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Ulcerative colitis immune cell 
landscapes and differentially 
expressed gene signatures 
determine novel regulators 
and predict clinical response 
to biologic therapy
Harrison M. Penrose1, Rida Iftikhar1, Morgan E. Collins1, Eman Toraih2, Emmanuelle Ruiz2, 
Nathan Ungerleider1, Hani Nakhoul1, Erik F. Flemington1, Emad Kandil2, Shamita B. Shah3 & 
Suzana D. Savkovic1*

The heterogeneous pathobiology underlying Ulcerative Colitis (UC) is not fully understood. Using 
publicly available transcriptomes from adult UC patients, we identified the immune cell landscape, 
molecular pathways, and differentially expressed genes (DEGs) across patient cohorts and their 
association with treatment outcomes. The global immune cell landscape of UC tissue included 
increased neutrophils, T CD4 memory activated cells, active dendritic cells (DC), and M0 macrophages, 
as well as reduced trends in T CD8, Tregs, B memory, resting DC, and M2 macrophages. Pathway 
analysis of DEGs across UC cohorts demonstrated activated bacterial, inflammatory, growth, and 
cellular signaling. We identified a specific transcriptional signature of one hundred DEGs  (UC100) 
that distinctly separated UC inflamed from uninflamed transcriptomes. Several  UC100 DEGs, with 
unidentified roles in UC, were validated in primary tissue. Additionally, non-responders to anti-
TNFα and anti-α4β7 therapy displayed distinct profiles of immune cells and pathways pertaining to 
inflammation, growth, and metabolism. We identified twenty resistant DEGs in UC non-responders 
to both therapies of which four had significant predictive power to treatment outcome. We 
demonstrated the global immune landscape and pathways in UC tissue, highlighting a unique UC 
signature across cohorts and a UC resistant signature with predictive performance to biologic therapy 
outcome.

Inflammatory bowel disease (IBD) includes two major inflammatory disorders known as Crohn’s Disease (CD) 
and Ulcerative Colitis (UC), and has a complex pathogenesis linked to genetic predisposition, microbial imbal-
ances, elevated intestinal permeability, and a dysregulated immune  response1–3. In intestinal tissue, epithelial 
and immune cells communicate to maintain homeostasis and their aberrant composition and interactions are 
critical in initiating and driving IBD  pathobiology2,4–6. An early sign of intestinal inflammation is an elevated 
level of neutrophils that further fuels IBD progression, in part, by exacerbating tissue damage and through 
production of inflammatory  cytokines6,7. Aberrant subsets of T cells and macrophages in the intestine are criti-
cal for facilitating inflammatory responses and injury in IBD  pathobiology4,5,8,9. Some immune cells have dual 
functions, for example increased B cells and dendritic cells (DC) initially are protective, but in the long-term can 
contribute to IBD  progression10–12. Moreover, in IBD tissue, the release of cytokines and chemokines by epithe-
lial and immune cells can worsen  disease6,13. These mediators, together with gut bacteria, facilitate activation of 
epithelial and immune cellular pathways including Toll-like receptors, TNFα receptors, NFκB, and JAK-STAT 
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further exacerbating intestinal  inflammation2,5. Blockade of several of these pathways including TNFα have 
provided plausible treatment options for certain IBD  patients5,14.

Substantial progress has been made in defining the roles of individual immune cells and molecular pathways 
driving  IBD6,15, yet the underlying pathobiology of disease heterogenicity and (non)response to therapy is not 
well understood. Moreover, distinctions between pediatric and adult IBD, as well as UC (colon) and CD (entire 
intestine), creates additional challenges for utilizing similar diagnostic and treatment options. Thus, to further 
expand understanding of disease our study focused on adult UC cohorts to identify shared immune cell land-
scapes and pathways in affected colon across patients, and to determine differences that may impact outcome 
to therapy. Here, we used publicly available transcriptomes of colonic tissue from a large number of adult UC 
patients to identify global immune landscapes, molecular pathways, and DEGs across cohorts. We identified a 
UC transcriptional signature that differentiates inflamed colonic tissue from matched uninflamed controls. The 
significance of this signature was validated in an independent cohort and several transcripts with unidentified 
roles in UC were further validated by qPCR. Moreover, we recognized immune cells, pathways, and DEGs of UC 
patients lacking response to biologic therapy and defined a resistant transcriptional signature with significant 
predictive power for non-responsiveness to therapy.

Results
A global immune cell landscape in healthy and UC tissue. We determined the global immune cell 
landscape of healthy and adult UC colonic tissue by assessing publicly available transcriptomes for abundances 
of immune cell transcriptional signatures using  CIBERSORT16,17. The immune cell population of healthy colonic 
tissue consisted primarily of B cells (plasma), T cells (CD4 memory resting, Tregs), and macrophages (M2) 
across multiple groups (Supplementary Fig. S1). UC tissue revealed an altered immune cell presence compared 
to healthy controls (Supplementary Fig. S1). Specifically, these changes (Fig. 1A–F) included substantially ele-
vated levels of neutrophils (50-fold, p < 0.05), T CD4 memory activated cells (50-fold, p < 0.05), active DC (12-
fold, p < 0.05), M0/M1 macrophages (threefold, p < 0.05), and B naïve cells (threefold, p < 0.05) in UC tissue 
relative to healthy control. Several cell subsets showed reduced trends such as T CD8 cells, Tregs, B memory 
cells (by 99%, p < 0.05), and M2 macrophages (by 50% p < 0.05). Both resting DC and resting mast cells were 
lowered in UC tissue (p < 0.05) while their active forms showed elevated trends. Relative abundances of other cell 
subsets in UC tissue were also altered but did not meet significant thresholds with applied CIBERSORT criteria. 
These findings were graphically presented from a cohort (GSE38713) that included healthy controls, inflamed 
UC, and matched uninflamed tissues (Fig. 1A–F). A comparable immune cell landscape showing similar trends 
(neutrophils, DC, macrophages, mast cells, B cells, and subsets of T cells) was seen in four additional UC cohorts 
(GSE4183, GSE9452, GSE14580, GSE59071) with the exception of T CD4 resting cells and eosinophils (Sup-
plemental Fig. S1). Moreover, in uninflamed (matched) colonic tissue from patients with active UC, we found 
the majority of the samples displayed an immune cell landscape similar to healthy colonic tissue. They also 

Figure 1.  Alterations in immune cell profiles in UC inflamed and uninflamed matched tissue transcriptomes. 
CIBERSORT assessment of immune cell transcriptional signatures in transcriptomes of UC patients from 
inflamed or matched uninflamed tissue compared to healthy control. Immune cell signatures represent 
neutrophils (A) subsets of T cells (B), DC (C), macrophages (D), mast cells (E) and B cells (F) (GSE38713) 
(n = 13 healthy control, n = 15 UC-inflamed, n = 7 UC-matched uninflamed; CIBERSORT, *#p < 0.05; *vs. Con, 
#vs. UC-inflamed).
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shared some similarities with inflamed UC as demonstrated by increased CD4 memory activated and reduced 
Tregs cells (Fig. 1B, p < 0.05). The presence of DC (resting and active) and macrophages (M0) differed from both 
healthy and inflamed UC tissue (Fig. 1C,D, p < 0.05).

Remodeled molecular pathways and a transcriptional signature for inflamed UC tissue. We 
determined remodeled molecular pathways associated with differentially expressed genes (DEGs) in UC tissue 
compared to controls using three cohorts (GSE4183, GSE38713, GSE14580) (Fig. 2A) (IPA, FDR < 0.05). Simi-
larly activated pathways and upstream regulators were linked to bacterial response (TLRs, LPS/IL1), inflamma-
tion (Th1/2 responses, inflammasome: IL18, chemokine/cytokine activation: TNFα, IL-8, IFN, IL1, IL17), and 
intracellular signaling (NFκB, p38/MAPK). Further, we identified a panel of DEGs consistent across the same 
three cohorts (GSE4183, GSE38713, GSE14580) relative to controls (fold-change > |2| and adjusted p < 0.001). 
The top 100 DEGs  (UC100) included 65 increased and 35 decreased relative to control (Supplementary Table S1) 
and were used for unsupervised clustering of an independent UC cohort (GSE107593). The  UC100 distinctly 
separated inflamed from uninflamed samples in this independent cohort (Fig. 2B,C).

Collectively, DEGs from the  UC100 signature encoded protein involved in multiple cellular functions such as 
bacterial response, inflammatory response, immune cell trafficking, growth, cell signaling as well as metabolic 
processing and lipid metabolism (Fig. 2D). Several of them encoded protein with established roles in UC pathobi-
ology such as hypoxia (HIF1A), nitric oxide (NOS2), inflammation (TNIP3, TNFRSF6B, CXCL, IL1RN, IRAK3, 
IRF1, IFITM1, OMSR), matrix metallopeptidases (MMP1, 3, 10, 12), and calcium signaling (S100A8)6,18–21. 
There were also DEGs whose roles in UC pathobiology have not been explored, which we validated by qPCR 
(Fig. 3). We confirmed altered expression of established IL8 and S100A8 and novel transcripts PCK1 (Phospho-
enolpyruvate Carboxykinase 1), HMGCS2 (3-Hydroxy-3-Methylglutaryl-CoA Synthase 2), ACAT1 (Acetyl-CoA 

Figure 2.  Altered molecular pathways in inflamed UC tissue. (A) IPA canonical pathway and upstream 
regulator analysis revealed similarly enriched pathways across three independent cohorts (1: GSE4183, n = 8 
healthy control, n = 9 UC-inflamed; 2: GSE14580, n = 6 healthy control, n = 24 UC-inflamed; 3: GSE38713, n = 13 
healthy control, n = 15 UC-inflamed; IPA, FDR < 0.05). (B) Hierarchical clustering, as shown by representative 
heatmap, revealed two distinct clusters of UC samples separated by the  UC100 signature (generated from 
GSE4183, GSE14580, GSE38713) differentiating between inflamed UC and matched uninflamed transcriptomes 
from an independent cohort (GSE107593) (n = 24 UC-inflamed, n = 24 UC-matched uninflamed). (C) Presence 
of the  UC100 signature represented as a score in inflamed UC compared to uninflamed matched control 
transcriptomes from an independent cohort (GSE107593) (p = 4.65e-08). (D) Disease and function enrichment 
analysis for  UC100 signature (IPA, p < 0.05).
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Acetyltransferase 1), HCAR3 (Hydroxycarboxylic Acid Receptor 3), LPCAT1 (Lysophosphatidylcholine Acyl-
transferase 1), and LIPG (Lipase G, Endothelial Type). These novel DEGs encode protein functionally involved in 
metabolism of lipids, glucose, and mitochondria suggesting that metabolic responses related to glucose metabo-
lism and mitochondrial function were attenuated (decreased PCK1, HMGCS2, ACAT1) while lipid metabolism/
signaling was elevated (increased HCAR3, LIPG, LPCAT1) (total n = 7, *p < 0.05).

Distinct immune cell landscapes, pathways, and DEGs in UC tissue lacking response to bio-
logic treatments. We further determined whether immune cell landscapes, molecular pathways, and 
DEGs were distinct to UC tissue of patients non-responsive to biologic anti-TNFα and anti-α4β7 therapy. We 
utilized publicly available transcriptomes of UC tissue acquired from patients (GSE73661) before anti-TNFα 
and anti-α4β7 treatments that were later classified as non-responders or responders by clinical endoscopic 
assessment for disease remission  status22,23. CIBERSORT revealed that UC tissue of non-responders relative to 
responders, prior to anti-TNFα and anti-α4β7 therapy, had considerably increased neutrophils (4 to 10-fold, 
p < 0.05) (Fig. 4A,B) and T CD4 activated cells (2 to 4-fold, p < 0.05) (Fig. 4A,B). Further, those non-responsive 
to anti-α4β7 treatment showed reduced levels of M2 macrophages (by more than 50%, p < 0.05) (Fig. 4B). Addi-
tionally, we analyzed pathways of UC non-responders (vs. control) relative to UC responders (vs. control) before 
anti-TNFα and anti-α4β7 treatments. Non-responders demonstrated activation of distinct molecular pathways 
linked to aberrant immune responses (IL1-3, IL17, CCR3), growth (VEGF, TGF, IGF1, Wnt/Ca2+, Erb2/3/4, 
growth hormone), and energy metabolism (leptin, sphingolipase, triglyceride degradation, TCA cycle) relative 
to responders (Fig. 4C,D) (IPA, FDR < 0.05).

Moreover, we determined whether differences in DEGs between non-responders and responders could 
reveal treatment “failure” and identified those with “predictive” power for treatment outcome. Initial analysis of 
transcriptomes from UC patients (GSE12251, GSE73661) obtained during and after anti-TNFα and anti-α4β7 
treatments identified DEGs in non-responders vs. responders representing “failure” to the treatment (Fig. 5A). 
Specifically, we recognized DEGs in non-responders that were resistant to therapy (“failure”), among which 32 
were found in the anti-TNFα group (30 upregulated and 2 downregulated) and 81 from the anti-α4β7 group (68 
upregulated and 13 downregulated) (fold-change > |1.5| and adjusted p < 0.05) (Fig. 5A) (Supplementary Tables S2 
and S3). Further, among these resistant DEGs we found 20  (UC20R) represented “failure” for both treatments 
(Fig. 5A) (Table 1). These resistant  UC20R encoded protein associated with response to bacteria, defense response, 
cell surface receptors, cell signaling, cell trafficking, endothelial function, lipid metabolism, and mitochon-
drial dysfunction (Fig. 5B) (IPA, FDR < 0.05). Next, we assessed their “predictive” significance in independent 
samples obtained prior to treatment (GSE73661). Their expression levels in UC pretreatment datasets showed 
significant differences in prospective non-responders relative to responder groups (Fig. 5C, fold-change |1.5|, 
p < 0.05). Specifically, we found the top four significantly increased transcripts, IGFBP5 (Insulin Like Growth 
Factor Binding Protein 5), SELE (Selectin E), STC1 (Stanniocalcin 1), and VNN2 (Vanin 2), in non-responders. 
Moreover, IGFBP5, SELE, STC1, and VNN2 had significant “predictive” power for determining (non)response 
to both anti-TNFα and anti-α4β7 as demonstrated by receiver operating characteristic (ROC) curve analysis and 
calculating area under the curve (AUC) (*p < 0.05) (Fig. 5D) (Table 2). Further, multivariate regression analysis 
showed elevated levels of these four transcripts were associated with higher risk of treatment failure (Fig. 5E).

Figure 3.  Altered expression of  UC100 transcripts in UC tissue. Altered levels of select, transcripts from the 
 UC100 signature (IL8, S100A8, PCK1, HMGCS2, ACAT1, HCAR3, LIPG, LPCAT1) in inflamed UC tissue 
relative to healthy control was confirmed by qPCR (control n = 3, UC n = 4, **p < 0.01, ***p < 0.001).
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Discussion
We demonstrated in adult UC patients, global immune landscapes and molecular pathways in affected colonic 
tissue and identified those distinct to non-responders to biologic therapy. Further, we identified a transcriptional 
signature common across UC cohorts and a resistant signature specific for patients non-responsive to biologic 
therapy. We validated altered expression of several novel DEGs whose roles in UC pathobiology are unexplored. 
These findings provide insight into new genes with altered expression in UC tissue that could serve as potential 
biomarkers for precise diagnostics and targets for personalized therapeutic interventions for UC patients.

We found strong similarities in immune landscapes among UC cohorts represented by altered neutrophils, 
DC, macrophages, mast cells, B cells, and subsets of T cells which are recognized to have key roles in IBD 
 pathogenesis4–6. Further, in UC tissue we showed elevated M1 and reduced M2 populations, which have pro- and 
anti-inflammatory roles. Depending on their polarization, macrophages are able to foster each other’s activity, 
increase activation of DC, and communicate with adaptive T and B cells in promoting  inflammation5,24–26. T CD8 
cell levels could vary in UC affected tissue due to variation in their subsets, and their plasticity may be attributed 
to dynamic interplay between intestinal tissue and circulating  cells27,28. Further, decreased trends in T CD8 cells 
may result in weak antigen presentation and processing by intestinal epithelial  cells29. Moreover, we found that 
abundances of the T CD4 memory activated subset differed between cohorts. Aberrant T CD4 responses lead to 
poor defense to pathogens and has been observed to vary among IBD patients, which in combination with disbal-
ances in gut microbiota could be responsible for disease  relapse9,30. Moreover, T CD4 and Tregs cells are found in 
uninflamed matched tissue from UC patients with active disease. When Tregs are dysregulated or deficient, the 
intestine is one of the first tissues that becomes inflamed due to constant immune stimulation by microbiota and 
food  antigens9,31. In active IBD, Tregs can expand in the lamina propria, but their immuno-suppressive activity 
is  diminished32,33. We speculate that differences in these subsets of T cells between patient cohorts could also be 
due to the composition of gut microbiota and regional diet. Similarly, variation in eosinophils, which play roles 
in protecting barrier integrity and immunity might be related to geographic and seasonal disparities among UC 
 cohorts34,35. We observed increased trends in activated mast cells in UC tissue compared to control. Mast cell 
levels could vary in UC affected tissue depending on location of affected colon and inflammation status, and may 
account for variability that we and others have  observed36. Recent findings revealed the presence of activated 
DCs and plasmacytoid DCs in colonic biopsies of UC and CD patients using the xCell  platform37. Furthermore, 
single-cell sequencing data from one UC  cohort38 provides classification of multiple subsets of epithelial and 
stromal cells including inflammatory fibroblast, monocyte, microfold, and T cell  networks38. Further develop-
ment of new approaches differentiating active vs. non-active immune cells and interactive vs. non-interactive 
cells may provide for more precision-based identifiers of cell landscapes in IBD tissue.

Figure 4.  Immune cell landscapes and molecular pathways in non-responders prior to anti-TNFα and anti-
α4β7 therapy. (A, B) CIBERSORT of UC tissue transcriptomes from non-responders prior to therapy showed 
an increased abundance in neutrophils, activated T CD4 memory, and reduced macrophages M2 compared 
to responders (GSE73661) (n = 8 anti-TNFα responders, n = 15 anti-TNFα non-responders; n = 9 anti-α4β7 
responders, n = 25 anti-α4β7 non-responders CIBERSORT, *p < 0.05). (C, D) IPA canonical pathway analysis 
revealed enriched molecular pathways in non-responders to anti-TNFα and anti-α4β7 (GSE73661) (IPA, DEGs 
responders vs. control; non-responders vs. control, FDR < 0.05).
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We identified similarly altered molecular pathways and DEGs in UC tissue across cohorts. These pathways 
are linked to bacterial and inflammatory signaling. Further, the  UC100 signature distinguished inflamed from 
uninflamed transcriptomes.  UC100 DEGs encode protein with established roles in UC inflammation, hypoxia, 
nitric oxide and matrix  metallopeptidases6,18–21 as well as those with novel, unexplored roles in IBD pathobiol-
ogy. Many of these DEGs encoded protein functionally linked to metabolic energy functions such as alterations 
in lipid, glucose, and mitochondrial functions. Emerging findings show that aberrant energy metabolism may 
become another hallmark of IBD. Elevated lipids can drive intestinal inflammation, and in mouse models, 
blockade of their production ameliorates  inflammation39–42. Newly identified DEGs from the  UC100 signature 
increased in UC tissue, LIPG and LPCAT1, are regulators of lipid metabolism. LPCAT1 encodes an enzyme 
responsible for the conversion of lysophosphatidylcholine to phosphatidylcholine and is involved in the regula-
tion of lipid droplet number and  size43. Limited studies showed that increased lipid droplets may drive intestinal 
 inflammation40,44 and LPCAT1 could play an important function in the synthesis of inflammatory  lipids45. LIPG 
is a member of the triglyceride lipase family and may be involved in lipoprotein metabolism and endothelial 
 biology46. Further, HCAR3 is involved in regulation of lipolysis during increased β-oxidation and may play 
integral roles in crosstalk between microbiome-derived metabolites and immune  cells47,48. PCK1, decreased 
in UC, is a regulator of gluconeogenesis and its deficiency in macrophages was demonstrated to facilitate a 
proinflammatory  phenotype49. Moreover, HMGCS2 and ACAT1, both decreased in UC, encode regulators of 
mitochondrial function and both play important roles in β-oxidation. In intestinal stem cells, HMGCS2 has 
a vital role in regulation of cellular differentiation and homeostasis, and its loss could impact barrier renewal 
and  function50,51. ACAT1 plays an important role in ketone body metabolism and recently was implicated in 

Figure 5.  Differentially expressed genes in non-responders to anti-TNFα and anti-α4β7 treatment reflecting 
treatment “failure” and “prediction” to therapy outcomes. (A) DEGs were generated from samples (GSE12251, 
GSE73661) obtained during and after anti-TNFα treatment (non-responders vs. responders) following different 
dosage and time points (a: 5 mg/kg (8 weeks; GSE12251), b: 10 mg/kg (8 weeks; GSE12251), c: 10 mg/kg 
(4–6 weeks; GSE73661). Additional DEGs were generated from samples obtained during and after the course 
of anti-α4β7 therapy (a: 6 weeks, b: 12 weeks, c: 52 weeks; GSE73661). Intersection between resistant gene 
following anti-TNFα (32 genes) and anti-α4β7 (81 genes) yielded 20 shared DEGs representing “failure” to both 
therapies, i.e. resistant DEGs  (UC20R) (LIMMA R Package, p < 0.05, FC |1.5|, DEGs). (B) Canonical pathway 
analysis revealed the top enriched molecular pathways in the  UC20R panel from non-responders to anti-TNFα 
and anti-α4β7 (IPA, FDR < 0.05). (C) Expression levels of the  UC20R genes in independent UC samples obtained 
before anti-TNFα and anti-α4β7 treatment of UC patients (GSE73661). Box plot represents the fold-change 
(log transformed) of selected DEGs in prospective non-responders (NR) and responders (R). Significantly 
upregulated IGFBP5, SELE, STC1, and VNN2 were marked in red font. (D) “Predictive” performance of the 
IGFBP5, SELE, STC1, and VNN2 panel, as determined by ROC curve analysis and calculating AUC in both 
anti-TNFα and anti-α4β7 non-responders before therapy (p < 0.05). Combined gene analysis of pretreatment 
data of UC patients (GSE73661) was employed and resulting sensitivity and specificity. (E) Multivariate 
regression analysis showed overexpression of the four genes was associated with higher risk of treatment failure. 
OR odds ratio, LL lower limit of 95% confidence interval, UL upper limit of 95% confidence interval.
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Table 1.  UC20R resistance gene signature representing the top 20 differentially expressed genes from UC tissue 
of patients non-responsive to both biologic anti-TNFα and anti-α4β7 compared to responders. (GSE73661) 
(GSE12251) (n = 25 non-responders, 21 responders for anti-TNFα; n = 35 non-responders, 18 responders for 
anti-α4β7).

Gene Gene name

Anti-TNFα Anti-α4β7

Fold-change adj.P.Val Fold-change adj.P.Val

CHI3L1 Chitinase 3 like 1 2.6 2.7e − 04 3.8 8.9E − 11

AQP9 Aquaporin 9 3.0 8.3e − 05 3.0 3.1E − 07

CXCL8 Chemokine ligand 8 2.9 2.7e − 05 2.8 2.0E − 07

SELE Selectin E 2.5 1.8e − 04 2.7 7.1E − 07

CEMIP Cell migration inducing hyaluronan binding protein 2.1 3.1e − 07 2.3 8.9E − 07

IL1B Interleukin 1 beta 1.9 1.4e − 04 2.3 5.9E − 06

TNFAIP6 TNF alpha induced protein 6 2.3 5.4e − 04 2.3 4.9E − 05

STEAP4 STEAP4 metalloreductase 1.6 4.4e − 04 2.3 4.3E − 07

FCGR3B/FCGR3A Fc fragement of IgG receptor IIIB/Fc fragment of IgG IIIa 2.3 1.9e − 05 2.3 1.9E − 07

CXCR1 Chemokine receptor 1 3.1 8.3e − 05 2.2 2.9E − 06

IGFBP5 Insulin like growth factor binding protein 5 1.7 1.7e − 03 2.1 2.4E − 07

PTGS2 Prostaglandin-endoperoxide synthase 2 2.4 2.0e − 04 2.1 4.9E − 06

CSF3R Colony stimulating factor 3 receptor 2.0 2.3e − 04 2.1 1.3E − 06

S100A9 S100 calcium binding protein A9 2.2 2.3e − 04 2.0 3.4E − 06

STC1 Stanniocalcin 1 2.0 2.8e − 06 1.9 3.4E − 09

VNN2 Vanin 2 2.4 1.0e − 04 1.9 2.6E − 05

TREM1 Triggering receptor expressed on myeloid cells 1 2.5 2.0e − 04 1.9 2.6E − 05

NCF2 Neutrophil cytosolic factor 2 2.2 6.2e − 05 1.7 8.0E − 05

CXCR2 Chemokine receptor 2 2.2 2.1e − 04 1.7 8.0E − 05

FPR1 Formyl peptide receptor 1 1.8 8.1e − 05 1.6 3.5E − 05

Table 2.  Predictive performance of  UC20R resistance gene signature for treatment response to anti-TNFα 
and anti-α4β7. (GSE73661, GSE12251) (n = 25 non-responders, 21 responders for anti-TNFα; n = 35 non-
responders, 18 responders for anti-α4β7).

Gene

Anti-TNFα Anti-α4β7

AUC SD p value AUC SD p value

AQP9 0.93 0.06 0.001 0.89 0.04 < 0.001

CEMIP 0.88 0.07 0.003 0.92 0.05 < 0.001

CHI3L1 0.92 0.06 0.001 0.96 0.02 < 0.001

CSF3R 0.98 0.03 < 0.001 0.93 0.05 < 0.001

CXCL8 0.98 0.03 < 0.001 0.93 0.04 < 0.001

CXCR1 0.89 0.07 0.002 0.92 0.04 < 0.001

CXCR2 0.89 0.07 0.002 0.96 0.04 < 0.001

FCGR3B/3A 0.98 0.03 < 0.001 0.91 0.02 < 0.001

FPR1 0.96 0.04 < 0.001 0.93 0.04 < 0.001

IGFBP5 0.84 0.08 0.008 0.96 0.04 < 0.001

IL1B 0.93 0.05 < 0.001 0.93 0.03 < 0.001

NCF2 0.94 0.05 < 0.001 0.88 0.05 < 0.001

PTGS2 0.91 0.06 0.002 0.90 0.05 < 0.001

S100A9 0.93 0.06 < 0.001 0.97 0.05 < 0.001

SELE 0.93 0.06 < 0.001 0.89 0.02 < 0.001

STC1 1.00 0.00 0.001 0.91 0.05 < 0.001

STEAP4 0.88 0.08 0.003 0.89 0.04 < 0.001

TNFAIP6 0.92 0.06 0.001 0.85 0.04 < 0.001

TREM1 0.91 0.07 0.002 0.91 0.05 < 0.001

VNN2 0.93 0.06 0.001 0.92 0.04 < 0.001
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inflammatory responses in macrophages as well as diet-induced  obesity52. Another important aspect of altered 
energy dynamics in intestinal inflammation involves mitochondrial function. In IBD intestine, mitochondrial 
gene expression is aberrant leading to reduced respiratory activity and energy depletion, associated with bacterial 
 signaling53–57. Smillie et al. suggested that metabolic alterations in intestinal cells and monocytes represented 
by a shift from oxidative phosphorylation to glycolysis may be driven by impaired production of microbiota 
short-chain fatty acids leading to upregulated pathways for dietary fatty  acids38,58. Furthermore, a recent study 
described mitochondrial fission–fusion as critical in driving dysregulation of intestinal cells and macrophages, 
which could be targeted as a possible therapeutic  approach59. Additionally, it is important to consider the effects 
of environmental factors in mediating mitochondrial reprograming such as the use of antibiotics and intake of a 
high-fat western style  diet60. While the exact mechanisms and roles of metabolic reprograming in intestinal cells 
and immune cells are not fully understood, their emergence as a hallmark of intestinal inflammation highlights 
their critical importance in the underlying pathobiology of disease.

In UC patients non-responsive to anti-TNFα or anti-α4β7 therapy, we identified distinct immune cell land-
scapes, molecular pathways, and transcriptional signatures relative to responders. Increased abundances of 
neutrophils and activated subsets of T cells in the colon of UC non-responders to both treatments suggest that 
severity of disease might be a predictive factor for success to biologic therapy. Clinical studies demonstrated 
that non-responsiveness to the biologic therapy is, in part, related to disease severity, a patient’s age at diagnosis, 
and duration of  inflammation61–64. Furthermore, in UC patients non-responsive to anti-α4β7 treatment, we 
observed reduced M2 macrophage levels. Verstockt et al. transcriptomic analysis of UC tissue from patients 
prior to receiving biologic therapy revealed significant enrichment of immune cells in non-responders includ-
ing M1 macrophages and Tregs, while responders had elevated naïve B  cells65. Our CIBERSORT analysis also 
showed a trend in elevated M1 macrophages, while changes in Tregs were insignificant. Another report described 
enrichment of monocytes, M1 macrophages, activated DCs and plasmacytoid DC subsets in non-responders 
to biologic  therapy37. While our approach did not provide significant increases in monocyte or M1 macrophage 
levels, they trended up in non-responder groups. Moreover, non-responders to biologic therapy have displayed 
higher inflammatory markers and cytokines in circulating  monocytes66. Thus, based on several of these cellular 
characteristics in non-responders, further development of immune profile-based signatures could allow for 
precise diagnostics and optimal therapy selection in the future. Moreover, DEGs and molecular pathways are 
distinct for non-responders to anti-TNFα or anti-α4β7 therapy, highlighted by biologic functions pertaining to 
inflammation, growth, lipid metabolism, and mitochondrial dysfunction. We determined a specific resistance 
 UC20R signature representing “failure” to biologic therapy. Among them the top four differentially expressed 
genes, STC1, VNN2, SELE, and IGFBP5, possess significant “predictive” power to both anti-TNFα or anti-α4β7 
therapy. SELE, VNN2, and STC1 play critical roles in neutrophil accumulation and transendothelial movement 
at sites of inflammation, suggesting a possible role for immune cell trafficking in non-responders67. Moreover, 
these novel and distinct features of disease could also occur, in part, because of changes in the microbiota caused 
by  therapy68. Thus, we anticipate that transcriptional signatures found in UC patient tissue may guide selection 
of therapy and more personalized therapeutic approaches. With further advances in these technologies, we will 
expand understanding of systemic and specific changes in immune profiles, pathways, and transcripts to include 
other aspects of IBD heterogeneity including those from adult UC and CD as well as pediatric patients.

Here, with a comprehensive assessment of UC colonic tissue, we demonstrated both shared and distinct 
immune cell landscapes and molecular pathways. Our results could provide insight into disease pathogenesis 
and mechanistic reasons why certain patients do not respond to mainstay therapy. Utilization of bioinformat-
ics approaches in combination with human genetics, epigenetics, and single-cell genomics will lead to better 
understanding of inflammatory disorders, risk of disease recurrence, and association with treatment outcomes 
leading to development of more precise, personalized diagnostics and therapeutic intervention for adult and 
pediatric IBD.

Materials and methods
Data sources of ulcerative colitis patient transcriptomes. Ulcerative colitis (UC) colonic tissue 
microarray and RNAseq gene expression datasets used in this study were obtained from the National Center for 
Biotechnology Information Gene Expression Omnibus (NCBI GEO) data repository using the following GEO 
accession numbers listed in Table 3. In total, 326 adult patient transcriptomes were analyzed from European and 
American  cohorts22,23,69–75; pediatric UC patients were excluded from analysis. For healthy control (n = 42), we 
analyzed colonic transcriptomes obtained from individuals undergoing colonoscopy for either moderate gastro-
intestinal symptoms or colon cancer screening. Transcriptomes from UC patients included regions of inflamed 
(n = 154) and matched uninflamed control (n = 31). Additionally, we utilized transcriptomes from UC patients 
prior to and during anti-TNFα (infliximab) (n = 46) and anti-α4β7 integrin (vedolizumab) (n = 53) treatment 
(Table 3)22,23.

Differential expression testing and pathway analysis. Differentially expressed genes (DEGs) from 
UC microarray datasets (GSE4183, GSE14580, GSE38713) were identified using the web-based NCBI GEO2R 
software  application76. Only those genes expressed at a minimum threshold of > |2.0|-fold change as compared 
to healthy control (with an adjusted p < 0.05) were used for pathway analysis. Ingenuity Pathway Analysis (IPA) 
(www. qiagen. com/ ingen uity) was used to generate canonical pathway and disease and function analyses in the 
Tulane Cancer Center Next Generation Sequence Analysis Core (www. tulane. edu/ som/ cancer/ resea rch/ core- 
facil ities/ cancer- crusa ders). IPA analysis included appropriate use of background genes through pre-analysis 
filtering of ‘species filtering’ (i.e. human) as well ‘tissue and cell lines’ to include those relevant to the intestine 
(i.e. intestinal cells, immune cells, stromal cells, and others).

http://www.qiagen.com/ingenuity
http://www.tulane.edu/som/cancer/research/core-facilities/cancer-crusaders
http://www.tulane.edu/som/cancer/research/core-facilities/cancer-crusaders
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Microarray processing and generation of a multi-cohort UC transcriptional signature and UC 
biologic resistance signature. We generated a single list of DEGs by combining microarray data from 
three independent UC cohorts (GSE4183, GSE38713, GSE14580). Only cohorts from the same microarray 
platform (Affymetrix Human Genome U133 Plus 2.0 Array platform) were utilized in an effort to reduce for 
inconsistencies among probe identifiers and batch effects across different samples were controlled for through 
 SVA77. Transcriptomes were initially managed and normalized using the multi-array average method (justRMA) 
from the affy Bioconductor package (v. 1.60.0)78. Differential expression testing between inflamed UC tissue 
and healthy control samples was accomplished using the limma package (v. 3.38.2)79,80. Any genes duplicated 
in analysis were filtered and only those genes meeting an adjusted p < 0.05 were used. Transcripts were selected 
based on the most significant statistical significance and fold-change > |2.0| differences. Generation of biologic 
resistance signatures were accomplished using two microarray datasets from UC patients treated with anti-
TNFα (GSE12251, GSE73661) or anti-α4β7 (GSE73661). DEGs were identified in non-responders compared to 
responders at various time points using the limma R differential expression analysis package and mean calcula-
tion was performed for gene-level summarization. The Benjamini & Hochberg test was used to estimate the 
adjusted p value (p < 0.05).

RNAseq processing. Processing of RNAseq was accomplished in the Tulane Cancer Center Next Gen-
eration Sequence Analysis Core (www. tulane. edu/ som/ cancer/ resea rch/ core- facil ities/ cancer- crusa ders). 
Raw RNAseq reads (GSE107593) were mapped to an index containing the human haploid genome sequence 
(Genome Reference Consortium Homo sapiens genome build 38, GRCh38). For quantification of RNAseq data 
the software program, RSEM (v.1.2.25)81 was employed. Analysis of transcript reads as measured by Fragments 
Per Kilobase of transcript per Million mapped reads (FPKM) were used further analysis.

Hierarchical clustering. Hierarchical clustering of inflamed UC tissue and matched uninflamed control 
RNAseq transcriptomes (GSE107593) was achieved utilizing Cluster3 software using an uncentered correlation 
as a symmetric matrix, complete linkage, and Pearson correlation as the similarity measure. JavaTree software 
was used to create the corresponding  heatmaps82,83.

Principal Component Analysis (PCA) and generation of a transcriptional signature score. PCA 
of inflamed UC tissue and matched uninflamed control RNAseq transcriptomes (GSE107593) was accomplished 
using the FactoMineR R package and PCA  function84. The first two coordinates of samples and their percent 
variation were plotted. For summarizing transcriptional expression of the multicohort signature into a single 
value, the following formulation was utilized:

with x representing the expression value of the transcript and m representing the median of the transcripts similar 
to the approach previously used by Agrawal et al.85.

CIBERSORT (cell type identification by estimating relative subsets of known RNA tran-
scripts). UC microarray gene expression datasets were formatted into mixture files with patient identifi-
ers and corresponding gene expression levels; these files were subsequently uploaded for CIBERSORT analysis 
according to formatting requirements (http:// ciber sort. stanf ord. edu)17. Findings were further validated using 
updated CIBERSORTx  analysis16. Analysis of mixture files was performed using the core LM22 signature con-
sisting of 547 genes that precisely differentiate mature human hematopoietic cells to determine relative abun-
dances of 22 immune cell subsets including: B-cells (naïve, memory, plasma cells), T-cells (CD8, naïve CD4, 
memory CD4, follicular helper, regulatory, γδ), monocytes, macrophages (M0, M1, M2), dendritic cells, mast 

Score = mean

[

log 2

(

x + 1

m

)]

Table 3.  Clinical and demographic characteristics of UC patients included in analysis. a Healthy control. 
b Uninflamed matched control from UC patients.

Cohort accession Platform Total Control UC Gender (%F) Median age

GSE9452 Microarray (Affymetrix HG-U133_Plus_2) 13 5a 8 28% 46

GSE38713 Microarray (Affymetrix HG-U133_Plus_2) 35 20a,b 15 45% 42

GSE14580 Microarray ((Affymetrix HG-U133_
Plus_2) 30 6a 24 41% 43

GSE59071 Microarray (Affymetrix HuGene-1_0-st) 84 10a 74 41% 45

GSE4183 Microarray (Affymetrix HG-U133_Plus_2) 17 8a 9 66% N/A

GSE107593 RNAseq (Illumina NextSeq 500) 48 24b 24 N/A N/A

Cohort accession Platform Total Responder Non-responder Gender (%F) Median age

GSE12251 (TNF) Microarray (Affymetrix HG-U133_Plus_2) 23 13 10 58% 37

GSE73661 (TNF) Microarray (Affymetrix HuGene-1_0-st) 23 8 15 43% 41

GSE73661 (VDZ) Microarray (Affymetrix HuGene-1_0-st) 53 18 35 48% 40

http://www.tulane.edu/som/cancer/research/core-facilities/cancer-crusaders
http://cibersort.stanford.edu
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cells, eosinophils, and neutrophils. Duplicated genes were filtered based on those meeting an adjusted p < 0.05 
before being input into analysis. For those genes with multiple probes meeting significance thresholds, the 
average expression value of the probe identifiers was calculated and used for analysis. Immune cell output was 
reported as relative fractions for all immune cell subsets and represented as stacked bar charts as a proportion of 
one hundred percent or as fold-change differences normalized to healthy control or therapy responders.

Primary UC tissue RNA sources. Colonic mucosal tissue biopsies for validation of transcript expression 
were obtained from actively inflamed tissue sections of patients with UC (Origene Technologies; ID: CR561752, 
CR562039, CR562979, CR561525, CR560265) and from normal colonic mucosal biopsies of patients who 
underwent colon cancer screening or tissue removal (ID: CR560498, CR560940, CR560136).

qPCR. Total RNA obtained from human colonic tissue was utilized for cDNA preparation required for 
qPCR as previously  described56,86. The primers used for amplification of human cDNA included: ACAT1 (F: 
5′-GCC ATT GAA AAG GCA GGG ATT-3′; R: 5′-TGC CTT GTA GGA GCT TGT CC-3′), HMGCS2 (F: 5′-TAC CAC 
CAA TGC CTG CTA CG-3′; R: 5′-TGG CAT AAC GAC CAT CCC AG-3′), LPCAT1 (F: 5′-ATC CCG ATC TGG GGA 
ACT CT-3′; R: 5′-ATC TGT GGC CAC TTT CCG TT-3′), HCAR3 (F: 5′-ATC TGG GCC CAA CCT CAA AT-3′; R: 
5′-TCT TAG GCC GAG TCC AGT GA-3′), LIPG (F: 5′-TGG TTT GAA CGT GGG GAA CT-3′; R: 5′-GTG TCA GTT 
TGA GGG TCT GCT-3′), PCK1 (F: 5′-CTG AAC CTC TCG GCC AAA GT-3′; R: 5′-GAG AGC CAA CCA GCA GTT 
GT-3′), IL8 (F: 5′-GTG CAG TTT TGC CAA GGA GT-3′; R: 5′-CTC TGC ACC CAG TTT TCC TT-3′), S100A8 (F: 
5′-TCA GCC CTG CAT GTC TCT TC-3′; R: 5′-CGT CTG CAC CCT TTT TCC TGA-3′), ACTIN (F: 5′-CAT CGA 
GCA CGG CAT CGT CA-3′; R: 5′-TAG CAC AGC CTG GAT AGC AAC-3′). To determine the relative levels of 
mRNA the comparative Cq method was employed using Actin as a housekeeping control.

Statistical analysis. Only those values meeting a significant threshold (p < 0.05) as determined by the CIB-
ERSORT and GEO2R algorithms were included in analysis. Statistical analysis was performed between groups 
by Student’s (paired or unpaired) t-test, analysis of variance (ANOVA) test, and Student Newman-Keuls post-test 
using Graph Pad Instat 3 software (Graph Pad Software). The prognostic performance of differentially expressed 
genes for predicting outcomes to therapy was estimated by receiver operating characteristic curve analysis and 
the area under the curve (AUC). The prognostic performance of differentially expressed genes for predicting 
outcomes to therapy was estimated by receiver operating characteristic curve analysis and the area under the 
curve (AUC) with each gene plotted with a curve, and diagnostic accuracy measures (sensitivity and specificity) 
reflecting the value of the combined analysis.
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