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Abstract
Two-dimensional shear wave elastography (2D-SWE) is used in the clinical
setting for observation of the liver. Unfortunately, a wide spectrum of artifactual
images are frequently encountered in 2D-SWE, the precise mechanisms of which
remain incompletely understood. This review was designed to present many of
the artifactual images seen in 2D-SWE of the liver and to analyze them by
computer simulation models that support clinical observations. Our computer
simulations yielded the following suggestions: (1) When performing 2D-SWE in
patients with chronic hepatic disease, especially liver cirrhosis, it is recommended
to measure shear wave values through the least irregular hepatic surface; (2) The
most useful 2D-SWE in patients with focal lesion will detect lesions that are
poorly visible on B-mode ultrasound and will differentiate true tumors from
pseudo-tumors (e.g., irregular fatty change); and (3) Measurement of shear wave
values in the area posterior to a focal lesion must be avoided.
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Core tip: Two-dimensional shear wave elastography is the most widely used diagnostic
tool for liver but has many ultrasound artifact-related problems. Our computer
simulation model suggests the following ways to minimize them: (1) In patients with
chronic hepatic disease, especially liver cirrhosis, measure shear wave values through the
least irregular hepatic surface; (2) The most useful application in patients with focal
lesions is detecting lesions poorly visible on B-mode ultrasound and differentiating true
tumors from pseudo-tumors (e.g., irregular fatty change); and (3) Measurement of shear
wave values in the area posterior to a focal lesion must be avoided.
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INTRODUCTION
Although liver biopsy has long been the standard method for diagnosing chronic liver
disease, it  is associated with many problems, such as postbiopsy complications[1],
sampling error[2], and interobserver variability[3]. In a positive aspect, these problems
motivated  the  development  of  noninvasive  techniques  to  assess  liver  fibrosis,
including  magnetic  resonance  elastography [4 -6 ]  and  ultrasound  (US)-based
elastography[7-10]. The latter has attained preferential use because of its lower cost and
easier manipulation of the instrument[7-10]. Currently, there are four kinds of US-based
elastography, namely strain elastography[11], transient elastography[12], point shear
wave elastography[13], and two-dimensional shear wave elastography (2D-SWE)[9,14,15].
Among these methods, 2D-SWE has emerged as the most frequently used diagnostic
US tool for hepatic fibrosis quantification; this is due to its ability to sample a large
area in the liver, changing the sampling area quickly under B-mode observation and
displaying a color mapping of shear wave (SW) values over the B-mode image[9,15].
Measurement of SW values can be easily performed but it is also well known that the
obtained  SW  values  change  according  to  the  instrument  itself  and  the  level  of
expertise of the operator; as such, the certitude of those SW results is not always
satisfactory[6,9,15]. The other reasons for this instability have not been clarified.

This review reexamines the variability, using a method that is different from those
in the commonly reported studies. US artifacts are routinely encountered in clinical
practice and include refraction artifacts[16-18],  attenuation artifacts[16,19,20],  reflection
artifact[16,21], reverberation artifacts[22] and others[16,23,24]. As use of 2D-SWE becomes
more  widespread,  the  problems  related  to  US  artifacts  in  it  will  be  more
important[25-27]. The aim of this review was, thus, to present a wide spectrum of US
artifacts in hepatic 2D-SWE and to provide the simplest way to minimize the effects of
such.

THEORETICAL BASIS OF TWO-DIMENSIONAL SHEAR
WAVE ELASTOGRAPHY
The push-pulse produces small tissue movements in the plane of the push-pulse.
These tissue movements, in turn, produce SWs that propagate and produce other
minimal  tissue  movements  in  the  horizontal  plane  of  the  push-pulse.  These
movements in the horizontal plane further propagate through the tissue in a sideway
direction, away from the push-pulse. These SW movements (strictly speaking, tissue
movements produced by SWs) are tracked by the regular-interval tracking US pulses,
which are used to measure the arrival time of SWs. The simple formula is arrival time
of SW/distance from the push-pulse, used to determine the speed of SWs. Such a
measurement  is  possible  because  the  speed  of  SWs  is  very  slow  (<  1-10  m/s)
compared to the speed of US pulses (around 1540 m/s) (Table 1)[28,29]. There are two
ways  to  quantify  the  relative  tissue  stiffness:  SW speed expressed  as  m/s;  and,
kilopascal (kPa). Mostly, the SW speed is converted automatically to kPa, using the
equation 1 kPa = 3 × P × (SW speed m/s)2, with the assumption that the examined
tissue is always homogeneous, and where P is the tissue density and defined as 1.00
kg/m3.
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Table 1  Acoustic characteristics of human tissues[28,29]

Tissue Sound velocity (m/s) Acoustic impedance (× 106 kg/m2·s) Density (× 103 kg/m3)

Liver 1555 1.65 0.001

Fat 1460 1.38 0.0009

Muscle 1600 1.70 0.001

Water 1480 1.48 0.007

Cited from references 28 and 29, with minimal modification.

The 2D-SWE method uses emission of multiple acoustic push-pulse to generate
SWs from multiple lines in the tissue (Figure 1). As the SWs propagate, they cause
tissue displacement, and this very minimal displacement is tracked by conventional
pulse-echo US beams[6,30,31]. The US machine measures the propagation speed of SWs
as they travel in tissue, and the measured SW speed at each point is displayed in
color[6,32].  The  reconstructed  2D  color  mapping  of  SWs  is  called  “2D-SWE”  and
facilitates recognition of global distribution of tissue elasticity of the area.

FACTORS THAT DEGRADE QUALITY OF TWO-
DIMENSIONAL SHEAR WAVE ELASTOGRAPHY IMAGES
For  all,  these  US  artifact-related  problems  are  more  clearly  shown upon use  of
propagation mode, which can determine the causal artifact.

Reverberation artifact
Acoustic reverberation of the push-pulse at the liver capsule results in a false increase
in SW speed. Reverberation artifacts arise when the US signals reflects repeatedly
between two interfaces of largely different acoustic impedance, resulting in delayed
echoes returning to the transducer at regular intervals. This can lead to reverberation
artifacts  on  grayscale  US  image[33].  The  same  phenomenon  of  the  push  pulse  is
considered to occur between the liver capsule and the transducer. This phenomenon
usually appears in the upper part of the cursor, presenting as a band of red (i.e. very
increased SW speeds) (Figure 2). Thus, it is highly recommended to avoid this area
when measuring SW values with SWE; if not, the results will be overestimated.

Attenuation artifact
Attenuation frequently occurs in a clinical setting and most commonly in obese or
overweight patients.  In these patients,  a  strongly attenuated push-pulse passing
through the tissue results in poor creation of SWs at depth. This phenomenon usually
appears  at  the  distal  part  of  the  cursor,  presenting  as  a  colorless  area  (i.e.  poor
acquisition of SW data) (Figure 3). Thus, it is highly recommended to avoid this area
when measuring SW values in obese or overweight patients.

Probe compression artifact
Excessive probe compression during image acquisition causes artificial compression
of tissues just under the probe. This phenomenon is seen clearly when the liver is
evaluated through subcostal scanning (Figure 4). SW measurement in the compressed
area leads to a false elevation in SW values. A probe compression artifact appears near
the probe, presenting as a reddish band. Thus, it is recommended not to compress the
liver too much. The simplest way to avoid this artifact is to perform measurements
through intercostal spaces only, where the liver tissue is less likely to be compressed
by the probe.

Motion artifact
This phenomenon is seen clearly when the patient is unable to hold his/her breath or
to change position quickly. Besides these extreme conditions, a motion artifact is
usually seen when observing the left lobe of the liver, due to cardiac motion. Motion
artifacts give rise to the characteristic image of a colorless area or a reddish area in the
cursor, suggesting that SW values cannot be measured accurately in this area (Figure
5; see also, the section on tracking US beam-related problems below).
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Figure 1

Figure 1  Schematic drawing of two-dimensional shear wave elastography in a healthy individual. Multiple
push-pulses (arrows) are emitted from the transducer to create shear waves. T: Transducer; SW: Shear wave.

MECHANISMS UNDERLYING ULTRASOUND ARTIFACT-
RELATED PROBLEMS IN TWO-DIMENSIONAL SHEAR
WAVE ELASTOGRAPHY DETERMINED BY A COMPUTER
SIMULATION MODEL
US scanners reconstruct US images on the assumption that sound passes through all
parts of the human body in a straight line and at a constant velocity, and apply this
assumption to all scanning planes. Actually, however, these sound velocity in the
human  body  varies  with  the  composition  of  the  tissue  scanned.  When  a  plane
containing tissues with different velocities is scanned, sound refraction occurs at the
interface of the tissues, according to Snell’s law (see later in “Discussion”). Computer
simulation analysis helps understand the global images of refraction in the plane,
measuring the degree of refraction at each point of the interface, not only in grayscale
US image but also in 2D-SWE image.

2D-SWE in diffuse liver disease
2D-SWE  has  been  reported  as  useful  for  assessing  liver  fibrosis  with  high
accuracy[8,9,34-36].  It  is  generally  reported  that  SW  speed  increases  as  fibrosis
advances[15,37-39]; thus, heterogeneous distribution of different degrees of fibrosis will
create a heterogeneous color mapping in 2D-SWE. Measurement of liver stiffness is
based on the following assumptions: (1) All push-pulses emitted from the transducer
advance directly without deviation, at an even distance from each other; and (2) All
SWs created from these push-pulses propagate horizontally at the same distance from
the transducer. However, in reality, like conventional US beams, push-pulses refract
at  the  liver  surface  (according to  Snell’s  law) because there  is  a  large difference
between the liver and the surrounding tissue and the hepatic surface is irregular.

Figure 6 shows the mode of propagation of push-pulses in the liver. As a result,
SWs propagate in unassumed directions. This computer simulation model clearly
teaches us an important lesson about measurement of SW speeds in liver cirrhosis.
Furthermore, this speculation is in accordance with the findings from some studies
with 2D-SWE measurements of healthy volunteers in whom the liver surface was
smooth[40,41]. In those studies, measurements by novice operators were not significantly
different from those of experienced operators[31,40,42]. Our computer simulation model
shows that studies of normal liver do not contribute to resolving the problem of
significant variability of SW values in liver cirrhosis. Although the measuring error is
minimal,  it  is  recommended to  measure  SW values  through the  least  deformed
hepatic surface possible.

2D-SWE in liver tumors
2D-SWE findings have been reported as useful for predicting tissue characterization
of liver tumor, with markedly contradictory results[43-47]. The most widely accepted
method for  diagnosing  liver  tumors  by  2D-SWE is  measurement  of  maximal  or
median SW values within the lesion[46-49]. This method has long been performed but, as
is shown in Figure 7, this idea is compromised by a combination of US refraction and
reflection. The reported SW measurement of tumor stiffness is based on the following
assumptions: (1) All SWs created from the push-pulses advance directly, without
deviation, from the surrounding tissue toward the tumor and within the tumor; and
(2) No reflection occurs at the interface between the surrounding tissue and liver
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Figure 2

Figure 2  Reverberation artifact. The cursor contains a red (falsely increased shear wave) area (asterisk) at the top.

tumor.
However, in reality, like conventional US beams, SWs refract at the interface (again,

according to Snell’s law) because there is a large difference in propagation speed
between the liver tumor and the surrounding tissue (Figure 7).  Furthermore, the
degree of refraction is thought to be more accentuated in 2D-SWE (1-10 m/s) than in
conventional US (around 1540 m/s) (Figure 7B and C). The degree of reflection at the
surrounding tissue-liver tumor interface is more accentuated in 2D-SWE, for the same
reason. It is the deviation from the two above-mentioned assumptions that leads to
the conclusion that accurate stiffness measurement of liver tumors is not possible by
2D-SWE, in most cases. This idea is in accordance with the American Institute of
Ultrasound in Medicine recommendation that evaluation of liver tumor stiffness by
2D-SWE must be done with caution. Although, the SW value measurement inside the
tumor is not highly accurate, this measurement is still  valuable for judgement of
relative  stiffness  of  tumor  and  surrounding  liver.  However,  conversely,  this
phenomenon  helps  in  the  detection  of  a  liver  tumor  that  is  otherwise  poorly
visualized on B-mode (Figure 8) and in the differentiation of a pseudo-liver tumor
(i.e., focal fatty infiltration[43] or chronic hepatic porphyria[50]) from a true liver tumor.

Tracking US beam-related problems
Finally,  we  would  like  to  briefly  mention  refraction  of  tracking  US  beams.  We
mentioned earlier the influence of US artifacts on 2D-SWE, on the assumption that the
tracking US pulses occur at regular intervals and advance straight from the transducer
through the tissue. However, they deviate in some instances. Figure 9 shows such a
case. US beams deviate twice when passing through a focal lesion, with one at the
upper surrounding tissue-focal lesion interface and the other at the lower focal lesion-
surrounding tissue interface. As a result, US beams propagating in tissue posterior to
the  focal  lesion  deviate;  however,  the  US  machine  calculates  SW  values  on  the
assumption that there is no deviation of US beams. Thus, this phenomenon suggests
that SW measurements must be done in a plane that does not contain focal lesions.

DISCUSSION
In  many reported studies,  2D-SWE has  been shown to  have a  sufficient  level  of
sensitivity  in  evaluating  the  degree  of  hepatic  fibrosis[7-9,36]  but  with  significant
heterogeneity of results. This heterogeneity has been considered due to variations
among patient populations, study design, and devices used[49]. Some of these studies
have pointed to technical flaws in earlier studies but recent studies also show some
instable results[45,46,51]. These studies have brought into question whether they included
the influence of US artifacts.

This review has an important strength in that it is a theoretical analysis not found
in similar trials reported in the literature. Computer simulation model yields a purely
theoretical  analysis.  In  the  case  of  gray-scale  US  images,  the  sound  refraction
produces  artifactual  images,  because  the  US  scanner  displays  each  point  at  the
appropriate  distance determined by the time taken for  the echo to  return to  the
transducer in the direction in which the transducer is pointing at the time, even when
the US beam is refracted. In the case of 2D-SWE as well, the US scanner reconstructs
2D-SWE images on the assumption that SW passes horizontally in a straight line,
without deviation, and the US scanner displays SW velocity mapping on the basis of
data measured by tracking pulses (determined by the time/distance).  Computer
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Figure 3

Figure 3  Attenuation artifact. The cursor includes a colorless area (asterisk indicating poor acquisition of shear
wave data) at the bottom.

simulation model enables us to calculate accurately and automatically the degree of
refraction at each point, and understand the global image of refraction in the plane.
This method is especially useful for understanding the global mode of refraction at
the  curved interface  (tumor-surrounding tissue interface  or  surrounding tissue-
irregular  hepatic  surface  interface)  (Figure  10)[52-54].  In  short,  it  ensures  that
unfavorable factors, such as technical errors, differences in US machines used and
different levels of 2D-SWE experience, or influence biased by additional clinical data,
do not interfere in this analysis. It also maintains a high quality of interpretation. The
SWE diagnosis is usually the so-called “final report” of the clinician and explains that
it is necessarily correct. Our simulation model can be considered the basic thought of
what the clinicians conclude. It is recommended, therefore, that as more practitioners
are trained in 2D-SWE, our basic thought is used in clinical practice.

CONCLUSION
Two-dimensional shear wave elastography artifacts, although seen very frequently in
a clinical setting, are poorly recognized. Our review emphasizes that interpretation of
2D-SWE images must incorporate knowledge of US artifacts.
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Figure 4

Figure 4  Probe compression artifact. Excessive probe compression gives rise to falsely increased shear wave values. A: Note that shear wave speed is 1.2 ± 0.06
m/s measured through an intercostal space; B: Changes to 2.0 ± 0.13 m/s through subcostal scanning under probe compression.

Figure 5

Figure 5  Motion artifact. Two-dimensional shear wave elastography of the liver left lobe shows this characteristic finding of a colorless area (asterisk), suggesting
inaccurate measurement of shear wave values. The reddish part (×) of the cursor is also unreliable.

Figure 6

Figure 6  Computer simulation model of push-pulses in a cirrhotic patient. Push-pulses change direction at the irregular hepatic surface, according to Snell’s law.
Shear wave (arrow). SW: Shear wave.
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Figure 7

Figure 7  Two-dimensional shear wave elastography of liver tumor. A: Two-dimensional SW elastography of a liver tumor (encircled area) shows an irregular-
shaped round area consisting of multiple layers of different colors (arrows); B: When the tumor has a lesser SW value than the surrounding tissue. Computer
simulation model shows that all SWs deviate largely at the surrounding tissue (in this case, SW velocity 1.5 m/s) -liver tumor (in this case, SW velocity 1.0 m/s)
interface; C: When the tumor has a greater SW value than the surrounding tissue. Computer simulation model shows that all SWs deviate largely at the surrounding
tissue (in this case, SW velocity 1.5 m/s) -liver tumor (in this case, SW velocity 2.0 m/s) interface; D: Schematic drawing of mode of SWs around the surrounding
tissue-liver tumor interface (arrows: deviated SWs; arrow heads: reflected SWs). SW: Shear wave.

Figure 8

Figure 8  Representative case: intrahepatic cholangiocellular carcinoma. A and B: The lesion (asterisk) is poorly visible on B-mode (A) but it is well demarcated
on two-dimensional shear wave elastography (B, arrow).
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Figure 9

Figure 9  Computer simulation model of deviated push-pulses. A: Surrounding tissue acoustic speed is 1540 m/s and that of tumor (blue) is 1480 m/s; B:
Surrounding tissue acoustic speed is 1540 m/s and that of tumor (pink) is 1600 m/s [A and B — the push-pulses change direction twice at two interfaces (upper and
lower) of the surface of the lesion]; C: Two-dimensional shear wave elastography shows the posterior zone behind the lesion (red circle) to have a greater shear wave
velocity (1.67 ± 0.19 m/s) than the surrounding hepatic tissue (1.07 ± 0.08 m/s) (white circle); D: Hepatic ultrasound reveals a 2 cm × 2 cm echogenic mass
(hemangioma) in segment 5.

Figure 10

Figure 10  Sound refraction at the interface. A: Sound (or shear wave) refraction occurs at the straight interface between two structures of different acoustic (or
shear wave) velocities, depending on Snell’s law. The degree of refraction is always the same. θ1: Angle of incidence, θ2: Angle of refraction, C1: Sound (or shear
wave) velocity in tissue 1, C2: Sound (or shear wave) velocity in tissue 2; B: Sound (or shear wave) refraction at the curved interface. As the tumor (or cirrhotic liver
surface) has a curved interface, the angle of incidence changes according to the incidental point. Thus, the angle of refraction changes also according to the incidental
point. Red line: Curved interface.
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