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ABSTRACT A major challenge in the development of antibody biotherapeutics is their tendency to aggregate. One root cause
for aggregation is exposure of hydrophobic surface regions to the solvent. Many current techniques predict the relative aggre-
gation propensity of antibodies via precalculated scales for the hydrophobicity or aggregation propensity of single amino acids.
However, those scales cannot describe the nonadditive effects of a residue’s surrounding on its hydrophobicity. Therefore, they
are inherently limited in their ability to describe the impact of subtle differences in molecular structure on the overall hydropho-
bicity. Here, we introduce a physics-based approach to describe hydrophobicity in terms of the hydration free energy using grid
inhomogeneous solvation theory (GIST). We apply this method to assess the effects of starting structures, conformational sam-
pling, and protonation states on the hydrophobicity of antibodies. Our results reveal that high-quality starting structures, i.e.,
crystal structures, are crucial for the prediction of hydrophobicity and that conformational sampling can compensate errors intro-
duced by the starting structure. On the other hand, sampling of protonation states only leads to good results when combined with
high-quality structures, whereas it can even be detrimental otherwise. We conclude by pointing out that a single static homology
model may not be adequate for predicting hydrophobicity.
SIGNIFICANCE Hydrophobicity is an important concept in the development of novel antibody-based therapeutics.
Computational methods to evaluate hydrophobicity are typically based on hydrophobicity scales and either ignore the
effects of the surroundings or model them through a sum of contributions of nearby residues. Here, we present a method
based on molecular dynamics that does not include any per residue or per atom parameters except for the underlying force
field and therefore automatically takes nonlinear effects into account in a physically meaningful way. We show that the
method performs well at identifying hydrophobic antibodies if reliable structures are available and conclude that physics-
based descriptors might lead to substantial improvements in computational assessment of hydrophobicity.
INTRODUCTION

In the past few decades, biopharmaceuticals have emerged
as one of the largest areas of interest in the pharmaceutical
industry. As of 2018, there were over 300 biopharmaceutical
products licensed in the US, with the largest group of active
agents being monoclonal antibodies (mAbs) (1–4). Though
large improvements have been made in the discovery of
mAbs binding to a certain target (5), problems may arise
regarding the stability, solubility, or pharmacokinetics while
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developing an active mAb into a drug. Those properties are
generally referred to by the term developability (6).

A major problem in the development process is the
inherent tendency of some concentrated protein solutions
to form aggregates. This problem may be influenced by
various factors such as temperature, mechanical stress,
and pH (7–9). Aggregation can be reversible or irreversible
and covalent or noncovalent, and the resulting aggregates
may be soluble or insoluble (8). Furthermore, multiple
mechanisms of antibody aggregation have been discussed
in literature (7,10), indicating that various factors contribute
to antibody aggregation. Structural instability may lead to
aggregation at both hot and cold temperatures (11,12), and
hydrophobic surface patches have repeatedly been dis-
cussed to be involved (13,14) especially in the formation
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of reversible aggregates (8). Furthermore, aggregation of
antibodies should not be confused with amyloid aggrega-
tion, in which peptides or proteins form macroscopic, b-
rich fibers or aggregates (15).

Hydrophobic patches on the surface of an antibody
have been repeatedly discussed as one of the main con-
tributions to aggregation propensity (8,16). Furthermore,
hydrophobic patches can lead to high viscosity (17),
though electrostatic properties are usually more predic-
tive in this regard (17–19). Therefore, there is a strong
interest in methods that can quantify the hydrophobicity
of a biomolecule.

However, different definitions of hydrophobicity have
been used in literature. The hydrophobicity of small mol-
ecules is usually quantified in terms of log p-values,
which describe the ratio of the molecule’s solubility in
octanol and in water (20). In the field of secondary struc-
ture prediction, hydrophobicity scales are used to differ-
entiate between amino acids in an aqueous environment
and those in more hydrophobic regions such as mem-
branes or in the protein’s interior (21). The probability
of a single amino acid to be buried in the hydrophobic
core has been related to its free energy of solvation,
DGsolv (22). Similarly, theoretical descriptions of hydro-
phobic interactions have focused on calculating DGsolv

or related quantities (23).
The aim of this work is to explore whether hydro-

phobic molecules as identified by hydrophobic interac-
tion chromatography (HIC) can also be distinguished
from more hydrophilic ones via their free energy of
solvation.
Experimental reference data

Several experimental methods have been devised to screen
antibodies for their aggregation propensity during the early
development stages. For instance, size-exclusion chroma-
tography (24) is commonly used to determine the amount
and the mass distribution of soluble aggregated species
(25,26). Self-interaction chromatography (27) and cross-
interaction chromatography (CIC) (28) measure the interac-
tions of a protein with identical or similar protein molecules,
respectively. Standup monolayer adsorption chromatog-
raphy (SMAC) (29) measures the interaction of a protein
with various side chains that resemble the polarity of protein
surfaces. Affinity-capture self-interaction nanoparticle
spectroscopy (AC-SINS) or salt-gradient AC-SINS quantify
the interaction between antibodies bound to the surface of
gold nanoparticles by measuring the phonon wavelength
(30).

Hydrophobicity of antibodies is often quantified using
HIC. This method measures the retention time of molecules
in a hydrophobic column, whereas elution is achieved by
gradually decreasing the salt concentration (31). There is a
clear correlation between HIC retention times and phonon
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wavelengths from salt-gradient AC-SINS at comparable
salt concentrations, which indicates that protein-protein in-
teractions at such salt concentrations are dominated by the
same forces as the interactions with a hydrophobic column
(30). Furthermore, high HIC retention times of antibodies
have been shown to correlate with increased nonspecific in-
teractions with size-exclusion chromatography columns
(31).

Throughout this study, we compare our computational re-
sults to a data set by Jain et al. (32). This data set contains
137 antibodies, for each of which 11 experimental assays
have been performed. Because we attempt to quantify hy-
drophobicity rather than aggregation, we primarily focus
on the hydrophobic HIC data. Furthermore, we use SMAC
and CIC assay data. The main difference between those as-
says is that HIC quantifies interactions with a hydrophobic
column, whereas SMAC uses a wide range of functional
groups and CIC measures interactions with other (different)
antibodies.
Computational estimation of hydrophobicity

The importance of hydrophobicity in antibody research is
also highlighted by the number of tools that are aimed at
aggregation prediction using hydrophobicity as a main
parameter of their input data. For example, the spatial
aggregation propensity (16) method is based on the hy-
drophobicity scale by Black and Mould (33). The thera-
peutic antibody profiler aims to detect antibodies with
abnormal hydrophobic and electrostatic properties or
loop lengths compared with clinical-stage antibodies
(6). The AggScore algorithm uses descriptors for hydro-
phobic and electrostatic patches to detect aggregation-
prone regions in antibodies (14).

Previous methods in the field of biomolecular research
generally apply a residue-wise attribution of hydrophobicity
or aggregation propensity based on predefined scales
(34,35). Even though some methods contain contributions
based on the three-dimensional protein structure, those con-
tributions are generally not physics based. For instance, the
spatial aggregation propensity algorithm applies an average
of amino-acid-specific hydrophobicity values of nearby sol-
vent-exposed residues (16), and the AggScore algorithm ap-
plies a Fermi-type function to weight the contribution of
residues in the vicinity (14).

However, the strength of hydrophobic interactions in
molecular systems is inherently nonadditive (36–38).
Acharya et al. show a sigmoidal relationship between
the perturbations in the hydration shell and the size of
a hydrophobic patch (23). Furthermore, roughness can
strengthen the effect of hydrophobic as well as hydro-
philic surfaces (38). Therefore, we expect that any
method based on a linear combination of hydrophobic
contributions will not be able to fully describe the
conformation dependence of protein hydrophobicity.



Effect of Conformation and Protonation
Many computational studies have been conducted that
investigate the nature of hydrophobic interactions in detail.
The interactions between water and a perfectly hydrophobic
(i.e., noninteracting) particle can be physically described us-
ing the probability of randomly finding a cavity of the
appropriate shape in bulk water (39,40). Other methods
quantify hydrophobic interactions by simulating a mixture
of water and multiple hydrophobic solutes and investigating
the solute-solute radial distribution function (40). Those
methods have proven effective in describing the hydration
free energy of hydrophobic solutes of various sizes and at
different temperatures. However, such studies have mostly
been limited to simple systems such as noninteracting
spheres (39), fully nonpolar molecules (39), or hydrophobic
surfaces (23).

Here, we present an approach to describe the hydropho-
bicity of antibodies in terms of their hydration free energy,
based on the GIST (grid inhomogeneous solvation theory)
algorithm introduced by Nguyen et al. (41–44).

We have recently shown that GIST can directly estimate
local hydrophobicity on the surface of a given protein based
on its interactions with water molecules (45). We further
introduced an enhanced GPU implementation of the GIST
approach, in which we demonstrate a substantial increase
of calculation speed. Thus, it is now possible to calculate hy-
dration free energies, i.e., surface hydrophobicity, for large
biomolecular systems such as serine proteases (45) or anti-
body fragments (this work) with high accuracy at manage-
able computational cost.
Sampling of conformations and protonation
states

An additional challenge in predicting surface properties
such as hydrophobicity lies in the inherently dynamic na-
ture of antibodies. It has been well established that proteins
constantly fluctuate between a multitude of conformational
states (46,47). With these structural rearrangements, the
local environment also changes, which can affect surface
properties. Recent studies highlight their inherent flexi-
bility of antibodies and its impact on physicochemical
properties such as binding promiscuity or aggregation pro-
pensity (10,48–53). Molecular dynamics simulations offer
the unique opportunity to capture this flexibility at atomic
resolution (54). Current advances in the field, such as
enhanced sampling techniques and Markov state modeling,
allow for an efficient profiling of highly diverse structural
ensembles (50–52).

In the interplay with conformational dynamics, there
are several further environmental aspects contributing
to surface hydrophobicity. As previously mentioned,
one major determinant for the aggregation behavior of
antibodies is the pH value. Small changes in pH can be
enough to prevent or promote aggregation (8). The
macroscopic change in pH is microscopically reflected
by changes in the protein’s protonation states. How and
at which pH this reaction occurs is determined by the
pKa value of each titratable residue. However, the pKa

strongly depends on the local environment of a residue.
Consequently, the pronation can change upon structural
rearrangements, and variation of the protonation can
further translate into altered local hydrophobicity.

However, a reliable prediction of protonation states is
rather challenging. Multiple theoretical techniques have
emerged to predict the pKa values of a protein, either
focusing on a static structure (e.g., PROPKA (55) or Hþþ
(56)) or coupling the prediction with dynamics (family of
constant pH methods (57,58)). It has been shown that con-
stant pH molecular dynamics (CpHMD) simulations can
closely reproduce experimental pKa values while at the
same time capturing pH-dependent structural changes of
biomolecules (59).
Aim of this work

Here, we assess whether antibodies that exhibit high hy-
drophobicity in HIC experiments can be identified via
their free energy of hydration as calculated from GIST.
We combine state-of-the-art simulation techniques to
investigate the distribution of hydrophobic regions on
the surface of 126 Fv structures and compare the results
with available experimental data from the literature (32).
We employ Gaussian accelerated MD simulations (60) to
capture diverse conformational ensembles. Furthermore,
we incorporate the Monte-Carlo-based CpHMD frame-
work to obtain protonation state ensembles. With the
aid of our recent GPU-based implementation of the
GIST algorithm (45), we are able to describe the hydro-
phobicity of antibodies while taking changes in structure
and protonation into account.
METHODS

GIST

The hydrophobicity of a molecule is reflected by its interaction with water

molecules. GIST (41–44,61) translates information on locations and orien-

tations of water molecules into localized thermodynamic properties of wa-

ter on a grid. This allows for an in-depth analysis of solvation around a

solute, such as a protein in aqueous solution.

The GIST method provides information on the solvation free energy

DGsolv(qu) of a single solute conformation. In the case of a flexible solute,

multiple GIST calculations of different solute conformations qu must be

performed. The overall DGsolv is then

DGsolv ¼ kBT ln

Z
pðquÞe

DGsolvðquÞ
kBT dqu; (1)

where kB is Boltzmann’s constant, T is the system temperature, and p(qu) is

the probability of solute conformation qu. A derivation of this equation is

shown in the Supporting Materials and Methods. The following equations

refer to a single conformation, but the parameter qu will be omitted.
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To calculate the individualDGsolv(qu), the spatial integrals from the Inho-

mogeneous Solvation Theory (IST) are replaced by a discrete sum over

voxels in a grid.

The localized, density-weighted free energy is split into energetic and

entropic contributions (Eq. 2). The energy is again split into solvent-solvent

and solute-solvent contributions (Eq. 3).

DGðrkÞ ¼ DEtotalðrkÞ � TDStotaluv ðrkÞ: (2)

DEtotalðrkÞ ¼ DEvvðrkÞ þ DEuvðrkÞ: (3)
Here, G denotes the free energy, E the energetic contribution, T the tem-

perature, and S the entropy; rk are the coordinates of voxel k, u denotes the

solute, and v denotes the solvent.

The entropy is approximated by the two-body solute-solvent entropy

contribution, neglecting all higher order contributions. A comparison

of the DG-, DE-, and DS-values to results from thermodynamic integration

can be found in Loeffler et al. (62). They report good correlations between

GIST and thermodynamic integration for the enthalpy and the free energy,

whereas the entropy approximation is less accurate.

The solute-solvent term is further split into two different expressions for

orientational and translational entropy (Eq. 4).

DStotaluv ðrkÞ ¼ DStransuv ðrkÞ þ DSorientuv ðrkÞ: (4)

Both the translational (DStrans) and orientational (DSorient) contributions

to entropy are calculated using a nearest neighbor algorithm (Eqs. 5 and 6).

Alternatively, both contributions can be computed together, approximating

the six-dimensional integral over the rotational and orientational degrees of

freedom (44).

Stransk ¼ R

 
gþ 1

Nk

XNk

i¼ 1

ln
Nf r

04p � d3trans;i
3

!
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!
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NkðDuiÞ
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Nk
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ln
Nf r p Dui þ dtrans;i

48

CA: (7)

Here, R is the ideal gas constant, Nk is the total number of water mol-

ecules in voxel k, Nf is the total number of frames, g is Euler’s constant

that corrects for an asymptotic bias, dtrans,i is the cartesian distance be-

tween the solvent molecule i and its nearest neighbor, Dui is the angular

distance between solvent molecule i and its rotationally nearest neighbor

in the same voxel, and r0 is the number density of bulk solvent.

The interaction energy can readily be computed using the force field en-

ergy. Subsequent binning of the water molecules yields the solvent-solvent

interaction energy Evv, as well as the solute-solvent interaction energy Euv in

each voxel.
Starting structures

This work makes use of an experimental data set by Jain et al. (32). Two

different subsets were defined: one set of 49 antibodies for which structures

were available in the Protein Data Bank (PDB) (63), which will be called

the ‘‘PDB set’’ hereafter. The accession codes we used can be found in

Table S1.
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Furthermore, a nonoverlapping set of 77 antibodies, for which no crystal

structures were available, was investigated starting from homology models.

The Rosetta antibody modeling protocol was used. To reduce the calcula-

tion time, the modeling was run partly on the ROSIE online server (64–

68) and partly on the HPC infrastructure of the University of Innsbruck

(LEO). For the local homology modeling calculations, we used Rosetta

2017.52 (68). We employed the kinematic loop closure (NGK) algorithm

(69) to produce 1024 H3 loop models starting from the top grafted model,

as well as 224 H3 loop models starting from the nine other (non-top-

grafted) models, analogous to the ROSIE server. From each homology

modeling run, the top-scored model was used as a starting structure. This

set will be called the ‘‘homology models.’’
MD simulations

All simulations were performed using Amber18 (70). The ff14SB force

field (71) was used for all simulations, together with the TIP3P (72)

water model. Periodic boundary conditions were applied after solvating

the systems in a cubic box with a minimal wall distance of 12 Å.

Simulations were performed using the PME algorithm (73) for long-

range electrostatic interactions and a cutoff of 8.0 Å for the short-range in-

teractions. A 2 fs time step was employed while constraining the length of

all bonds involving hydrogen atoms using SHAKE (74). All simulations

were performed in an NpT ensemble using the Langevin thermostat (75)

at a temperature of 300 K and a collision frequency of 2 ps�1, as well as

a pressure of 1 bar. The Monte Carlo barostat (76) was employed with a vol-

ume change attempt every 100 steps for all simulations except the GIST cal-

culations, for which a Berendsen barostat (77) was used with a pressure

relaxation time of 1 ps.

Before starting production simulations, all starting structures were equil-

ibrated following a protocol previously developed in our group (78).

Gaussian accelerated molecular dynamics (GaMD) simulations (60)

were run applying a dual boost. The threshold energy was set to its up-

per limit. The number of simulation steps to update the potential energy

statistics was set to four times the number of atoms in the system, ac-

cording to the recommendation in the Amber manual (79), and rounded

up to a multiple of 500. With a typical system size of 37,000 atoms and

a 2 fs time step, this corresponds to �300 ps. The closest multiple of

this time to 2 ns was used as equilibration time, using conventional mo-

lecular dynamics. Similarly, the closest multiple of the averaging time

to 6 ns was used to update the GaMD acceleration parameters. Subse-

quently, production simulations of 200 ns were performed using the

final set of acceleration parameters.

CpHMD simulations were run in explicit solvent at a pH of 7.0 with a salt

concentration of 0.1 mol/L (59). Protonation state changes were attempted

every 200 steps, followed by 200 steps of solvent relaxation after a success-

ful attempt. The production runs were 100 ns long.
Clustering and GIST analysis

GIST calculations were started for representative structures from a clus-

tering of the respective simulations. Clustering was performed using the

k-means algorithm (80) implemented in cpptraj (79) and in the case of

GaMD simulations, cluster populations were reweighted using cumulant

expansion to the second order (81). Five clusters were produced from

each of the GaMD and CpHMD simulations. For each cluster representa-

tive, 20 ns of simulation were performed using a restraint weight of

1000 kcal mol�1Å�2 on all protein heavy atoms. 10,000 frames were

collected. The center of mass of all Ca atoms was set to the origin. The

GIST grid was also centered at the origin and sized in such a way that

each atom is at least 7 Å away from the walls and that the number of voxels

is a multiple of 10 in each direction, resulting in �2 � 106 grid voxels. All

analyses were performed using our recently published GPU implementation

of the GIST algorithm (45).
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Postprocessing

All postprocessing was performed using a set of in-house tools written in

Python (81–83).

The protein structures were aligned to a reference using the ABangle core

set as a selection mask (84). As reference, we used the Fv region of the

PDB: 1N8Z structure, rotated in such a way that the x, y, and z axes corre-

spond to the eigenvectors of the inertia matrix. The CDR loops point in

the þz direction and the heavy chain in the þx direction. The coordinates

of the GIST grids were transformed accordingly.

For all analyses, a reference value of �9.540 kcal/mol was subtracted

from the normalized water-water interaction energy Evv. This value was

determined from a GIST calculation obtained from 100 ns cMD of a cubic

water box containing 11,452 water molecules. 10,000 frames were used for

the GIST analysis. The localized hydration free energy was calculated by

summing up the water-water interaction energy, the solute-water interaction

energy Euv, and the entropy contribution calculated from a sixth-order inte-

gral �TDSsix.

For further postprocessing, we first projected the free-energy contribu-

tions onto a set of predefined points on a unit sphere. To do so, we generated

a set of 998 points using the method described by Deserno (85). We then

selected all voxels within 5 Å of the protein, calculated their angular coor-

dinates, and assigned each voxel to the closest sphere point based on the

angular distance. We then summed the values of all voxels assigned to

the same sphere point. We note that this procedure preserves the total hy-

dration free energy, i.e., the sum over all sphere points is exactly the sum

over all grid voxels.

The total DGsolv was calculated by summing the contributions of sphere

points with z> 0, after applying a Gaussian blur with a sigma of 0.3 radians.

By excluding points with z below 0, we omit the ‘‘lower’’ half of the Fv re-

gion, i.e., the one pointing toward the CH2 domain. This is advantageous

because the CDR loops, as well as their surroundings, are completely

included, but the region that contacts the CH2 domain is omitted. The latter

would be problematic because omitting the CH2 domain in the simulation

can lead to artificial hydrophobic surfaces. Furthermore, we note that the

Gaussian blur only alters the summedDG in the vicinity of the cutoff, effec-

tively leading to a smooth cutoff in the z direction.

The spherical representation allows us to introduce a new metric, called

DGunfavorable. For this metric, we apply a cutoff function that is zero below a

cutoff DG0 and linear above this cutoff (Eq. 8).

DGunfavorable ¼
�
DGsolv � DG0 DGsolv >DG0

0 DGsolv%DG0
: (8)
The constant DG0 determines where the switching function transitions

from zero to a linear function. Throughout this study, �0.2 was used. In

contrast to the free energy of solvation,DGunfavorable ignores the hydrophilic

regions of an antibody while preserving all information about the most hy-

drophobic regions. Again, a total DGunfavorable was calculated by summing

all sphere points with z> 0. The performance of our method as a function of

DG0 is shown in Fig. 1 and the Supporting Materials and Methods.

Based on the spherical representation of DGunfavorable, we applied the

uniform manifold approximation and projection (UMAP) (86) algorithm

to project our GIST calculations onto a two-dimensional representation.

UMAP is a dimension-reduction algorithm that is based on the assumption

that the data are uniformly distributed on the Riemannian manifold and that

tries to find a low-dimensional projection that preserves the local topolog-

ical structure of the high-dimensional input data.

We applied a Gaussian blur to the spherical representation of our hydro-

phobicity data, using a standard deviation of 0.3 radians. We then apply

UMAP using 30 points as the local neighborhood and a Euclidean distance

metric. All parameters were kept at their default values.

For visualization purposes, we calculated the average contribution to the

hydration free energy per water molecule in a shell of 5 Å around each atom
and colored the protein surface according to those values for visualization

purposes. The visualizations were done using PyMOL (87).
Reference data

We compare our computed DGsolv- and DGunfavorable-values to an experi-

mental data set by Jain et al. (32). In this work, the results of 11 assays

are presented for a set of 137 antibodies, all of which were either approved

as drugs or undergoing clinical trials at the time of publication.

In our study, we primarily use the HIC retention time as a reference value

for experimental hydrophobicity. Furthermore, we investigate the ability of

our method to distinguish antibodies that strongly bind HIC, SMAC, or CIC

columns from those that bind weakly to the same column.

A short summary of the experimental conditions that Jain et al. used for

those assays (32) is given in the Supporting Materials and Methods.
RESULTS

Hydrophobicity computed from crystal structures
and homology models

Following the procedure described in the Methods,
we calculated solvation free energies DGsolv, as well as
DGunfavorable, for 49 PDB structures and 77 homology
models and compared the results to the experimental HIC
retention times, as shown in Fig. 1, A and D. As explained
in the Methods, we limit all our analyses to the upper half
of the spherical projection, corresponding to the part of
the antibody that is farthest away from the CH1-CL region
and that contains the CDR loops.

The Pearson correlation between DGsolv and the HIC
retention time is 0.43 for the PDB set and 0.17 for the homol-
ogy models. The correlation between DGunfavorable and the
HIC retention time is 0.65 for the PDBs and 0.47 for the
homology models. Using either metric, the results are signif-
icantly better using crystal structures than using homology
models. Furthermore, the correlations using DGunfavorable

are significantly improved comparedwith those usingDGsolv,
which implies that HIC retention times are dominated by the
most hydrophobic regions of an antibody.
Enhanced sampling using GaMD

To investigate the effect of conformational sampling on the
accuracy of our method, we performed 200 ns GaMD sim-
ulations to obtain a structural ensemble. We used k-means
clustering to obtain five representative structures of each tra-
jectory and calculated DGsolv and DGunfavorable as a
weighted average using Eq. 1, as shown in Fig. 1, B and
E. The error bars show the minimum and maximum of the
values per cluster representative.

Using this approach, we obtain Pearson correlations of
0.45 and 0.26 between DGsolv and the HIC retention time
for the PDB set and the homology models, respectively.
The correlation between DGunfavorable and the HIC retention
time is 0.70 for the PDB set and 0.56 for the homology
models.
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FIGURE 1 Total DGsolv (A–C) and DGunfavorable

(D–F), using different amounts of sampling.

(A and D) No sampling. (B and E) 200 ns GaMD

simulations. (C and F) 100 ns CpHMD. In the sec-

ond and third row, each point represents the

weighted average according to Eq. 1 of five

GIST calculations started from different cluster

representatives, and the error bars represent the

minimum and maximum of the five individual

values. Bevacizumab, muromonab, and dacetuzu-

mab are labeled with 1, 2, and 3, respectively. To

see this figure in color, go online.
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As with the direct calculations, DGunfavorable correlates
significantly better with the HIC retention time than
DGsolv. However, the conformational sampling only leads
to a small improvement compared to the direct calcula-
tion. This is equally true for the PDB set and for the ho-
mology models, indicating that the sampling provided by
GaMD is often insufficient to correct the errors introduced
by the modeling. We note, however, that for some homol-
ogy models that are predicted significantly too hydrophilic
in Fig. 1 D, the conformational sampling provided by
GaMD leads to significant improvements in the calculated
DGunfavorable.
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Protonation state sampling using CpHMD

Furthermore, we performed 100 ns CpHMD simulations
to incorporate sampling of protonation states and calcu-
lated DGsolv and DGunfavorable analogously, as shown in
Fig. 1, C and F. We obtain Pearson correlations between
DGsolv and the HIC retention time of 0.48 for the PDB
set and of 0.24 for the homology models. The correlation
between DGunfavorable and the HIC retention time is 0.56
for the PDB set and 0.24 for the homology models.

Again, we find that DGunfavorable performs significantly
better than DGsolv. Furthermore, as with the structural
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sampling, there is no large improvement compared to the
direct GIST calculations. Interestingly, the correlation be-
tween DGunfavorable and the HIC retention is even worse
than without the protonation state sampling. This is less pro-
nounced when (more reliable) PDB structures are used.
Combining conformational and protonation state
sampling

To investigate the combined effect of structural sampling
and protonation state sampling, we ran 10 ns CpHMD sim-
ulations starting from each of the cluster representatives of
the GaMD simulations. We then fixed the protonation state
of each amino acid to the most prominent state of the
CpHMD and performed GIST calculations of those
structures.

Fig. 2 shows the comparison of the calculated hydration
free energies with the experimental HIC retention times.
We find Pearson correlations of 0.52 and 0.67 using DGsolv

and DGunfavorable, respectively. This is comparable to the re-
sults based directly on the representatives of the GaMD
simulations, indicating that protonation states only play a
minor role for hydrophobicity of antibodies.
Visualization of hydrophobicity

To set the obtained hydrophobicity estimates in a structural
context, we projected the hydration free energy onto the pro-
tein surface. As an example, we show visualizations of three
antibodies in Fig. 3. Bevacizumab and muromonab were
chosen as hydrophobic and hydrophilic examples, respec-
tively. Crystal structures of the Fab fragments are available
in both cases. Furthermore, dacetuzumab was chosen as an
example for which the hydrophobicity of the starting struc-
ture is overestimated based on a homology model but for
which structural sampling leads to an improvement. The
left column (Fig. 3, A–C) depicts the localized hydrophobic-
ity of the three systems started from the most highly popu-
lated cluster of the ensemble captured with GaMD. It is
clearly visible that there is a large hydrophobic region at
the CDRs of bevacizumab, whereas muromonab is predicted
to be significantly more hydrophilic. This is in line with
experimental results, as reflected by the lower HIC retention
time of muromonab (8.9 min) compared to bevacizumab
(11.8 min).

When looking at the CpHMD representative of dacetu-
zumab, we find that there is a large cavity between the
CDR-H3 and CRD-L3 loops. This leads to an increased
surface hydrophobicity because residues of the hydro-
phobic core become solvent exposed. In the GaMD
representative, this cavity has been closed, leading to a
more realistic representation of dacetuzumab’s hydropho-
bicity in solution.

Although the localized hydrophobicity in Fig. 3 facilitates
visual comparison of different antibodies, this representa-
tion is not well suited for automated postprocessing
workflows. We therefore seek to reduce the surface hydro-
phobicity data to a fixed number of points per antibody.
To do so, we project DGsolv to points on the surface of a
sphere, as described in the Methods. This projection is visu-
alized in Fig. 4. In contrast to the depictions in Fig. 3, this
representation is more suitable for postprocessing and might
be used as input for machine learning or pattern recognition
algorithms in future works.
Binary classification, receiver operating
characteristic

To assess the capability of our method to detect antibodies
that show increased hydrophobicity or other signs for
nonspecific interactions, we separated the data set into de-
layed (retention time above the third quartile) and nonde-
layed (retention time %the third quartile) antibodies based
on the HIC, SMAC, and CIC assays and plotted the
receiver operating characteristic in Fig. 5, A–C, respec-
tively. We generally find slightly better predictivity for
HIC than for SMAC and CIC, with an AUC of 0.87 for
the PDB set combined with GaMD sampling. In
FIGURE 2 Total DGsolv (A) and DGunfavorable (B) of

the antibodies in the PDB set, using the combined struc-

tural and protonation sampling approach. Each point

represents the weighted average according to Eq. 1 of

five GIST calculations started from different cluster rep-

resentatives, and the error bars represent the minimum

and maximum of the same five values.
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FIGURE 3 Averaged hydration free energy of the

highest populated cluster representative mapped

onto its surface representation using six different sim-

ulations. (A and D) Fv fragments of bevacizumab, (B

and E) muromonab, and (C and F) dacetuzumab. (A–

C) Cluster representatives from GaMD simulations.

(D and E) Cluster representatives taken from CpHMD

simulations. For reference, the surface of muromonab

is also shown with the heavy chain CDR loops colored

in red and the light chain CDR loops colored in blue,

in the same orientation. To see this figure in color, go

online.

Waibl et al.
accordance with the Pearson correlations shown in Fig. 1,
the area under the curve (AUC) is significantly higher
when starting from PDB structures as compared to homol-
ogy models. An explanation could be that in both SMAC
and CIC, interactions other than hydrophobic interactions,
e.g., hydrogen bonding, may contribute to column
retention.
Explorative data analysis using the UMAP
algorithm

Because there is still a significant amount of unexplained
variance when comparing the total hydration free energy
to the experimental HIC data, we used the UMAP algorithm
to create two-dimensional representations of our PDB and
homology model sets. This algorithm aims at creating a
low-dimensional representation of a data set while retaining
the high-dimensional distance between similar points (86).

We compare the three different types of sampling (GaMD,
CpHMD, or both) and the totalDGsolv andDGunfavorable. The
resulting plots are shown in Fig. 6.
DISCUSSION

In our study, we characterize the hydrophobicity of anti-
bodies using GIST and investigate the impact of conforma-
tional diversity and pH on the predicted surface
hydrophobicity. We compare our results with experimental
HIC retention times from the literature. HIC has been
shown to correlate with the aggregation behavior of anti-
150 Biophysical Journal 120, 143–157, January 5, 2021
bodies (31), as well as with their aromatic amino acid con-
tent (88).

We investigate the impact of environmental effects like
the pH or conformational diversity, which have been dis-
cussed in the literature as major contributors to surface hy-
drophobicity and aggregation propensity (89). It has been
shown that the ability of an antibody to adopt various
distinct conformations strongly influences its biophysical
properties and function and thus dramatically increases the
size of the antibody repertoire (90–94). This intrinsically
flexible nature of antibodies and the crucial role of proton-
ation render the prediction of surface properties difficult.

Various studies have shown that crystal packing effects
can result in strong distortions of the CDR loops
(53,95,96). These findings further emphasize that conforma-
tional sampling is vital to identify dominant structures in
solution.

Our method is computationally slower than methods that
rely on precalculated hydrophobicity scales, with several
hundreds of nanoseconds of simulation time per antibody
(with a typical system size around 37,000 atoms, we achieve
simulation speeds around 200 ns/day on a GeForce GTX
2080 GPU; NVIDIA, Santa Clara, CA). However, the recent
improvements to the GIST algorithm make it applicable to
medium-sized data sets with around a hundred candidates.
On the other hand, a big advantage of our method is that
it does not make any prior assumptions on the relation be-
tween conformation and hydrophobicity and is thus well
suited to investigate the impact of conformations or proton-
ation states.



FIGURE 4 Spherical projections of the highest populated cluster repre-

sentative of six different simulations. All spheres were generated after

rotating the GIST grids according to the reference orientation shown in

Fig. 3. (A and D) Fv fragments of bevacizumab, (B and E) muromonab,

and (C and F) dacetuzumab. (A–C) Cluster representatives taken from

GaMD simulations. (D–F) Cluster representatives taken from CpHMD sim-

ulations. The orientation of the spheres matches the surfaces in Fig. 3. To

see this figure in color, go online.

Effect of Conformation and Protonation
Effects of the starting structure on
hydrophobicity

Starting from a set of 49 crystal structures obtained from the
PDB, as well as a set of 77 homology models of different
antibodies, we perform GIST calculations to obtain the
free energy of solvation DGsolv, as well as the free energy
of hydrophobic regions DGunfavorable as defined in Eq. 8.
We compare our results with experimental HIC retention
times and find significantly stronger correlations when using
crystal structures than when using homology models. This
shows that errors in the homology modeling procedure
can have a large impact on the calculated surface hydropho-
bicity of antibodies.

Thosefindings emphasize the decisive role of reliable struc-
tures in the prediction of surface properties such as hydropho-
bicity. However, in the early stages of biopharmaceutical
development, it is often not feasible to obtain crystal structures
for each considered antibody. Therefore, substantial scientific
efforts have been dedicated in recent years to improve struc-
ture prediction tools for antibodies (66–68,97).

The b-sheet framework of antibodies is structurally
highly conserved and its structure prediction thus rather
straightforward. However, accurate modeling of the CDR
is less apparent. The CDR consists of six hypervariable
loops known to strongly influence function and properties
of an antibody (98). Five of these six CDR loops, except
for the CDR-H3 loop, have been classified to a limited set
of main-chain conformations, so-called canonical struc-
tures, according to their length and sequence (99–101).
Therefore, their structure can be correctly predicted in
many cases. However, structure prediction of the CDR-H3
loop remains challenging (97,101).

Our results show that potential shortcomings of the struc-
ture prediction strongly affect structure-based hydrophobic-
ity predictions. This might be one reason for the continued
popularity of sequence-based hydrophobicity prediction
methods (13,102,103) because it implies that structure-
based methods, which should, in principle, outperform their
sequence-based counterparts, are significantly limited by
the quality of their input structures.

Furthermore, we find that the distribution of DGsolv and
DGunfavorable is slightly different between PDB structures
and homology models. On the one hand, some homology
models have unusually low DGsolv-values, which can be
seen most clearly in Fig. 1 A. Upon visual inspection, we
found that many of those examples contain an accumulation
of negatively charged residues. For instance, the L1 loop of
lampalizumab contains four aspartate residues. It has been
reported (104) that negatively charged residues have very
negative hydration free energies in GIST calculations.
Thus, we surmise that the conformation of such negatively
charged residues strongly impacts the free energy of solva-
tion DGsolv.

On the other hand, some homology models show an un-
usually high DGunfavorable, which can be seen best in
Fig. 1 E. This metric focuses mainly on the most hydropho-
bic regions of an antibody while ignoring all details of the
hydrophilic regions. Therefore, this implies that homology
models are also not always optimal at burying hydrophobic
side chains.
Effects of structural sampling on hydrophobicity

We performed GaMD simulations, which have been de-
signed to capture an extended conformational space (60),
on all of the 49 crystal structures and 77 homology models,
and performed GIST calculations on five cluster representa-
tives each.

Generally, we find that our simulations only lead to
small improvements in the Pearson correlation between
Biophysical Journal 120, 143–157, January 5, 2021 151



FIGURE 5 Receiver operating characteristic plots showing the ability of DGunfavorable to separate between antibodies showing delayed (>3rd quartile) and

normal (%3rd quartile) elution based on the (A–C) HIC retention times, (D–F) SMAC retention times, and (G–I) CIC retention times. (A), (D), and (G)

represent data collected without sampling, (B), (E), and (H) represent data from 200 ns GaMD simulation, and (C), (F), and (I) represent data from 100

ns CpHMD simulation. To see this figure in color, go online.
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DGunfavorable and experimental HIC retention times. This
is true both for the crystal structures and for the homol-
ogy models. For instance, we find a correlation of 0.65
when doing calculations on the PDB set without any
sampling, which improves to 0.70 through the GaMD
simulations. However, the considerable magnitude of
152 Biophysical Journal 120, 143–157, January 5, 2021
the depicted error bars shows that there is strong vari-
ability of the surface hydrophobicity during the simula-
tion. Together with the comparison between homology
models and crystal structures, these findings show that
protein conformation strongly impacts the hydropho-
bicity but that very long simulations might be necessary



FIGURE 6 UMAP projections of the DGunfavorable compared with the

experimental HIC retention times. The five GIST simulations for each anti-

body are treated as individual data points. (A–C) PDB set. (D and E) Ho-

mology models. (A and D) Results using 200 ns of GaMD for sampling.

(B and E) Results using 100 ns CpHMD. (C) Combined structural and pro-

tonation state sampling approach. To see this figure in color, go online.
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to correct mistakes introduced during the homology
modeling (50–52).

On the other hand, there are some cases of antibodies for
which our simulations lead to significant improvements.
Using DGunfavorable, there are some cases in which homol-
ogy models are predicted significantly too hydrophilic
without sampling (Fig. 1 D) and in which structural sam-
pling using GaMD can improve the prediction (Fig. 1 E).

Furthermore, there are also examples where GaMD can
correct an overprediction of hydrophobicity. For example,
the experimentally hydrophilic antibody dacetuzumab dis-
plays high surface hydrophobicity both when using the ho-
mology model directly and when performing protonation
state sampling with CpHMD, but not when using GaMD
to cover a larger conformational space. This can be seen
from the DGunfavorable-values in Fig. 1, D–F. Fig. 3, C and
F visualize the localized free energy of solvation DGsolv

of dacetuzumab in conformations from the CpHMD and
GaMD ensembles, respectively. In the CpHMD structure,
nonoptimal packing of side chains leads to exposure of hy-
drophobic residues from the VH-VL interface and therefore
to an artificial hydrophobic patch on the surface. In the
GaMD ensemble, however, this cavity is closed and the
respective side chains are buried, leading to a more realistic
estimation of the surface hydrophobicity.
Effects of protonation state sampling on
hydrophobicity

Another factor of interest when calculating hydrophobicity
and aggregation, besides the conformational ensemble, is
the pH. Gentiluomo et al. have shown that even small
changes in the pH can substantially shift the aggregation
propensity (8). In contrast, our results show that protonation
state sampling using CpHMD does not improve the predic-
tion of HIC retention times and may even deteriorate the re-
sults when no reliable starting structures are available. This
may be seen by comparing Fig. 1,C and F to Fig. 1, A andD.

Combining the protonation state sampling from CpHMD
with starting structures from the PDB and the structural
ensemble from GaMD, we again find better correlations to
the HIC retention time, which are comparable with the re-
sults using GaMD only.

Taken together, these findings indicate that protonation
states are not the primary source of error in our hydrophobicity
calculations. On the other hand, the abovementioned study by
Gentiluomo et al. (8) found a strong influence of the pH on ag-
gregation.However,wenote that hydrophobicity and aggrega-
tion propensity are different properties. It is plausible that
interactions of a protein with a hydrophobic column are less
charge dependent than protein-protein interactions.
Total DG vs. DG of hydrophobic regions

In Fig. 1, we compare both the total hydration free energy
DGsolv and the hydrophobic free energy DGunfavorable to
experimental HIC retention times and find significantly bet-
ter Pearson correlations using DGunfavorable. The difference
between those metrics is that DGunfavorable only takes the
most hydrophobic surface regions into account, whereas
DGsolv describes the solvent-water interaction of the whole
molecule. This indicates that the interaction between anti-
bodies and HIC columns is dominated by the most hydro-
phobic regions of the antibody surface. Similar ideas have
been proposed in the literature (105). Furthermore, our
result is consistent with the common practice to base hydro-
phobicity predictions on quantities like the areas of hydro-
phobic patches (105), which also disregards the more
hydrophilic surface regions.
UMAP

To show how our spherical projection might be used as input
for further data analysis, we project our data set to a two-
dimensional subspace using the UMAP method. The results
Biophysical Journal 120, 143–157, January 5, 2021 153
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are shown in Fig. 6. Consistent with our previous analyses,
we find a clearly better separation of high and low HIC
retention times in the PDB set than in the homology models,
which further indicates that characterization of surface hy-
drophobicity strongly depends on the initial structure.
Furthermore, we observe that protonation state sampling us-
ing CpHMD leads to very poor separation when applied to
homology models, whereas the results are quite good
when crystal structures or, even better, a combination of
crystal structures and conformational sampling is available
as the structural basis for the CpHMD. Hence, as discussed
above, the impact of conformational sampling clearly out-
weighs solely optimizing the protonation states.

A main difference between the UMAP results depicted in
Fig. 6 and the preceding analysis is that the latter show
ensemble averages. In the UMAP projections, on the other
hand, each of the five cluster representatives per antibody
is depicted individually. The UMAP algorithm can
clearly identify cluster representatives that belong to the
same antibody, whereas a simple summation of DGsolv or
DGunfavorable leads to very high noise because of conforma-
tional differences.

Our hypothesis is that the summed DG-values suffer
more from the noise that is introduced by taking a
limited set of structures from the conformational
ensemble. Because solvation is conformation dependent,
antibodies can have different DGsolv and DGunfavorable

even in regions that are identical in their sequence,
because of the limited sampling of conformations. In
the UMAP calculations, a Euclidean distance metric is
used that automatically places higher weights on strongly
different regions, thus favoring real structural differences
over random deviations from the limited sampling. The
good separation in Fig. 6 C indicates that this is a better
use of the available information and that this translates to
reduced two-dimensional space. However, further work
will need to be done to see how this can be used to
improve hydrophobicity predictions.
Binary classification and receiver operating
characteristic

We test the performance of our method in performing a bi-
nary classification, i.e., in detecting the most hydrophobic
antibodies of our data set. We find an AUC of 0.87 for the
detection of delayed elution in a HIC column and an AUC
of 0.79 when comparing to a SMAC column (using the
GaMD results). This shows that our method can be useful
in filtering the strongest-binding antibodies from a data
set, even though not all antibodies are predicted correctly.
However, we again observe that the predictivity of our
method substantially deteriorates when using homology
models instead of PDB structures, indicating that high-qual-
ity structures are necessary to detect hydrophobic antibodies
based on protein-water interactions.
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CONCLUSIONS

We have developed a purely physics-based method to pre-
dict the hydrophobic behavior of antibodies based on a
localized description of the free energy of hydration. Our
method does not contain any residue-specific hydrophobic-
ity parameters but performs well at predicting the relative
aggregation propensity in a set of antibodies, especially
when reliable structural information is available. Further-
more, our method allows a visualization of the hydrophobic-
ity on the antibody surface, which might be a valuable tool
for rational design of less aggregation-prone antibody
variants.

Our analyses show that high a quality structure is crucial
for the correct prediction of surface hydrophobicity using
physics-based methods. The correlation between our met-
rics and experimental hydrophobicity is significantly better
when using crystal structures than when using homology
models as starting structure. Furthermore, we highlight
that conformational sampling, i.e., describing hydrophobic-
ity as an ensemble property, can reduce inaccuracies result-
ing from the uncertainties of structure prediction tools.
However, we also show that structural inaccuracies can be
long lived in molecular dynamics simulations, which repre-
sents a major challenge for structure-based hydrophobicity
prediction, especially when large data sets are investigated.

Our results show that hydrophobicity is strongly
dependent on the protein conformation. Ensembles
generated from homology models may overestimate hy-
drophobicity, indicating that those structures are unable
to sufficiently bury their hydrophobic side chains. We
also investigate the effect of protonation state sampling
on hydrophobicity and find that it only performs well
when combined with enhanced sampling techniques
because the protonation states are themselves conforma-
tion dependent.

Furthermore, we show that localized data on the hy-
dration free energy can be used as input for the UMAP
dimensionality reduction method. We presume that the
localized information that our method provides will
enable substantial improvements to our prediction quality
once we gain a deeper understanding of the postprocess-
ing methodology.
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