-ssDNA tails. The 3′-tail is then coated by the recombinases to
invade the homologous sequence on the homolog. A ssDNA-binding
protein such as RPA must help to stabilize and protect ssDNA before

the formation of the presynaptic filament. Proper strand invasion is
stabilized to initiate DNA synthesis and then either further stabilized or
destabilized to be repaired by synthesis-dependent strand annealing
(SDSA). The stabilized intermediates (double Holliday junctions) can
either form a NCO outcome or be resolved by nuclease activity to form
a CO or a NCO outcome. Green circles show ssDNA
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necessary (Brown and Bishop 2014). Studies performed in
plants and mammals indicate that BRCA2 interacts with
DMC1 and RAD51, suggesting that BRCA2 promotes the
formation of the meiotic nucleofilament containing RAD51
and DMC1 (Siaud et al. 2004; Thorslund and West 2007;
Seeliger et al. 2012). Genetic evidence has confirmed the im-
portance of BRCA2 to mediate the proper formation of the
meiotic presynaptic nucleofilament (Sharan et al. 2004). In
addition to stimulating nucleofilament formation, yeast
RAD52 (yRad52) is required for the post-invasion steps of
meiotic HR (Lao et al. 2008). Indeed, the annealing of the
second broken end during synthesis-dependent strand anneal-
ing (SDSA) and second-end capture to complete the formation
of double Holliday junctions (dHJs) are dependent on yRad52
in S. cerevisiae and BRCA-2 in C. elegans (Sugiyama et al.
2006; Petalcorin et al. 2006). However, in vitro assays have
demonstrated that hBRCA2 does not anneal RPA-coated
ssDNA, whereas hRAD52 does, suggesting that two proteins
are needed in mammals compared with one in yeast and
C. elegans (Jensen et al. 2010; Petalcorin et al. 2006). None-
theless, in contrast to what has been described in yeast, knock-
outs of the Rad52 gene in mammals show few phenotypes
with no obvious defect in response to DNA damaging agents
and no meiotic defects (Rijkers et al. 1998).

The presence of recombinases on the presynaptic filament
is essential for the displacement and invasion of the homolo-
gous sequence. However, the nature, organization, and dy-
namics of the nucleofilament formed on the second broken
end remain to be determined in vivo. Given the specific out-
comes of this end (i.e., strand annealing or second-end cap-
ture) it is unclear whether the recombinases and/or RPA are
loaded on that end. Immunostaining of RPA performed on
chromosome spreads in numerous species (mammals and
plants) have shown that RPA foci are detected up to the pachy-
tene stage, specifically until the formation of MLH1 CO-
associated foci (Plug et al. 1998). This finding suggests that
RPA is present on joint molecules after their stabilization with
the MutS homologs, MSH4-MSH5. Interestingly, the
phosphoregulation of RPA appears to play a role in the control
of CO formation. In S. cerevisiae, the phosphorylation of the
RPA2 subunit is controlled by the yeast ATR ortholog, Mec1.
A phosphomimetic form of RPA2 induces changes in genetic
distances and CO interference, suggesting a role for RPA2
phosphorylation in CO regulation (Bartrand et al. 2006).

For decades, RPA has been considered a strong unalterable
complex that is well conserved among species. However, the
identification in plants of variants of the three subunits of RPA
that can form different complexes with specific activities
strongly underlines the potential regulatory role that such
complexes can play (Shultz et al. 2007). The existence of
alternative RPA complexes in mammalian cells has been sug-
gested by the discovery of RPA4, which bears 50 % identity
with RPA2, in a cDNA library derived from HeLa cells

(Keshav et al. 1995). More recently, it has been proposed that
RPA4 is more likely to be involved in the maintenance of
genomic integrity than in its replication (Haring et al. 2010).
Moreover, recent studies identified a new meiosis-specific
gene in metazoans, MEIOB, a paralog of RPA1 that interacts
with RPA2 (Souquet et al. 2013; Luo et al. 2013). MEIOB is
essential for proper meiotic recombination in mice and inter-
acts with ssDNA. In-depth characterization of these multiple
complexes should allow a better understanding of the mecha-
nisms regulating meiotic recombination and the maintenance
of genome integrity.

RPA the major ssDNA-binding protein

Canonical RPA complex

The ssDNA-binding replication protein A (RPA) is an evolu-
tionarily conserved heterotrimeric complex involved in DNA
replication, repair, and recombination which is essential for
cell survival (for a review seeWold 1997). RPAwas originally
identified through its essential role for SV40 DNA replication
in vitro (Wold and Kelly 1988).

The RPA complex is composed of three subunits: RPA1,
RPA2, and RPA3. X-ray diffraction studies of the crystallized
human complex revealed that the three subunits form together
a trimer that is stabilized through the trimerization core pro-
duced by the interaction of helices from each subunit
(Bochkareva et al. 2002). Among the three subunits, RPA1
possesses the highest affinity for ssDNA through its three
oligonucleotide/oligosaccharide-binding folds (OB-fold), de-
noted DBD-A, DBD-B and DBD-C (Wold 1997). RPA2 and
RPA3 also possess OB-fold domains, named DBD-D and
DBD-E, which are capable of interacting with ssDNA
(Philipova et al. 1996; Salas et al. 2009) (see Fig. 2). RPA
binds to ssDNA in two conformational states that differ in
the length and affinity of the bound DNA. A study of the
structure of a crystallized RPA-ssDNA complex from the
fungus Ustilago maydis demonstrated that the two confor-
mational states of RPA-ssDNA binding provides opposing
affinities for DNA and proteins (Fan and Pavletich 2012).
The DBD-C of RPA1 is longer than the two other OB-folds
and possesses an insertion of approximately 30 amino acids
with a conserved zinc ion-binding domain of type C-4X-C-
13X-C-2X-C (Heyer et al. 1990; Erdile et al. 1991). This
domain is dispensable for RPA1 ssDNA-binding activity
but influences the overall ssDNA-binding affinity of the
RPA complex (Kim et al. 1996; Dong et al. 1999; Walther
et al. 1999). However, the functional role of this domain
remains poorly understood. Kim et al. and Walther et al.
reported that mutating this domain strongly impaired
SV40-dependent DNA replication, whereas Dong et al. ob-
served only a slight delay.
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Existence and properties of multiple RPA complexes

Genome duplications occurred periodically during eu-
karyotic evolution such that some organisms possess sev-
eral homologs of RPA subunits that may have meiosis-
specific functions. Such multiple RPAs have been de-
scribed in the plants A. thaliana and Oryza sativa and in
the protists Toxoplasma gondii, Plasmodium falciparum,
and Cryptosporidium parvum (Rider et al. 2005;
Gopalakrishnan and Kumar 2013).

The flowering plant A. thaliana contains five homologs of
RPA1, two homologs of RPA2, and two homologs of RPA3.
The rice O. sativa possesses three homologs of RPA1 and
RPA2 and only one homolog of RPA3. Interestingly, despite
the multiple possible combinations, only three complexes
have been identified in rice and four in A. thaliana, respec-
tively (Ishibashi et al. 2006; Eschbach and Kobbe 2014).
These observations suggest the existence of specific interac-
tions between subunits and/or specialized expression that re-
stricts the possibilities of interactions.

Genetic studies performed with mutants of AtRPA1 homo-
logs led to the classification of these homologs into two
groups. AtRPA1a, AtRPA1c, and AtRPA1e are hypothesized
to be involved in the response to DNA-damaging agents and
consequently in DNA repair, whereas AtRPA1b and
AtRPA1d are proposed to be necessary for normal DNA rep-
lication during developmental growth (Aklilu et al. 2014). No
meiotic defect could be observed in Atrpa1b,c,d,e mutants
(Aklilu et al. 2014). A careful genetic study of AtRPA1a dur-
ing meiosis revealed its role in meiotic HR. Although the
absence of fragmented DNA suggests that DSBs are repaired
in this mutant, immunostaining performed on meiotic chro-
mosome spreads showed a reduction in the MLH1 foci num-
ber, strongly suggesting a diminution of interfering COs (class
I). Metaphase I analysis confirmed a reduction in the chiasma
number. The observed phenotype suggested that meiosis
progressed normally until class I CO formation. Therefore,
the authors proposed that AtRPA1a could be involved in the
second-end capture of the broken end at the recombination
intermediates designated to form class I COs controlled by
MLH1/MLH3 (Osman et al. 2009). Furthermore, mutation
of both AtRPA1c and AtRPA1a was found to induce complete
sterility and marked chromosome fragmentation during mei-
osis. The findings that the Atrpa1a/Atrpa1c double mutant is
sterile and that the Atrpa1c mutant does not show fertility
problems suggest that AtRPA1c could play an early role dur-
ing meiotic recombination that could be overcome by
AtRPA1a in the absence of AtRPA1c.

Less genetic data are available regarding the functions of
RPA1 homologs in rice. To date, only the function of
OsRPA1a has been studied. The osrpa1amutant showed nor-
mal vegetative growth but an increased sensitivity to DNA
damage induced by genotoxic agents, including UV irradia-
tion. osrpa1amutants are sterile and show chromosomal frag-
mentation despite normal chromosome pairing and synapsis
during meiosis (Chang et al. 2009). These data suggest that
OsRPA1a is dispensable for replication but required for so-
matic and meiotic DNA repair.

Not much is known about the biochemical properties of the
RPA complexes in rice, however, the DNA binding properties
of AtRPA complexes were recently published (Eschbach and
Kobbe 2014). The authors concluded that complexes contain-
ing AtRPA1a show higher affinity for unmodified ssDNA
than ssDNA with modifications, such as abasic sites, and
stronger dsDNA-destabilizing activity than AtRPA1b-
containing complexes. These results were unexpected in light
of genetic data suggesting that AtRPA1b is specifically in-
volved in DNA replication because the Atrpa1a mutant did
not show growth defects in the absence of DNA-damaging
agents. Such results may be explained by the absence of
RPA-interacting partners or post-translational modifications
in the in vitro assay. In addition, the study revealed that the
identity of the RPA3 homolog may significantly influence the

OB1
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OB3
Zn

470 AA1 2 3hMEIOB

616 AAA B CNhRPA1

270 AAD WHDPDhRPA2

121 AAEhRPA3

Zn
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B

Fig. 2 Domain structures of RPA subunits and MEIOB. a Schematic
representation of MEIOB and RPA subunits protein domains. The
folded domains and unfolded linkers are presented as boxes and lines
respectively. The red and blue boxes represent MEIOB and RPA
subunit OB- folds, respectively. The orange domains illustrate zinc ion-
binding domains. The grey boxes represent domains that are not involved
in ssDNA-binding activity, such as the N-terminal domain of RPA1 and
the phosphorylation domain (PD) and the winged-helix domain (WHD)
of RPA2. b Stereo ribbon presentation of predicted MEIOB structure
model obtained from the RaptorX server (Kallberg et al. 2012) and
visualized with Jmol (www.jmol.org). OB-folds 1, 2, and 3 and zinc
ion-binding domain are represented in red, green, yellow, and orange,
respectively. Unfolded linkers are represented in grey
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DNA-binding properties of the complexes. This result was
unexpected given the weak DNA-binding affinity of RPA3,
a subunit that was proposed to mediate protein-protein inter-
action (Bochkarev et al. 1999).

Collectively, these genetic and biochemical studies suggest
that multiple RPA complexes have evolved and become spe-
cialized to subdivide their roles during the various stages of
DNA metabolism.

MEIOB: a meiosis-specific RPA1 homolog

MEIOB and evolution

For several decades, RPA4, which belongs to the RPA2
family, was the only RPA paralog to have been found in
mammals. However, recent works identified Meiob as a
new meiosis-specific paralog of Rpa1 in metazoans
(Souquet et al. 2013; Luo et al. 2013). Meiob orthologs
have been retrieved in the genomes of almost all meta-
zoans, with the exception of Nematoda and a non-meiotic
specific ortholog of MEIOB, named Hold’em (HDM), has
been described in Drosophila (Joyce et al. 2009). Interest-
ingly, an ortholog has also been found in the single-celled
organism Capsaspora owczarzaki (Souquet et al. 2013).
This finding strongly suggests that a duplication event
that occurred before the emergence of metazoans and
multicellularity enabled Meiob to evolve from an ancestral
Rpa1 gene (approximately 600 million years ago). How-
ever, we recently identified sequences similar to metazoan
Meiob in seve ra l funga l genomes such as the
zygomycotan fungi Mortierella verticillata, and in ge-
nomes of ascomycetes, such as Neurospora crassa, sug-
gesting that the evolution of Meiob may be earlier than
first thought (22.3 % identity between human MEIOB and
MEIOB-like of M. verticillata, see Fig. 3, unpublished
data). Deciphering the function of these Meiob-like pro-
teins will help us to better understand the role of MEIOB.
To date, we have not identified a Meiob ortholog in
amoebozoan genomes. The fact that MEIOB has been
retrieved from metazoans, fungi, and Capsasporidae
(C. owczarzaki) suggests that the appearance of MEIOB
occurred during the evolution of the Opisthokonta mono-
phyletic group. Surprisingly, putative Meiob orthologs
have not been identified in the S. cerevisiae or
Schizosaccharomyces pombe genomes. This could be ex-
plained by the loss of an ancestral Meiob gene during the
evolution of these species—a situation that has frequently
been observed with other meiotic genes. For example, the
meiotic recombinase DMC1 conserved from yeasts to
humans is absent from the C. elegans, Drosophila
melanogaster, and Sordaria macrospora genomes.

Structure of MEIOB

MEIOB possesses three OB-folds homologous to those of
RPA1 (Souquet et al. 2013; Luo et al. 2013). Similar to
RPA1, MEIOB possesses two OB-folds and a long C-
terminal OB-fold with a 30-amino acid insertion containing
a putative zinc ion-binding domain (see Fig. 2). We identified
this motif in the human MEIOB sequence using the Sequence
Similarity DataBase of the Kyoto Encyclopedia of Genes and
Genomes (KEGG SSDB, http://www.kegg.jp/kegg/ssdb).
This C-2X-C-10X-C-2X-C motif resembles that of a double
zinc ribbon (DZR, unpublished data) and differs from that
present in RPA1 only in the number of residues between the
cysteines. We identified this motif in all metazoan MEIOB as
well as in the MEIOB-like protein of the M. verticillata. The
existence of this motif reinforces the hypothesis of a common
origin between MEIOB and RPA1 even though MEIOBs and
MEIOB-likes form amonophyletic group distinct fromRPA1.
The role of the putative zinc ion-binding domain of MEIOB
should be the subject of future work to specify MEIOB func-
tions during meiotic HR.

Compared with the very similar OB-fold domains, RPA1
and MEIOB significantly differ in the N-terminal parts of the
proteins. The well-conserved N-terminal domain of RPA1 is
absent in MEIOB. This domain ensures specific interactions
between RPA1 and numerous partners such as DNA polymer-
ase alpha and checkpoint proteins including ATRIP, RAD9
(53BP1), the MRE11/RAD50/NBS1 complex, and the tumor
suppressor p53 (Kim et al. 1996; Bochkareva et al. 2002; Xu
et al. 2003). This absence of such an N-terminal domain sug-
gests thatMEIOB developed its own specific interactions with
a limited set of partners. This difference may support the ex-
istence of a distinct role for MEIOB and partially explain why
RPA1 cannot compensate for the absence of MEIOB during
meiosis in Meiob−/− mice (Souquet et al. 2013; Luo et al.
2013). The immunoprecipitation of MEIOB from testis ex-
tracts revealed an interaction between MEIOB and RPA2, a
subunit of the RPA complex, and SPATA22, a meiosis-
specific factor essential to prophase I progression (Luo et al.
2013; La Salle et al. 2012). However, the role and the nature of
these interactions remain to be determined.

Putative roles of MEIOB

We identified Meiob as a meiosis-specific gene based on its
differential expression between male and female embryonic
germ cells at the time when only female germ cells have en-
tered meiosis (Souquet et al. 2013). Luo et al. identified
MEIOB through a systematical proteomic screen of meiosis-
specific chromatin-associated proteins performed on mouse
testes (Luo et al. 2013). The sterility of male and female
Meiob−/−mice is due to zygotene/pachytene arrest in prophase
I of meiosis. MEIOB is essential to the repair of meiotic DSBs
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and to proceed through meiosis. MEIOB is located on chro-
mosome axes from leptotene to pachytene (Souquet et al.
2013; Luo et al. 2013). The fact that MEIOB is recruited to
meiotic chromosomes in aDmc1−/−mutant which is unable to
undergo strand invasion of the homologous sequence suggests
that MEIOB could play an early role on the ssDNA formed
during DNA resection after DSB formation (Souquet et al.
2013). However, given that MEIOB persists until the pachy-
tene stage, a later role in the processing of joint molecules
formed during strand invasion is also possible (Souquet
et al. 2013; Luo et al. 2013). Interestingly, we reported that
in the absence of MEIOB, the recombinases DMC1 and
RAD51 are loaded but not maintained on chromosome axes
while RPA foci persist, suggesting that DSBs are not repaired
(Souquet et al. 2013). This observation is reinforced by similar
observations described in a rat mutant lacking functional
SPATA22, a MEIOB partner (Ishishita et al. 2014). These

results may suggest that the stabilization of the meiotic
recombinases requires MEIOB and SPATA22. However, an
alternative explanation would be that in absence of efficient
DNA repair, the recombinases would be removed from re-
combination intermediates by helicase activity. The fact that
RAD51 is loaded and not removed in aDmc1−/−mutant that is
blocked prior to strand invasion, may suggest that recombina-
tion intermediates are not arrested at the same step inMeiob−/−

and Dmc1−/− mutants (Pittman et al. 1998).
We found that only a fraction of MEIOB co-localizes with

RPA2, particularly at early prophase I and, similarly to RPA,
MEIOB is present on unsynapsed DNA (Souquet et al. 2013).
These observations question whether MEIOB and RPA are
loaded together on ssDNA formed on both sides of a DSB
or individually loaded on each side of the DSB to provide
different identities. We can also consider that similarly to
AtRPA1c and AtRPA1a in A. thaliana, RPA1 and MEIOB

Fig. 3 Phylogenetic relationship between RPA and MEIOB homologs.
Multiple alignments of full-length MEIOB and RPA1 protein were
processed with Clustal Omega (http://www.ebi.ac.uk/Tools/msa/
clustalo/). The phylogenetic tree obtained with Clustal Omega was
visualized with Archaeopteryx Version 0.9901 beta (Han and Zmasek
2009). MEIOB and RPA1 proteins form distinct families. Represented
species: H. sapiens, Homo sapiens; B. taurus, Bos taurus; M. musculus,
Mus musculus; G. fortis, Geospiza fortis; D. melanogaster, Drosophilae

melanogaster; C. owczarzaki, Capsaspora owczarzaki; N. crassa,
Neurospora crassa; C. apollinis, Coniosporium apollinis; P. murina,
Pneumocystis murina; M. verticillata, Mortierella verticillata; S.
pombe, Schizosaccharomyces pombe; S. cerevisiae, Saccharomyces
cerevisiae; O. sativa, Oryza sativa; A. thaliana, Arabidopsis thaliana.
The amino acid sequences and accession numbers are available in
supplementary material (Sup. 1)
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could be involved in different steps of the meiotic recombina-
tion process. Interestingly, AtRPA1a is located on the chro-
mosome axis from the leptotene to pachytene stage, similarly
toMEIOB and RPA1 but is essential only after stabilization of
the joint molecules, as suggested by the indistinguishable dy-
namics of MSH4 foci between wild-type and mutant. Howev-
er, AtRPA1c is essential for meiotic recombination only in the
absence of AtRPA1a, suggesting that AtRPA1a could over-
come AtRPA1c early role during DSB repair. In contrast,
RPA1 cannot overcome the absence of MEIOB, suggesting
that MEIOB could possess activities similar to those of both
AtRPA1c and AtRPA1a.

In vitro assays have indicated that the full-length protein,
as well as a truncated form containing the second OB-fold,
binds with higher affinity to ssDNA than to dsDNA
(Souquet et al. 2013; Luo et al. 2013). These results confirm
that MEIOB possesses ssDNA-binding activity, as predict-
ed by the presence of the OB-fold. Strikingly, Luo et al. also
observed Mg2+-dependent 3′-exonuclease activity specific
to ssDNA when they expressed and purified the truncated
form of MEIOB from E. coli (Luo et al. 2013). Such activity
was unexpected for a paralog of RPA1, which is hypothe-
sized to protect ssDNA from nucleases activities. Notably,
no nuclease activity has been described for any RPA com-
plex. To test the specificity of this activity, Luo et al. de-
signed a mutation, S251A, which partially affected the exo-
nuclease activity of the truncated MEIOB. However, the
ssDNA-binding activity of the protein was also impaired
by this mutation. Mutating acidic amino acids usually found
in the catalytic site of nucleases should be of special interest
because acidic amino acids are not thought to mediate inter-
actions with nucleotides, unlike the hydroxyl function lost
by mutation in a serine residue.

Nonetheless, 3′-ssDNA tails need to be processed during
meiotic homologous recombination. Luo et al. proposed that
the putative exonuclease activity of MEIOB could process 3′
flaps formed after DNA synthesis during synthesis-dependent
strand annealing (SDSA) or during dHJ formation. This activ-
ity may also be used after invasion of the homologous chro-
mosomes, when sequence divergences between the invading
strand and the donor induce the formation of DNA mis-
matches. Consequently the presence of these mismatches
can induce the formation of a 3′ flap. In S. cerevisiae, it has
been shown that during mitotic HR these 3′ flaps are proc-
essed by the endonuclease activity of the Rad1-Rad10 hetero-
dimer to allow DNA synthesis to proceed and progress via
recombination (Ivanov and Haber 1995). Through its nuclease
activity, MEIOB may be involved in processing the 3′ flaps
formed during strand invasion in meiosis (Fig. 4). Moreover,
the MRE11 3′-exonuclease activity has been shown to be in-
volved in the release of SPO11-oligonucleotides during mei-
otic DSB processing (Garcia et al. 2011). In a similar manner,
MEIOB 3′-exonuclease activity with the help of a helicase
could participate in early DSB processing (Fig. 4). Indepen-
dently of its putative nuclease activity, Luo et al. proposed that
due to its interaction with RPA2, MEIOB could provide a
physical connection between an RPA-coated D-loop and the
second broken end (Luo et al. 2013). An alternative possibility
is that, similar to what has been proposed for AtRPA1a,
MEIOB could be loaded on the second end and interact spe-
cifically with a RAD52-like factor and/or could possess an
activity to anneal the second DSB end (Fig. 4). In addition,
little is known about SPATA22. Similarly to MEIOB,
SPATA22 is essential for meiotic HR and its invalidation in-
duces a phenotype similar to that of MEIOB (La Salle et al.
2012; Ishishita et al. 2014). Moreover, the stabilities of

DMC1/RAD51

SPO11

MEIOB/SPATA22
RPA

A B C D

Fig. 4 Putative roles for MEIOB during meiotic recombination. a
MEIOB is loaded during the early steps of resection to release Spo11-
oligo through its 3′-exonuclease activity with the help of a helicase
(opened triangle). b MEIOB is loaded with or without RPA on the 3′-
ssDNA tail. c MEIOB 3′-exonuclease activity removes the 3′ end of the

invading strand in the presence of mismatches formed between the donor
and invading strand to allow initiation of DNA synthesis. d MEIOB is
loaded on one side of the broken end to allow strand annealing or second-
end capture
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MEIOB and SPATA22 are dependent on each other strongly
suggesting that SPATA22 and MEIOB form a complex (Luo
et al. 2013 and personal observations). MEIOB and SPATA22
show only a partial co-localization with RPA and are essential
to meiotic HR. This observation suggests that MEIOB/
SPATA22 and the RPA complex can act both independently
and together on DNA. Deciphering the role of SPATA22 dur-
ing meiosis will be essential to better understand the function
of the MEIOB/SPATA22 complex during meiotic homolo-
gous recombination.

Conclusion

In this review, we describe RPA-like proteins from different
species. Studies in plants support the hypothesis that multiplying
RPA family members may provide more specificity to the reg-
ulation of DNA metabolism and yield a larger panel of
interacting factors. The existence of RPA4 in mammalian cells
and MEIOB in metazoans and many fungi strongly suggests
that this multiplicity is not restricted to plants. Because meiotic
recombination is a conserved mechanism among species, we
can investigate whether the role of MEIOB in species devoid
of MEIOB could be supported by RPA. Conversely, MEIOB
could also provide species-specific features to meiotic recombi-
nation. As an example, S. cerevisiae does not possess MEIOB.
Interestingly, among the large panel of generated scRPAmutants
and that affect specific functions, nomeiosis-specific mutant has
been identified (Soustelle et al. 2002). Based on the existence of
homologies between scRPA and MEIOB which are absent in
mammalian RPA, we also sought to identify specific meiotic
domains in scRPA. Unfortunately, to date, the mutations of the
putative domain tested did not allow us to identify any residues
with a specific meiotic function in scRPA. These data would
support the hypothesis that the presence of MEIOB provides
species-specific features to themeiotic process, a hypothesis that
will require further investigations. To better understand the role
of MEIOB, it would be informative to know whether its recruit-
ment is restricted to meiotic DSBs. Studying MEIOB localiza-
tion during the repair of different types of DNA damage induced
in mammalian mitotic cells after introducing MEIOB by trans-
fection or in meiotic cells lacking meiotic DSBs (i.e., Spo11−/−
mice) should shed light on the minimal requirements for in vivo
MEIOB recruitment. Numerous uncertainties persist regarding
the existence and putative purposes of different ssDNA-binding
factors between mitotic and meiotic HR. Although RPA and
MEIOB can partly co-localize on the meiotic chromosome axis,
details of the dynamics of the various factors involved in ssDNA
metabolism during meiosis are unclear. In this regard,
deciphering whetherMEIOB or RPA1 arrives and binds ssDNA
first would be highly informative.

Understanding the nature and the role of specific ssDNA-
interacting factors will provide essential key elements to

improve our knowledge of the dynamics and regulation of
meiotic recombination. This will also afford an original ap-
proach for deepening our understanding of the specific roles
of canonical RPAs.
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