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ABSTRACT 

Although the range of immune responses to COVID-19 infection is variable, cytokine storm is observed in 

many affected individuals. To further understand the disease pathogenesis and, consequently, to develop 

an additional tool for clinicians to evaluate patients for presumptive intervention we sought to compare 

plasma cytokine levels between a range of donor and patient samples grouped by a COVID-19 Severity 

Score (CSS) based on need for hospitalization and oxygen requirement. Here we utilize a mutual 

information algorithm that classifies the information gain for CSS prediction provided by cytokine 

expression levels and clinical variables. Using this methodology, we found that a small number of clinical 

and cytokine expression variables are predictive of presenting COVID-19 disease severity, raising questions 

about the mechanism by which COVID-19 creates severe illness. The variables that were the most 

predictive of CSS included clinical variables such as age and abnormal chest x-ray as well as cytokines 

such as macrophage colony-stimulating factor (M-CSF), interferon-inducible protein 10 (IP-10) and 

Interleukin-1 Receptor Antagonist (IL-1RA). Our results suggest that SARS-CoV-2 infection causes a 

plethora of changes in cytokine profiles and that particularly in severely ill patients, these changes are 

consistent with the presence of Macrophage Activation Syndrome and could furthermore be used as a 

biomarker to predict disease severity.  

 

INTRODUCTION 

In December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the origin of 

coronavirus disease 2019 (COVID-19), emerged in Wuhan, China1. Although many COVID-19 patients 

remain asymptomatic, there exists a subset of patients who present with severe illness. Early treatment with 

dexamethasone appears to improve outcomes in these patients. However, it is not always initially clear 

which patients would benefit from this therapy2. Moreover, COVID-19 infection can be accompanied by a 

severe inflammatory response characterized by the release of pro-inflammatory cytokines, an event known 

as cytokine storm (CS) 3,4. Thus far, this COVID-19-associated cytokine storm has predominantly been 

characterized by the presence of IL-1β, IL-2, IL-17, IL-8, TNF, CCL2, and most notably IL-63,5–8. Severe 

cases of CS can be life-threatening and early diagnosis as well as treatment of this condition can lead to 

improved outcome. We hypothesize that cytokine profiles combined with clinical information can predict 

disease severity, potentially giving clinicians an additional tool when evaluating patients for preemptive 

intervention. 

 

RESULTS 

Analysis was performed for 36 PCR-confirmed COVID-19 (+) and 36 (-) human plasma samples (Source 

Data Table 1). The COVID-19 Severity Score (CSS) was developed to categorize patients based on their 

status upon presentation to the emergency department. CSS is graded as follows:  0= COVID(-), No 

Symptoms, Healthy Control (n=24), 1= COVID(-), Symptoms (n=12), 2= COVID(+), Discharged from 
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Emergency Room (n=15), 3= COVID(+), Admitted, No Oxygen, (n=7), 4= COVID(+), Admitted, Oxygen, 

(n=8),and 5= COVID(+), Admitted to ICU/Step-Down (n=6) (Figure 1). CSS was used as the outcome 

variable for a mutual information minimum redundancy maximum relevance algorithm (Figure 1) with the 

goal of selecting a subset of variables most predictive of CSS. The algorithm confirmed the predictive value 

of clinical variables such as age and chest x-ray abnormality and also ranked the information gain provided 

by each of 15 cytokines tested. Several cytokines were able to add unique predictive value to the mutual 

information model in addition to what was provided by clinical factors such as age or patient comorbidities. 

This algorithm also deprioritized factors when their predictive value was redundant with the most predictive 

variables. M-CSF was ranked second after age as it was the factor that added the most predictive power to 

the algorithm with minimal redundancy with age. It ranked ahead of abnormalities on chest x-ray because 

while both were relevant in predicting COVID severity, part of the predictiveness of chest x-ray 

abnormality was also explained by age differences (Figure 3). The top 4 cytokines combined with age were 

predictive of the most severe CSS (4-5) and had a receiver operating characteristic (Figure 3) with an area 

under the curve of 0.86. Multiple cytokines, including M-CSF (p<0.01), IP-10 (p<0.01), IL-18 (p=0.01) 

and IL-1RA (p<0.01) were more relevant in predicting COVID Severity Score than more frequently 

characterized cytokines in the context of COVID-19 such as IL-6 (p<0.01). These cytokines showed a 

statistically significant difference in their profiles when segregated by COVID Severity Score (Figure 2), 

yet the mutual information algorithm prioritized them differently than would be expected based on 

univariate analyses. This indicates that the mutual information algorithm is prioritizing cytokines whose 

predictive value for COVID-19 severity cannot be fully explained by other clinical variables such as age or 

medical comorbidities.  

 

DISCUSSION  

We found that a small number of clinical variables when combined with cytokine expression are predictive 

of presenting COVID-19 disease severity. Cytokines singled out for relevance by the mutual information 

algorithm shared a connection to macrophage activation syndrome (MAS), raising questions about the 

mechanism by which SARS-CoV-2 creates severe illness in a subset of patients. First, we examined the 

significant contribution of IP-10 to CSS. IP-10 is secreted by monocytes, fibroblasts, and endothelial cells 

in response to IFN-γ, which is secreted by T cells (mainly, Th1), macrophages, mucosal epithelial cells, 

and NK cells9. This release of IFN-γ induces several cell types to produce IP-10, which consequently 

recruits more Th1 cells, contributing to a positive feedback loop. IP-10 is also chemoattractant to CXCR3-

postitive cells such as macrophages, dendritic cells, NK cells, and T cells. It has been proposed that 

macrophages recruited by IP-10, in the presence of persistent IFN-γ production, can lead to macrophage 

activation syndrome (MAS)5,6,8. MAS is characterized as a state of systemic hyperinflammation often 

accompanied by CS which, without intervention, can lead to severe tissue damage and in extreme cases, 

death8.  
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Moreover, the cytokine most relevant in predicting CSS was M-CSF, which is secreted by eukaryotic cells 

in response to viral infection and stimulates hematopoietic stem cells to differentiate into macrophages. 

Currently, there are three separate immune stages that describe the progression of COVID-19. The first 

stage is characterized by a potent induction of interferons that marks the early activation of the immune 

system that is important in the viral response and the second stage is characterized by a delayed interferon 

response5. These stages may prime the body for a third stage comprised of detrimental hyperinflammation 

characterized by CS and MAS5. This excessive macrophage activation could explain the increase in IL1-

RA that we observed, a cytokine abundantly produced by macrophages. 

 

Steroids have shown a survival benefit for COVID-19, likely by suppressing such detrimental 

hyperinflammation2. Our analysis identified a pattern of cytokine alterations on presentation associated 

with COVID-19 severity. The ability to identify a cytokine pattern less redundant with known clinical 

factors such as age and chest x-ray could help better identify patients in need of immunomodulatory 

treatment without the confounders of current models where the measured cytokines correlate as much with 

age as with severity10. Further studies should be conducted to clarify the mechanistic role that these 

cytokines and macrophages play in the various stages of COVID-19. The results of these future studies 

could identify more targeted immunomodulatory strategies beyond steroid administration such as treatment 

with MEK inhibitors13, as well as the ideal timing of these interventions to maximize therapeutic efficacy. 

Finally, we present the application of this mutual information algorithm as a way to evaluate the dataset as 

a whole and elucidate the most important cytokines in predicting presenting severity of COVID-19. 

COVID-19 severity is influenced by many clinical factors, such as age, and this algorithm is able to identify 

cytokines that contribute information not present in the tested clinical variables. Identifying the most 

important variables for severe presentation of COVID-19 within a more complete cytokine profile may help 

determine global immune mechanisms of disease severity.  

 

METHODS 

 

Biobank Samples 

COVID-19 (+) and (-) human plasma samples were received from the Lifespan Brown COVID-19 Biobank 

from Brown University at Rhode Island Hospital (Providence, Rhode Island). All patient samples were 

deidentified but included the available clinical information as described in the manuscript. The IRB study 

protocol “Pilot Study Evaluating Cytokine Profiles in COVID-19 Patient Samples” did not meet the 

definition of human subjects research by either the Brown University or the Rhode Island Hospital IRBs. 

All samples were thawed and centrifuged to remove cellular debris immediately before the assay was run.  
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Donor Samples 

Normal, healthy, COVID-19 (−) samples were commercially available form Lee BioSolutions (991–58-PS-

1, Lee BioSolutions, Maryland Heights, Missouri). All samples were thawed and centrifuged to remove 

cellular debris immediately before the assay was run. 

 

Cytokine and chemokine measurements 

A MilliPlex MILLIPLEX® MAP Human Cytokine/Chemokine/Growth Factor Panel A- Immunology 

Multiplex Assay (HCYTA-60K-13, Millipore Sigma, Burlington, Massachusetts) was run on a Luminex 

200 Instrument (LX200-XPON-RUO, Luminex Corporation, Austin, Texas) according to the 

manufacturer’s instructions. Production of granulocyte colony-stimulating factor (G-CSF), interferon 

gamma (IFNγ), interleukin 1 alpha (IL-1α), interleukin-1 receptor antagonist (IL-1RA), IL-2, IL-6, IL-7, 

IL-12, interferon-inducible protein 10 (IP-10), monocyte chemoattractant protein-1 (MCP-1), macrophage 

colony-stimulating factor (M-CSF), macrophage inflammatory protein-1 alpha (MIP-1α), and tumor 

necrosis factor alpha (TNFα) in the culture supernatant were measured. Data pre-processing: values below 

limit of detection were re-coded as half the limit of detection. A single extreme outlier value in IFNy levels 

was removed after confirming outlier status via Hampel and Grubbs outlier testing (both p<0.01). 

 

Clinical Variables 

Available deidentified clinical variables were collected from patients and from chart review during their 

time in the emergency department. Clinical variables were categorized to create combined variables such 

as the number of chronic conditions, or the number of presenting symptoms. The full breakdown of clinical 

variable categorization can be found in Source Data Table 2. 

 

Data analysis 

Data analysis and visualization were generated using R11. The varrank package12 was used to apply a 

minimum redundancy maximum relevance mutual information algorithm. The algorithm classifies the 

amount of information each cytokine and clinical variable can provide about the outcome variable, COVID 

Severity Score (CSS). Each cytokine variable was discretized into two clusters- either high or low analyte 

concentration in pg/mL- using k-means clustering to minimize within-variable entropy and, thus, over-

fitting. This algorithm partitions each data point into the cluster (high or low analyte concentration) with 

the nearest mean. Clinical variables and cytokine levels were used to predict CSS. The first variable was 

selected for local optimum relevance by a greedy algorithm. All subsequent variables were ordered to 

maximize relevancy and minimize redundancy. The ordering was robust to leave-one-out cross-validation. 

For each cytokine, one way-ANOVA with Tukey’s honest significant difference test was used to compare 

plasma cytokine levels among CSS groups.  
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Figure 1. Mutual information COVID Severity Score relevancy matrix. A) Comprehensive matrix of 

relevancy to CSS of all variables assessed by mutual information algorithm, relevancy scores computed for 

not-yet selected variables are shown in each column, and variables are ordered to place maximum local 

scores on the diagonal, yielding a list in decreasing order from the upper left of variable relevancy. Warmer 

colors indicate higher relevancy while cooler colors indicate higher redundancy. B) COVID Severity Score 

Table with breakdown of categories as well as sample size per category.  

Sample Size
0 COVID(-), No Symptoms (Healthy Control) 24

1 COVID(-), Symptoms 12

2 COVID(+), Discharged from Emergency Room 15

3 COVID(+), Admitted, No Oxygen 7

4 COVID(+), Admitted, Oxygen 8

5 COVID(+), Admitted to ICU/Step-Down 6

COVID Severity Score

A 
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Figure 2. Violin plot representations of cytokine expression levels ordered by COVID Severity Score. 

Cytokines ordered by row from upper left corner based on mutual information relevancy matrix (upper left 

being most relevant and lower right being least relevant). The X-axis is CSS and the y-axis is analyte 

concentration in pg/mL. One-way Anova F values and p values are listed on each plot.  
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Figure 3. Age, M-CSF, and Chest X-ray are the most predictive variables for COVID Severity Score. 

A) The y-axis is COVID Severity Score, and the x-axis is age in years with points colored by chest x-ray 
status. B) The y-axis is age in years and the x-axis is M-CSF concentration in pg/mL, with points colored 
based on COVID Severity Score. See individual legends below graphs. C) Receiver Operating 
Characteristic (ROC) Curve predicting CSS 4-5 using Age, M-CSF, IP-10, IL-18, and IL-1RA. 
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