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Radiation therapy (RT) is an integral component of potentially curative management of
esophageal cancer (EC). However, RT can cause significant acute and late morbidity due
to excess radiation exposure to nearby critical organs, especially the heart and lungs.
Sparing these organs from both low and high radiation dose has been demonstrated to
achieve clinically meaningful reductions in toxicity and may improve long-term survival.
Accruing dosimetry and clinical evidence support the consideration of proton beam
therapy (PBT) for the management of EC. There are critical treatment planning and delivery
uncertainties that should be considered when treating EC with PBT, especially as there
may be substantial motion-related interplay effects. The Particle Therapy Co-operative
Group Thoracic and Gastrointestinal Subcommittees jointly developed guidelines
regarding patient selection, treatment planning, clinical trials, and future directions of
PBT for EC.

Keywords: esophageal cancer, proton beam therapy (PBT), chemoradiation, pencil beam scanning, passive
scatter proton
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INTRODUCTION

Chemoradiotherapy (CRT), delivered either preoperatively or
definitively, is critical for the management of locally advanced
esophageal cancer (EC) (1, 2). Because of the central anatomic
location of the esophagus, organs at risk (OARs) within the chest
and upper abdomen receive unintended radiation dose to
potentially large volumes when treating with x-ray therapy
(XRT), and this may lead to serious acute and/or late toxicities.
As such, more conformal XRT techniques like intensity-
modulated radiation therapy (IMRT) have been shown to
potentially improve clinical outcomes including overall survival
(OS) by reducing heart dose and the risk of cardiac death
compared to 3D conformal radiation therapy (3DCRT) (3).

For nearly all cases, proton beam therapy (PBT) significantly
reduces normal organ dose compared with 3DCRT and IMRT.
Proton beams carry charged particles that have relatively low doses
in the path proximal to the tumor and deposit most of their energy
around the end of its path, called theBragg peak, the depth ofwhich
is determined by the specific energy imparted to the protons, while
theOARs beyond the tumor receive essentially nodose. In contrast,
the interaction of an x-ray beam within tissue has a relatively
superficial dose build-up region and then exponential reduction
in dose with increasing depth. Given the excellent conformality of
bothmodern PBTandXRT, the difference in dose to normal tissues
is most pronounced at low and moderate levels rather than higher
doses at or near prescription dose.

The dosimetric advantages of PBT versus XRT were first
demonstrated using the passive scattering (PS) technique, in
which apertures and compensators shape the diverging proton
beam to achieve appropriate target conformality laterally and
distally, respectively. However, a limitation of PS-PBT is reduced
conformality proximal to the target. Pencil beam scanning, also
commonly referred to as intensity-modulated proton therapy
(IMPT), is a modern technique in which “spots” of protons are
directed by steering magnets across multiple dose layers, achieving
excellent conformality including proximal to the target. Despite
these dosimetric advantages, there are a number of PBT planning
and delivery uncertainties that should be considered andmitigated
using thoughtful treatment planning and delivery techniques.

Prospective and retrospective studies have demonstrated that
PBT for EC is well tolerated and clinical benefit may be achieved
by significantly reducing normal organ dose (4). With mounting
clinical evidence in support of PBT for EC, coupled with an
increasing number of PBT centers worldwide, a standardized
approach of robust PBT planning and treatment delivery is
needed. To meet this growing need, the Particle Therapy Co-
Operative Group (PTCOG) Thoracic and Gastrointestinal
Subcommittees have jointly generated evidence-based PBT
guidelines for EC, highlighting the supporting clinical evidence
and recommended treatment planning approaches.
DOSIMETRIC ADVANTAGES OF PBT

The central anatomic location of the thoracic esophagus makes
PBT particularly attractive for reducing normal organ dose
Frontiers in Oncology | www.frontiersin.org 2
(Table 1). In 2008, Zhang et al. were among the first to
demonstrate that thoracic OARs could be better spared with
PBT as compared to XRT while maintaining excellent target
coverage (5). Subsequent comparisons have demonstrated that
PBT consistently achieves ≥30%–60% relative reductions in
mean heart dose and ≥30%–60% relative reductions in heart
V20–V40 compared to IMRT or 3DCRT (6–17). Moreover, PBT
achieves ≥40%–60% relative reduction in mean lung dose and
≥30%–50% relative reduction in lung V20. For example, in a
study of 55 patients planned to 50.4 Gy in 28 fractions with PS-
PBT (typically using a posterior beam and a left lateral beam,
weighted 2:1) or IMRT, the PBT plans resulted in significantly
lower mean dose to the heart (13.0 vs. 19.9 Gy) and lung (6.3 vs.
9.3 Gy) (8). However, because of the 3D planning approach used
for PS-PBT, heart V40 was higher with PS-PBT versus IMRT,
owing to the greater conformality index of IMRT.

IMPT offers improved conformality over PS-PBT with
reduction in higher dose to normal tissues. Shiraishi et al.
evaluated dosimetric outcomes in 727 EC patients who received
PS-PBT (n=237), IMPT (n=13), or IMRT(n=477) (9). IMPTwas
associated with significantly lower dose to the heart and various
cardiac substructures (left atrium, right atrium left main coronary
artery, left circumflex artery) compared to PS-PBT.

In addition to heart and lung sparing, PBT also markedly
reduces liver dose compared to XRT. In an evaluation of 10
patients with distal EC who were prescribed 50.4 Gy in 28
fractions, the mean liver dose was 3.6 Gy with PS-PBT
compared to 18.1 Gy with IMRT (p = 0.001) and 20.3 Gy with
3DCRT (p = 0.001) (7). Other studies have consistently reported
relative mean liver dose reductions of at least 60%–80% and
mean liver doses of approximately 5 Gy or less (6, 7, 10).

PBT beam arrangement is an important consideration when
evaluating dosimetric differences compared to XRT, especially with
respect to the heart and lungs. Welsh et al. evaluated three PBT
arrangements (AP/PA, LPO/RPO, and AP/LPO/RPO) and found
that the most significant heart sparing was achieved using an LPO/
RPO approach (mean: 11.9 vs. 21.2 Gy; V30: 17% vs. 25%), while
much smaller reductions were observed when PBT was planned
usingAP/PA beams (mean: 19.9 vs. 21.2 Gy; V30: 23% vs. 25%) (6).
On the other hand, PBT plans using AP/PA beams achieved
substantially lower lung dose than LPO/RPO plans (mean: 3.2 vs.
8.3 Gy; V20: 7% vs. 14%). These findings are supported by an
analysis from Shiraishi et al. in which certain beam arrangements
(especially AP/PA) were associated with high mean heart dose on
multivariable linear regression analysis (9). Superior–inferior
posterior beams may provide better heart, lung, and liver sparing
than LPO/RPObeams (18). Thus, clinical judgment should be used
to guide PBT treatment planning with regard to prioritizing OAR
sparing and achieving themost clinically appropriate dosimetry for
each patient.
CLINICAL PBT OUTCOMES

Neoadjuvant and Definitive
The published literature describing clinical outcomes of PBT has
expanded over the past decade, including both prospective and
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retrospective evidence that EC patients receive clinically
meaningful benefit (Table 2) (4, 13, 19, 23, 24).

In a retrospective study compiling data from three institutions
comparing neoadjuvant 3DCRT, IMRT, or PBT with concurrent
chemotherapy before esophagectomy, PBT was associated with
lower rates of pulmonary and wound healing complications (19).
Length of hospitalization was significantly reduced in the PBT
group as compared to the XRT cohort, likely a result of reduced
postoperative complications. While acute cardiac events were
greater in the 3DCRT group, there were no differences between
PBT and IMRT. A recent study analyzed cardiovascular events in
479 EC patients treated using IMRT or PBT, in which 18% of
patients developed major grade 3+ cardiovascular events with a
median followupof 76months.Cardiovascular events occurred at a
median of 7 months after CRT, the majority of which (81%)
occurred within the first 2 years after completing CRT (24). The
strongest factors associated with increased risk of grade 3+ events
were pre-existing cardiovascular disease and the use of IMRT (vs.
PBT). Among patients with pre-existing heart disease, the use of
PBT was associated with a significantly lower event rate at 2 years
compared to IMRT (11 vs. 30%; p = 0.0018). In addition, a
prospective registry study of 125 patients with EC receiving CRT,
patients receiving PBS-PT (vs. IMRT) had better preservation of
health-related quality of life as assessed by the Functional
Assessment of Cancer Therapy-Esophagus (FACT-E)
questionnaire during CRT (20).

PBTis expected todeliver radiationdose to a lower volumeof the
total blood pool compared to XRT, and because of the exquisite
radiosensitivity of circulating lymphocytes, this difference may be
clinically significant (25, 26). For example, a propensity-matched
analysis by Shiraishi and colleagues for 480 EC patients
demonstrated a markedly higher incidence of grade 4
lymphopenia among patients receiving IMRT compared to PBT
(40.4% vs. 17.6%; p < 0.0001) (27). Investigators from the Mayo
Clinic more recently presented similar findings showing a strong
association between reduced severe lymphopenia with PBT (28).

Recently, investigators at MD Anderson Cancer Center
published results of a phase 2 randomized trial conducted
comparing PBT (80% PS-PBT, 20% IMPT) and IMRT (29). The
study co-primary endpoints were progression-free survival (PFS)
and a novel endpoint called total toxicity burden (TTB), which is a
composite index of 11 distinct toxicities of varying grades from the
start of CRT up to 1 year. Although the study closed early with 107
patients, it showed a significant improvement in the overall TTB
score for PBT by 2.5-fold and a reduction in TTB by 7.6-fold for
postoperative complications,without adifference inPFSorOS.This
is the first proton versus photon randomized trial across all disease
sites with a positive primary endpoint favoring PBT (30). NRG-
GI006 (NCT03801876) is a phase 3 randomized controlled trial
comparing PBT and IMRT for EC that is currently enrolling
patients with the hypothesis that dosimetric advantages of PBT
will translate into meaningful clinical benefit. Other prospective
clinical trials are ongoing as summarized in Table 3.

Reirradiation
For patients with recurrent or de novo EC occurring in the
context of prior thoracic RT reirradiation can be considered,
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although the risks of severe late adverse effects can be significant
(31). PBT is expected to achieve a potentially large reduction in
cumulative doses to critical OARs, including the spinal cord,
heart, lungs, proximal bronchial tree, and liver (32–34). Several
Frontiers in Oncology | www.frontiersin.org 4
cohort studies have demonstrated feasibility and encouraging
early clinical outcomes with PBT reirradiation for EC (Table 4)
(31, 33, 35, 36). Most recently, DeCesaris et al. reported
outcomes in a retrospective cohort of 37 patients treated with
TABLE 2 | Select studies of clinical outcomes comparing proton beam therapy vs. x-ray therapy for esophageal cancer.

Author No. of patients
(RT modality)

Study type Treatment
intent

Follow-
up time

Survival Toxicity or QOL outcomes

Makishima
et al. (11)

44
(19 XRT, 25 PBT)

Retrospective
cohort

Definitive NR N/A Grade 2+ pulmonary: XRT 18.2%, PBT 0%;
Grade 2+ cardiac: XRT 52.6%, PBT 4.0%.

Xi et al.
(13)

343
(211 IMRT, 132
PBT)

Retrospective
cohort

Definitive 65.1
months

5-year OS: IMRT 31.6% vs. PBT
41.4% (p = 0.011);
5-year PFS: IMRT 20.4% vs. PBT
34.9% (p = 0.001);
5-year DMFS: IMRT 48.6% vs.
PBT 64.9% (p = 0.031)

Grade 3–4: IMRT 45.0% vs. PBT 37.9% (p =
0.192);
Grade 5: IMRT 1.9% vs. PBT 0.8% (p = 0.653).

Lin et al.
(19)

580
(214 3DCRT, 255
IMRT, 111 PBT)

Retrospective
cohort

Neoadjuvant NR N/A Pulmonary complications: 3DCRT 39.5% vs. IMRT
24.3% vs. PBT 16.2% (p < 0.001);
Cardiac complications: 3DCRT 27.4% vs. IMRT
11.7% vs. PBT 11.7% (p < 0.001);
Wound complications: 3DCRT 15.3% vs. IMRT
14.1% vs. PBT 4.5% (p = 0.014);
Mean LOS: 3DCRT 13.2d vs. IMRT 11.6d vs. PBT
9.3d (p < 0.0001).

Garant
et al. (20)

128 (63 XRT, 62
IMPT)

Prospective
registry

Definitive and
Neoadjuvant

NR NR FACT-E PRO: less mean decline in PRO scores in
PBT vs. XRT (−12.7 vs. −20.6, p = 0.026).

Routman
et al. (21)

144
(65 XRT, 79 PBT)

Retrospective
cohort

Definitive and
Neoadjuvant

NR N/A G4L: XRT 56% vs. PBT 22% (p < 0.01).

Davuluri
et al. (22)

504 (317 IMRT,
187 PBT)

Retrospective
cohort

Definitive and
Neoadjuvant

32.1
months

Median OS with or without G4L:
2.8 years vs. 5.0 years (p = 0.027);
Median PFS with or without G4L:
1.1 years vs. 5.4 years (p < 0.001)

G4L: IMRT: 33% vs. PBT 15.5% (p < 0.001).

Lin et al.
(23)

107
(61 IMRT, 46
PBT)

Prospective
phase 2
randomized

Definitive and
Neoadjuvant

44.1
months

3-year OS: IMRT 50.8% vs. PBT
51.2% (p = 0.60);
5-year PFS: IMRT 44.5% vs. PBT
44.5% (p = 0.70)

Mean TTB: IMRT (39.9; 95% highest posterior
density interval, 26.2–54.9) vs. PBT (17.4; 10.5–
25.0);
Mean POC score: IMRT (19.1; 7.3–32.3) vs. PBT
(2.5; 0.3–5.2).
3DCRT, three-dimensional conformal radiation therapy; IMRT, intensity modulated radiation therapy; PBT, proton beam therapy; IMPT, intensity-modulated proton therapy; NR, not
reported; OR, odds ratio; XRT, X-ray (photon) radiation therapy; LOS, length of hospital stay; OS, overall survival; PFS, progression-free survival; DMFS, distant metastatic-free survival;
G4L, grade 4 lymphopenia; FACT-E PRO, Functional Assessment of Cancer Therapy-Esophagus Patient Reported Outcomes; TTB, total toxicity burden; POC, postoperative
complication.
TABLE 3 | Clinical trials of proton beam therapy for esophageal cancer.

NCT ID Title Phase Status Outcome Measures Institution

02213497 Dose Escalation of Neoadjuvant Proton Beam
Radiotherapy with Concurrent Chemotherapy in Locally
Advanced Esophageal Cancer

I Recruiting Adverse events Abramson Cancer
Center, University of
Pennsylvania

02452021 Pencil Beam Scanning Proton Radiotherapy for
Esophageal Cancer

— Active, not
recruiting

Toxicity, surgical outcomes, post- operative
complications, LOS, LRR, PFS, OS, QOL

Mayo Clinic

03482791 Proton Beam Therapy in the Treatment of Esophageal
Cancer

II Recruiting Patient-reported outcomes, PFS, OS Washington University
School of Medicine

01512589 Proton Beam Therapy vs. Intensity-Modulated Radiation
Therapy

II Active, not
recruiting

PFS, TTB The University of
Texas MD Anderson
Cancer Center

01684904 Proton Therapy for Esophageal Cancer II Recruiting OS, adverse events Loma Linda University
Medical Center

02023541 Proton Beam Therapy to Treat Esophageal Cancer I Terminated PFS, OS, QOL, toxicity Washington University
School of Medicine

03801876 Comparing Proton Therapy to Photon Radiation Therapy
for Esophageal Cancer

III Recruiting OS, toxicity, pathologic response rate,
lymphocyte counts, LRF, DMFS, PFS, QALY,
cost–benefit economic analysis

Multicenter
October 2021 | Volum
NCT, National Clinical Trials; LOS, length of [inpatient] stay; LRR, local-regional recurrence; PFS, progression-free survival; OS, overall survival, QOL, quality of life; TTB, total toxicity
burden; LRF, local-regional failure; DMFS, distant metastasis-free survival; QALY, quality-adjusted life years.
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PBT reirradiation at four institutions with a median reirradiation
dose of 50.4 Gy and median cumulative dose of 104 Gy (37).
Most patients (90%) received concurrent chemotherapy. With a
median follow-up of 20 months after reirradiation, the 18-month
OS was 56% and the 18-month locoregional control rate was
69%. Late grade 3 toxicity was observed in 24% consisting of
strictures/stenosis requiring dilation, while some patients
experienced late grade 4–5 toxicities (19%).
PATIENT SELECTION FOR PBT

Patients with cervical esophagus, thoracic esophagus (upper,
middle, or lower), and gastroesophageal junction cancers may
be considered to receive PBT. PBT is expected to offer patients
clinical benefit when used preoperatively, definitively,
or postoperatively.

PBT should be most strongly considered in the
following situations:

• Treatment is delivered with curative intent, where greater
benefit from mitigation of late toxicity is expected compared
to patients treated with palliative intent.

• Patients who have severe medical comorbidities, especially
cardiac and/or pulmonary, because of superior heart and lung
sparing compared to XRT.

• While patients of all ages are likely to benefit from a lower risk
of significant late toxicities with PBT versus XRT, elderly
patients who are often at higher risk of treatment-related
Frontiers in Oncology | www.frontiersin.org 5
morbidity and postoperative complications may especially
benefit from the superior OAR sparing of PBT (38).

• For patients with local and/or regional recurrence of EC, or
newly diagnosed EC arising in a previously irradiated region,
PBT should be strongly considered over IMRT especially if
treatment intent is curative (31). The American Society for
Radiation Therapy (ASTRO) Model Policy for PBT considers
re-irradiation (where cumulative critical structure dose would
exceed tolerance dose) to be a “Group 1 indication” in which
PBT is considered “medically necessary” (39). Care should be
taken to evaluate composite dose in an attempt to mitigate the
risks of severe toxicity including fistula and hemoptysis, as
well as grade 5 events.

• PBT should be considered when dose escalation is used
because it may mitigate higher risks of toxicities to critical
OARs (40).

PBT may be reasonable although it should be used cautiously
in the following situations:

• Extensive tumor involvement of the gastric cardia/body
(tumor extending ≥5 cm distal to the gastroesophageal
junction) may cause potentially sizeable inter- and intra-
fractional differences in tumor position resulting in
potential geometric miss.

• Variability in stomach filling (air versus fluid) and respiratory
motion causing interplay effects should be mitigated,
especially when using IMPT (41).

• Use of PBT for patients with pacemakers is considered a
relative contraindication, especially for those who are
TABLE 4 | Select studies of proton beam therapy reirradiation for cancers of the esophagus.

Author Number
of

patients

Prior RT
dose

(median)

Cumulative
RT dose
(median)

Median time
to

reirradiation

Non-RT
treatments

Median
follow-

up

Disease-control
outcomes

Survival
outcomes

Toxicity outcomes

Fernandes
et al. (27)

14 54 Gy
(range
25.5–70
Gy)

109.8 Gy
(range 76-
129.4 Gy)

32 months
(range 10–
307 months)

Concurrent
chemotherapy (n
= 11, 79%)

10
months
(range
2–25
months)

9/14 (64%) with
LRR, 6/14 (43%)
with DM, 8/10
(80%) with
improved/stable
dysphagia

Median OS
14 months
(95% CI, 7–
21 months),
1-year OS
71%.

Acute: grade 3: dehydration (n = 2),
dysphagia (n = 2), GI bleed (n = 1),
hyponatremia (n = 1), pneumonia (n
= 1), weight loss (n = 1); grade 5:
esophagopleural fistula (n = 1).
Late: grade 3: dysphagia (n = 1),
esophageal stenosis (n = 1),
esophageal ulcer (n = 1), heart
failure (n = 1); grade 5: esophageal
ulcer (n = 1)

DeCesaris
et al. (29)

17 53.4 Gy
(range
40–108
Gy)

104.7 Gy
(range 94-
156 Gy)

37.6 months
(range 11.6–
584 months)

Concurrent
chemotherapy (n
= 15, 88%);
chemotherapy
preceding RT (n
= 1,6%)

11.6
months
(range
2.0–
36.6
months)

1-year LC 75.3%;
1-year DC 83.4%.

Median OS
19.5 months
(95% CI,
5.7–33.3
months)

Acute: grade 3: dysphagia (n = 1),
esophagitis (n = 1).
Late: grade 3: esophageal stenosis
(n = 2); grade 4: esophageal
stenosis (n = 1), TEF (n = 1); grade
5: TEF (n = 1).

Patel et al.
(31)

3 36 Gy
(range
15–36
Gy)

NR 30 years
(range 5–41
years)

Concurrent
chemotherapy (n
= 3, 100%);
post-PBT
esophagectomy
(n = 3, 100%)

26
months
(range
22–72
months)

0/3 (0%) with
LRR or DM

3/3 (100%)
alive at 22,
26, and 72
months
post-op

Acute: mild/moderate odynophagia
(n = 2), esophageal stricture (n = 1),
hematemesis (n = 1), moderate/
severe esophagitis (n = 1). Late:
intra-op cardiac arrest (n = 1)
October
RT, radiation therapy; PBT, proton beam therapy; EC, esophageal cancer; SCC, squamous cell carcinoma; Gy, Gray; GyE, Gray equivalent; PS, passive scatter; PBS, pencil beam
scanning; LRR, locoregional recurrence; DM, distant metastasis; OS, overall survival; CI, confidence interval; GI, gastrointestinal; DLBCL, diffuse large B-cell lymphoma; HL, Hodgkin’s
lymphoma; LC, local control; DC, distant control; NR, not reported.
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pacemaker dependent, due to concern about neutron dose to
the device and risk of subsequent device malfunctioning (42).
However, such patients may be treated safely in the context of
a well-defined plan for monitoring device function and
responding to potential device dysfunction during the
course of treatment. Such a plan requires close
collaboration with colleagues in cardiology, and preferential
use IMPT (vs. PS-PBT) if possible due to lower neutron dose.
TREATMENT PLANNING

Simulation
Prior to simulation, the physician, physicist, dosimetrist, and
simulation therapists should discuss the anticipated treatment
volume, immobilization technique, and consideration of internal
target motion due to respiration and gastric distention. General
guidelines include instructing the patient to have a relatively
empty stomach before simulation/treatment (if possible) to limit
variability in gastric filling and distention. This can be achieved
by patients having nothing by mouth (NPO) 2–3 h prior to
simulation and treatment in addition to avoiding foods that may
cause excess gas. It is preferred to not use oral contrast to
minimize stomach distention, and gastrointestinal luminal
structures are often well visualized without contrast agents. If
oral contrast is used, then a non-contrast-enhanced CT scan
should first be performed for treatment planning as contrast
material has a significant impact on calculating proton beam
range; a second CT scan would then be obtained after contrast is
administered, which would serve as a secondary scan for target
delineation purposes.

In most situations, the preferred treatment position is head
first, supine, and with the arms up above the head in a custom
immobilization device. There are some situations in which arms
may be placed at the patient’s side, such as patient intolerance of
an “arms up” position or a tumor in the cervical or upper thoracic
esophagus in which a thermoplastic head and shoulder
immobilization device may be preferred. An “arms down”
position is a reasonable alternative for patients treated with PBS,
as the typical beam arrangement of posterior/posterior oblique
fields avoids the arms. However, if there is gastric extension of the
tumor (in which the target volume will extend significantly left of
midline), the left arm may be in the path of a left posterior oblique
beam. Additional potential technical issues created with the “arms
down” position, especially for larger patients, include CT beam
hardening artifacts from the arms and difficulty including the
entire external body surface within the scan field of view. A full
body immobilization device or pad under the patient’s back may
be considered to improve setup reproducibility and/or patient
comfort, although attention should be paid to potential
uncertainty in proton stopping power along the beam path.
Immobilization of the hips and lower extremities may help
facilitate reproducible alignment of the spine.

A non-contrast, free-breathing four-dimensional CT (4DCT)
scan should be acquired for treatment planning. Patients may be
treated with a free breathing, internal gross tumor volume
Frontiers in Oncology | www.frontiersin.org 6
(iGTV) approach, assuming appropriate motion-robust
planning methods are used, as outlined in the next section.
Using a breath hold technique may be appropriate for some
patients, and if this is to be used, multiple breath hold scans
should be acquired to ensure reproducibility of this technique.
Some centers have utilized treatment under mechanical
ventilation to control breathing variations and reduce the
breathing amplitude. In this case, 4DCT imaging should be
performed for the same mechanical ventilation situation as
intended for treatment. The scan volume should encompass
the entire external body surface and immobilization device in
the x- and y-planes and should include the entire lungs and
kidneys in the z-plane for dose reporting to these organs. If the
upper mediastinum and cervical lymph nodes are to be treated,
the scan should also include the full neck to the skull base. The
CT scan/reconstruction slice thickness should be ≤3 mm.
Intravenous (IV) contrast may be administered to aid in target
delineation, although this should be done after acquisition of a
non-contrast CT for planning/dose calculation.

Target Delineation
Normal tissue and target delineation should be performed on the
non-contrast 4DCT data set. Typically, the CT average series will
be utilized for segmentation and planning, as this best represents
the time-averaged tissue densities and proton stopping power
ratio, especially in the region of the diaphragm. Alternatively, the
maximum exhalation series (diaphragm at its most cranial
position) may be utilized. The planning scan should be
registered with the diagnostic positron emission tomography
(PET)/CT to aid in target delineation. Additionally, the
esophagogastroduodenoscopy (EGD) report(s) should be
reviewed for correlation of tumor extent with imaging studies.

Target delineation for the management of EC is similar
whether using photons or protons and should be performed
according to published guidelines (43). The gross tumor volume
(GTV) should include the primary tumor (GTVp) and involved
lymph nodes (GTVn), based on the planning CT, PET/CT, and
EGD reports. An iGTV should be contoured, if treatment will be
with free breathing, including the GTV on all respiratory phases
of the 4DCT or using maximal intensity projection (MIP) images
and edited through phases. The clinical target volume (CTV)
typically includes up to a 3- to 4-cm expansion of the GTVp
along the proximal and distal esophagus/stomach to cover
potential microscopic mucosal and submucosal spread. This
volume is typically further expanded by 1–1.5 cm radially from
the esophagus/stomach to cover potential periesophageal and
perigastric lymphatic spread, excluding uninvolved OARs like
the heart, lungs, and spine. The CTV also includes a 0.5- to 1-cm
expansion of the GTVn, excluding uninvolved OARs. Elective
lymph node basins (celiac, gastrohepatic, para-aortic for lower
esophagus, and GEJ tumors; supraclavicular for upper esophagus
tumors) are typically included in the CTV. The CTV may be
further modified based on the 4DCT, generating an internal
target volume (ITV) to account for respiratory motion.

Typical prescribed doses are 41.4–50.4 Gy (RBE 1.1) in 23–28
fractions of 1.8–2 Gy for preoperative treatment, 50–50.4 Gy
(RBE 1.1) in 25–28 fractions of 1.8–2 Gy for definitive treatment,
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and 50–60 Gy (RBE 1.1) in 25–30 fractions of 1.8–2 Gy for
postoperative treatment. The prescription of higher doses is used
at some institutions, especially outside of North America,
although this is controversial since no randomized data have
demonstrated a clinical benefit for dose escalation (44).

Dose painting techniques may be utilized that deliver
differential daily dose to separate volumes. For example, some
institutions administer 25 fractions, with a dose of 50 Gy (2 Gy/
fraction) to the iGTV + 1 cmmargin and a dose of 45 Gy (1.8 Gy/
fraction) to the typical CTV described above.
PASSIVE SCATTERING TREATMENT
PLANNING

Beam Angle Selections
Zhang et al. performed a comparative planning study of two-
beam PSPT (AP/PA), three-beam PSPT (AP/LPO/RPO), and
IMRT for distal esophageal or GEJ cancer (5). While lung sparing
was improved using an AP/PA beam arrangement, there was a
trade-off with increased heart dose. As such, preferring posterior-
oriented beams should be considered to reduce heart dose. Given
the increasing clinical evidence that minimizing heart dose
should be prioritized, the LPO/RPO beam arrangement has
been adopted as the standard clinical class solution for PSPT
plan design at many centers, which is believed to strike an
appropriate balance between lung and heart sparing compared
to AP/PA and 3-beam PSPT approaches.

Planning Parameters Selections
Major planning parameters for PSPT include aperture margins,
distal margins, proximal margins, smearing margins, and border
smoothingmargins, and should be chosen for each individual beam
once the beam angles are decided for a given treatment plan. The
beam-specific target can be created using the target (ICTV)
expanded with distal and proximal margin in the beam direction
determined by range uncertainty and lateral margin due to setup
uncertainty (ICTV to PTV expansion margin, typically 5 mm), as
opposed to using a PTV for forward planning (45). Zhang et al.
discussed the choice of these planning parameters, based on the
method suggested by Moyers et al. (5, 46). Zhang et al. used an
aperturemargin to ensure that all the protonbeamshad at least 95%
of the PTV receiving the prescription dose, whereas the distal and
proximal were 3.5% of the distal and proximal range of the spread-
out Bragg peak (SOBP) plus an additional 2–3 mm for other
uncertainties. The smearing margin accounts for both the setup
error and proton scatter to ensure distal coverage if there is setup
error. The value of the smearing margin could initially use the
methods described byMoyers et al. and then be adjusted to ensure
the beam specific target is covered in average, maximum inhale
phase (T0) and patient-specific maximum exhale phase (TExp).

Plan Evaluation
After the treatment plan is designed based on the average CT, the
treatment plan should be recalculated and evaluated on the T0
and TExp of the CT image data set. Diaphragm density
Frontiers in Oncology | www.frontiersin.org 7
overrides, which have been adopted from XRT, can be
considered although may not be necessary in some patients to
achieve planning and inter-fractional robustness. Although a
PTV is only used for the lateral margins of the treatment plan
design, the PTV should be used for the evaluation following the
recommendation of ICRU 78 (47). The planning parameters
including distal margin, proximal margin, and smearing and
aperture margins should be adjusted to ensure proper coverage
for GTV, ICTV, and PTV on average, T0, and TExp CTs (48).
PENCIL BEAM SCANNING TREATMENT
PLANNING

Beam Angle Selection
Yu et al. reported a water equivalent thickness (WET)-based
method to select IMPT beam angles that are robust to respiratory
motion for EC treatment, and in specific, diaphragmatic motion
(49). Motion robust beam angles were determined by examining
the change of WET along the beam path required to cover the
target during a full cycle of free-breathing motion at various
angles. The beam angles that yielded the smallest value of the
maximum temporal change of WET were considered to be the
most robust to respiratory motion. The most motion robust
beam angles are generally posterior with a median gantry angle
of 200°C (range, 180°C–220°C) and couch at 0°C, because these
beam angles pass through a relatively less mobile portion of the
diaphragm. This choice of beam angles is also optimal from the
point of view of avoiding organs with variable filling proximal to
the target, such as the stomach. Another consideration could be
superior–inferior posterior oblique beams with the couch at
270°C, which may provide better sparing of normal organs
lateral to the target at the expense of delivering higher dose to
the spinal cord (18). Accordingly, most centers treating distal
esophagus/GEJ tumors with IMPT have used two to three
posterior oriented beams (18, 20, 33, 50). For treatment of
tumors in the cervical and proximal thoracic esophagus, an
anterior beam should be considered to reduce lung dose.

Treatment Plan Design and Evaluation
Various PBT planning strategies can effectively mitigate the effect
of respiratory motion and achieve robust plans. For example, use
of larger spot size and rescanning/repainting could reduce the
effect of motion (51). For distal/GEJ tumors, the diaphragm is
usually not part of the target, although it is likely to traverse in
and out of the treatment field and could cause significant
interplay effects on dose delivery if not properly taken into
account. With motion robust beam angles, a high-quality PBS
plan can be generated using a single-field optimization (SFO)
technique for most EC patients (49). Similar to the PS-PBT plan
design, beam-specific targets could be designed for each beam for
SFO treatment planning. The optimization algorithm should
ensure that the beam-specific target has the adequate coverage
for each beam. Yu et al. suggested that a multi-field optimization
(MFO) technique could result in a more conformal plan
compared to SFO, but the MFO technique is more sensitive to
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setup, range, and motion uncertainties. Regardless, robust
optimization can achieve robust SFO and MFO plans (10, 52,
53). Planning criteria that include appropriate range
uncertainties, along with setup uncertainties compatible to the
PTV margins, should be applied to CTV dose coverage
objectives. Robust optimization can also be applied on high-
risk OARs such as the spinal cord, using the same robustness
criteria, if such OARs are expected to receive near their
maximum tolerance doses. If the plan involves MFO and/or
split target volumes, care must be taken to assure that
appropriate dose fall-off gradients are introduced in the field or
target sub-volume junction regions to assure junction line dose
homogeneity in the presence of setup errors and respiratory
motion. In addition, a 4D optimization technique (54), for
example, where the IMPT plan is optimized to meet dose
constraint on multiple 4DCT phases (55), could be used to
create motion robust treatment plans. Regardless of
optimization technique that was used for plan design, it is
important to perform robustness evaluation with regard to
setup, range and motion (52). A commonly used technique for
setup and range robustness evaluation is the worst-case
evaluation where different scenarios include shifted isocenter of
the plan on all cardinal directions, and the beam range modified
with assumed max range uncertainty. Dose is then calculated and
evaluated on all scenarios to identify the worst case for all plans
or all voxels in the patient. Additionally, motion robustness
could be evaluated using the recalculated dose on the 4D CT
scans at T0 and TExp with the original plan (56). Dose on the
robustness evaluation plans should meet the planning criteria for
GTV, CTV, and OARs as defined on individual data sets. Yu
et al. demonstrated that D95 variation between the nominal dose
calculated on the average CT and the dose distribution on T0/
TExp verification plans highly correlates with D95 variation
between the nominal dose and the full 4D dose calculation
(49). These results indicated that dose impact of respiratory
motion could be evaluated using verifications on T0 and TExp.
Ideally, for a comprehensive robustness analysis, all uncertainty
components should be evaluated in combination as suggested by
Ribeiro et al. (57).

Figure 1 shows a comparison between IMRT, PS-PBT, and
IMPT plans for a distal EC patient. The PS-PBT plan uses two
PA/LPO, the IMPT plan uses three posterior oblique beams,
whereas IMRT uses two arcs. It can be observed that both PS-
PBT and IMPT plans better spare OARs including lung, heart,
and liver, while maintaining target coverage. In addition, IMPT
achieves better conformity of the target and lower mean dose to
the lungs, compared to PS-PBT.
ROBUST TREATMENT PLANNING,
DELIVERY, AND MOTION MANAGEMENT

The motion management strategy for EC should be similar to
those used for treating lung cancers (41). Here, we focus on
special considerations of motion management for EC, namely,
the impact of respiratory motion.
Frontiers in Oncology | www.frontiersin.org 8
For treatment planning, the following should be considered:

1. Select robust beam angles that yield the smallest value of the
maximum temporal WET change, typically posterior-
oriented beams.

2. Adopt a robust optimization strategy. 4D robust optimization
is recommended to design PBS treatment plans because it
takes density changes along the beam path into
consideration.

3. Perform motion evaluation to quantify the geometry motion
and voxel WET changes. Diaphragm breathing amplitudes
and off-sets can be used as EC motion surrogates to some
extent (58). However, to evaluate EC motion in more detail,
considering also differential motion, more sophisticated
methods (for example, based on deformation vector fields)
have to be developed. Further work is required to establish
motion mitigation guidelines based on concrete motion
limits advising on planning and delivery strategies as, for
example, the use of larger spot size (e.g., with range shifters),
breath hold, mechanical ventilation, abdominal compression,
robust planning, and re-scanning.

For treatment del ivery , the fol lowing strateg ies
are recommended:

1. For IMPT, use rescanning (either layered or volumetric) to
reduce interplay effects.

2. For IMPT, use an optimized delivery sequence, including
scanning direction and breath sampling, to minimize
interplay effects (52, 59).
FIGURE 1 | Dosimetric comparison of treatment plans using all three
modalities for a patient with distal esophageal cancer. VMAT, Volumetric Arc
Therapy; PSPT, Passive Scattering Proton Therapy; IMPT, Intensity
Modulated Proton Therapy; MHD, Mean Heart Dose; MLuD, Mean Lung
Dose; MLiD, Mean Liver Dose.
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3. Use breath hold, mechanical ventilation, abdominal
compression, or gating techniques if other strategies are not
sufficient to reduce the interplay effect.

4. Use daily image guidance with at least kilovoltage (kV) x-ray
imaging. It is strongly recommended that cone beam CT
(CBCT), if available, be used at least once weekly to ensure
appropriate soft tissue reproducibility.

5. Perform routine quality assurance (QA)/verification CT
scans to determine whether adaptive replanning in order to
ensure robustness (52). It is recommended that such scans be
done at least once during the first 2 weeks of treatment, and
then again during the third or fourth week, recognizing that
this is subject to patient- and center-specific factors.
QUALITY ASSURANCE AND ADAPTIVE
REPLANNING

Similar to other disease sites, patient-specific QA for EC patients
includes various components, plan evaluation, robustness
analysis with respect to range and setup uncertainties and
motion interplay effect, and measurements in phantoms.
Measurements of dose distributions of individual fields for
IMPT are challenging because of the complex dose
distributions of the treatment fields. Measurements are
commonly made with a two-dimensional ion chamber array
detector, and 3D detectors are being developed (60). Like other
sites in thorax and abdomen, motion interplay effects and the
effectiveness of motion mitigation strategies for EC patients
should be considered as part of the patient QA process,
although they remain in development (21). From treatment
planning, one can evaluate the verification plans on the T0 and
TExp phases of the 4DCT image data set to estimate systematic
errors caused by motion interplay effect. Ideally, one should use a
4D phantom to measure the dose distribution to assess the
motion interplay effect. This should be done during
commissioning if not every patient. However, the challenge is
the lack of any commercially available standardized 4D
phantom. Recently, efforts have been made to optimize QA
workflows. Efforts such as those described by Meijers et al.
basing patient specific quality assurance on independent dose
calculation and predicted outcomes should find broader
application in the future (61).

To assess the impact of variation in anatomy and tumor size,
patients should undergo repeat 4D CT verification scans to
determine whether offline adaptive replanning is needed
to maintain target coverage (e.g., >95% for the ICTV) and to
avoid overdosing critical structures (52). 4D magnetic resonance
imaging has become available for motion verification, with
advantages over CT being superior soft tissue contrast, no
imaging dose, and longer data sampling interval. In-room
volumetric imaging techniques such as CBCT and in-room CT
could also be used to identify possible anatomy changes.
However, dose calculation on CBCT may not be sufficiently
accurate. Therefore, verification 4D CT scans should be
Frontiers in Oncology | www.frontiersin.org 9
performed several times during the course of PBT to generate
verification plans. If the patient is treated with breath hold
technique, the verification CT scans should be performed using
similar breath hold technique to verify consistency of diaphragm
position and shape and resultant impact on dose distribution. 4D
dose reconstruction and accumulation based on available
repeated 4D images enables the clinical estimation of actual
exhibited interplay and motion effects, facilitating an informed
triggering of adaptive replanning (21). If an adaptive plan is
deemed necessary, then it should be developed by using
techniques as described earlier, and the same patient-specific
quality assurance (PSQA) process should be repeated before
treatment with the adapted plan. Similarly, if a phase-based
gating strategy is utilized for treatment, then the same phases
should be used for the verification plan. On the verification scans,
careful attention should be paid to potential changes in external
anatomy (from setup, immobilization, weight loss or gain),
internal anatomy (tumor shrinkage or swelling, change in
esophagus/stomach filling, presence/absence of an esophageal
stent, presence/absence of pleural effusion, change in diaphragm
position/shape), and motion pattern, which could require further
systematic monitoring and timely adjustment of treatment plans.
Adaptive PBT has the ability to correct for dosimetric effects
induced by interfractional anatomic changes and it complements
the ability of image guided setup to correct for setup uncertainty.
FUTURE DIRECTIONS

With increasing awareness that the immune system plays an
integral role in cancer-related outcomes, attention should be
directed at mitigating radiation-related effects especially on
lymphocytes that are radiosensitive even to doses as low as <1
Gy (22). High-grade lymphopenia has been associated with
poorer long-term outcomes among EC patients (25) and may
be significantly reduced using PBT as compared to photon
radiotherapy (26–28). Future consideration should be given to
the development of lymphopenia-related organ-at-risk
constraints for the heart, lungs, major vascular structures, bone
marrow, and spleen that would be routinely incorporated into
treatment plan optimization. The importance of mitigating RT-
related severe lymphopenia, and thus the benefits or PBT, may
become even greater should immune checkpoint inhibitors
become standardly delivered for localized EC.

Although photon-based dose escalation studies have been
negative for EC (44, 62), this concept could be re-explored in the
context of reduced OAR dose afforded by PBT (63). As standard
doses utilized for EC management lead to suboptimal rates of
locoregional failures, employing proton therapy to better protect
adjacent critical structures from unnecessary irradiation and
resulting treatment-related morbidity and mortality may more
safely allow for dose escalation (62), and a potential
improvement in tumor control without added toxicity. This
may be particularly important in patients managed without
surgery with definitive radiation therapy.
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The biologic effects of PBT within tumor and OARs are not
well understood and warrant further study. Proton beams have a
modestly higher radiobiological effectiveness (RBE) compared to
photon beams; therefore, a correction factor of 1.1 is commonly
applied to the absorbed dose. However, it is recognized that the
RBE is variable over the depth dose curve, namely, it is higher in
the region of the Bragg peak, and especially the distal end of the
Bragg peak, due to higher LET (64). Because of this, PBT
treatment plans have traditionally avoided beams that “range
out” into a critical structure for fear of biologic dose
enhancement. This may have implications for use of PBT for
EC, and especially for PBS techniques, which utilize posterior
beams that may “range out” into critical structures including the
heart, stomach, and intestine. The clinical effects of this are
currently unknown. Sophisticated planning techniques are being
developed that allow one to visualize the location of high LET,
which could be considered in the planning process and plan
optimization that has the potential to further reduce toxicities
and also improve tumor control with LET-based planning
(Figure 2) (65–67).

Lastly, because interplay effects especially with IMPT can
significantly degrade dose distribution in the thorax (67), a
PSQA process or similar approaches should routinely consider
such effects (10). For IMPT, this can be done by simulating the
temporal relationship between the time-dependent spot delivery
and respiratory motion. Commerical treatment planning systems
are expected to offer interplay effect evaluation in the future.
Frontiers in Oncology | www.frontiersin.org 10
CONCLUSIONS

PBT should be strongly considered for trimodality and non-
operative thoracic EC patients based on retrospective and
randomized prospective data that demonstrate clinically
meaningful reductions in toxicity compared to XRT. Robust
PBT plan development and treatment delivery is critical to
ensuring appropriate target and surrounding OAR dosimetry.
Long-term toxicity and efficacy outcomes of PBT versus XRT are
being evaluated in the ongoing NRG-GI006 phase 3 randomized
trial (NCT03801876), and we encourage enrollment on
that study.
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