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In the last few decades, technological and experimental advancements have enabled a
more precise understanding of the mode of action of drugs with respect to human cell
signaling pathways and have positively influenced the design of new drug compounds.
However, as the design of compounds has become increasingly target-specific, the overall
effects of a drug on adjacent cellular signaling pathways remain difficult to predict because
of the complexity of the interactions involved. Off-target effects of drugs are known to
influence their efficacy and safety. Similarly, drugs which are more target-specific also
suffer from lack of efficacy because their scope might be too limited in the context of
cellular signaling. Even in situations where the signaling pathways targeted by a drug are
known, the presence of point mutations in some of the components of the pathways
can render a therapy ineffective in a considerable target subpopulation. Some of these
issues can be addressed by predicting Minimal Intervention Sets (MIS) of elements of
the signaling pathways that when perturbed give rise to a pre-defined cellular phenotype.
These minimal gene perturbation sets can then be further used to screen a library of
drug compounds in order to discover effective drug therapies. This manuscript describes
algorithms that can be used to discover MIS in a gene regulatory network that can lead to a
defined cellular phenotype. Algorithms are implemented in our Boolean modeling toolbox,
GenYsis. The software binaries of GenYsis are available for download from http://www.vital-
it.ch/software/genYsis/.
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1. INTRODUCTION
Advancements in high-throughput technologies have enabled
biologists to measure the expression (or activity) of many genes
simultaneously. By measuring and comparing the expression of
genes in a normal vs. diseased cell phenotypes, biologists have
been able to identify various key genes involved in disease path-
ways. However, predicting a set of genes in a disease is often not
sufficient as it may not be possible to directly manipulate the
expression of those genes using available drug compounds. This
necessitates studying the interactions of genes that are known
drug targets with respect to the genes (or proteins) that are impli-
cated in high-throughput analysis of specific disease phenotypes.
This observation has shifted the focus of computational and
experimental tools from studying individual genes to understand-
ing the underlying gene regulatory networks (GRNs) of biological
processes. By modeling GRNs, one would like to gain a deeper
understanding of how different cellular phenotypes arise from the
same set of underlying genes and how a biological system can be
forced to differentiate into a specific phenotype by manipulating
the expression of a small set of genes/proteins in the underlying
GRN.

Even with an improved understanding of the working of
cellular signaling components and technological advancements
in designing new drug compounds, it is often not possible to
design drug compounds that specifically target only the desired
genes/proteins with desired effectiveness. Some of these issues can
also be addressed by predicting which elements of the GRNs have
to be targeted in order to attain a pre-defined phenotype. The lat-
ter problem is formally referred to as Minimal Intervention Sets
(MIS) problem in the literature (Karlebach and Shamir, 2010;
Samaga et al., 2010). In an MIS problem, one would like to
enumerate a list of possible sets of genes/proteins from a given
GRN, which when perturbed, can give rise to the desired cellular
phenotypes.

A GRN, such as the one in Figure 1A, can be modeled as a
Boolean network using the mapping we have introduced earlier
in Garg et al. (2009). In the Boolean modeling of a GRN, a node
can exist in two expression states: low and high. These two expres-
sion states are represented by logic 0 and 1, respectively. A state of
the network at a given time instant t is defined by the expression
state of all the nodes at that instant of time. A state of the net-
work evolves over time as defined by the underlying interactions
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FIGURE 1 | (A) A toy GRN representing interactions between a set of
genes/proteins. Arrow-headed edges represent activation and circle-headed
edges represent inhibiting interactions. (B) MIS patters to push the
systems into a steady state where T = 1. For every MIS vector there is at
least one mutations that has to be present. The polarity of these mandatory
mutations are indicated by red (knock-out) or blue (over-express) colors. In
addition, compatible off-target mutations and their polarities
(over-expression or knock-out) are also listed for every MIS vector. Genes
correponding to white color in an MIS vector indicate the mutations in
these genes have no effect on the corresponding MIS vector. Genes
correponding to gray color in an MIS vector should not be perturbed in any
polarity (either by knock-out or over-expression). Else the corresponding
MIS vector may not be able to generate the desired steady state.

and stabilizes into a steady state or an attractor. An attractor is a
set of states, such that once the network simulation reaches into
one of the states of the attractor, it can only transition among the
states within that attractor. An attractor with only a single state
is referred to as a steady state. Here, we use the words attractors
and steady states in the similar context of terminal states of the
network simulations. Attractors of Boolean networks have been
shown to correspond to the cellular phenotypes for various GRNs
in the past (Kauffman, 1969; Mendoza and Alvarez-Buylla, 1998;
Mendoza et al., 1999; Huang et al., 2005; Mendoza, 2005; Fauré
et al., 2006; Klamt et al., 2006; Davidich and Bornholdt, 2008).
Also it has been widely shown how the impact of gene perturba-
tions can be mapped to experimental outcomes in terms of the
steady states. Introducing a gene perturbation in a GRN, wherein
a node is either over-expressed (i.e., constantly high expression
state) or knocked-down (i.e., constantly low expression state) can
change the steady states of the GRN and even push the system
from one steady state into another steady state. Modeling the
system-wide behavior of a GRN in terms of transition from one
steady state to another in response to small perturbations can be
used to systematically discover combinations of perturbations or
MIS that can be of therapeutical advantage.

An MIS pattern gives the minimal possible combinations of
gene perturbations required to force the GRN into a desired
steady state and the term minimal in MIS implies that any other
sub-set of an MIS pattern can not result in the same steady state
behavior. However, more than one MIS patterns can generate the

same steady state and for many practical applications, such as for
screening a library of drug compounds, it would be necessary to
enumerate a large number of such MIS patterns. An example of
a list of MIS patterns that can force the GRN in Figure 1A into
a steady state where the node T is at a high expression level (i.e.,
T = 1) are listed in Figure 1B. Although, most MIS patterns may
seem trivial and involve regulating the direct upstream nodes of
the node T, some non-trivial MIS patterns such as MIS 1 and
MIS 2 may exist. The pattern MIS 1 states that the node Q should
be knocked-out and node A should be over-expressed for forc-
ing the GRN in Figure 1A into a steady state where T = 1. Such
non-trivial MIS patterns that require multiple simultaneous per-
turbations are of utmost interest to algorithms developed in this
manuscript.

The MIS problem has been addressed relatively sparingly in
the past. Two recently published manuscripts by (Karlebach and
Shamir, 2010; Samaga et al., 2010) propose algorithms to com-
pute such minimal sets of targets in a given GRN. However, the
algorithms proposed in both the manuscripts do not scale well
with the size of the signaling pathway when it is desirable to enu-
merate MIS that would require more than three genes/proteins
in the pathway to be simultaneously intervened. Moreover, these
algorithms are not suitable for computationally screening drug
compounds against pathways, as it is very rare to find drug
compounds that would specifically target only a small list of
genes/proteins highlighted in a given MIS. Therefore, in order
to effectively screen drug compounds against pathways, it is nec-
essary to also report compatible off-target genes/proteins along
with every MIS of genes/proteins. Enumeration of compatible
off-targets along with MIS has been completely disregarded in
the previous works, rendering those algorithms of less practical
significance.

The MIS algorithms proposed in this manuscript also report a
list of compatible off-targets along with every minimal interven-
tion set. We demonstrate the advantages of reporting off-targets
by applying our algorithms on a database of miRNAs and their
corresponding gene targets in order to discover disregulated miR-
NAs in cancer pathways. Our algorithm can also find many MIS,
which requires taking into account the initial state of the pathway
that corresponds to the resting state of the cell when the gene per-
turbation should be applied experimentally. We demonstrate the
importance of taking into account the initial expression state of
the GRN by taking the example of T-Helper GRN. We show that
many therapeutically interesting MIS patterns for pushing the T-
Helper cells into Th1 phenotype can be discovered only when the
initial state of the T-helper GRN is set into the Th0 steady state.

2. METHODS
Algorithms 1–4, presented in Figures 5, 6, describe the method-
ology followed to find a list of MIS patterns, given a GRN G, a
target node T (which summarizes the desired steady state), and
Boolean variable outPolarity (which specifies the desired polar-
ity of the target node, i.e., 0 or 1). The function comp_MIS() as
described in Algorithm 1 is the core function of our MIS genera-
tion methodology. The function comp_MIS() starts by unrolling
the GRN into a tree-like structure starting from the target node
T which has a fixed polarity (i.e., either high or low expression)

Frontiers in Physiology | Systems Biology December 2013 | Volume 4 | Article 361 | 2

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Garg et al. Computing MIS in GRNs

in the desired final steady state (Line 3 of Algorithm 1). These
nodes with fixed polarities are referred to as the root nodes of the
network.

Algorithm 2 describes the GRN unrolling function
UnrollGRN(). The function UnrollGRN() is called recur-
sively starting from the root node (or target node) T. The GRN
is unrolled along a path until a duplicate node is found. At that
instance, if all the input nodes to the duplicate node already exist
on the unrolled path, then the duplicate node is assigned a new
name (with the symbol “∼” over the original node name) and
the unrolling process is terminated along this path. Otherwise,
the duplicate node is further unrolled until the criteria for
terminating the unrolling process is met. In each recursion, a set
of nodes on the current path is maintained in the set of already
unrolled nodes (labeled as aN). The current node being unrolled
is added to set aN in Line 5 of Algorithm 2 and the input nodes
(labeled as g) to the current node being unrolled (labeled as Sn)
are checked for duplicacy in Line 7. If the input node g does not
exist in the set aN, then the UnrollGRN() process is repeated for
that input node. In Lines 11–13, we check if any of the input
nodes ĝ to the node g does not belong to the set of duplicate
nodes aN, in which case the node g is further unrolled (Line
15). Otherwise the unrolling process is terminated along the
current path by assigning the node ID corresponding to initial
state nodes. The orgIndex vector maintains the index ID of all the
nodes in the input GRN. The UnrollGRN() process returns a new
node ID corresponding to unrolled node counterpart of original
node Sn. The new node IDs are generated by incrementing
the counter corresponding to original set of nodes in the GRN
in the vector indexCount (Line 18 of Algorithm 2). Vector
indexCount maintains a count of the number of times a given
node in the GRN is duplicated in the unrolling process, and

helps ensuring that no two nodes have the same node ID in the
unrolled GRN. The unrolled function with new unrolled node
IDs corresponding to input nodes to node Sn and new index of
Sn (i.e., outIndex) is generated in the function composeFunc()
(described in Lines 24–30 of Algorithm 2). The composeFunc()
duplicates the Boolean function describing the node Sn in the
original GRN and renames the input and output node with
new node IDs that are generated in the function UnrollGRN().
An offTargetIndex (in Line 20 of Algorithm 2) is a vector of
the set of nodes that contains all nodes that lie in between the
current node being unrolled Sn and the root node T of the
unrolled GRN. The set of nodes in the offTargetIndex are used
for specifying compatible off-targets corresponding to each MIS
in Algorithm 3. The unrolled network generated by applying the
UnrollGRN() function on the GRN in Figure 1A is shown in
Figure 2A.

Once the input GRN is unrolled, Algorithm 1 generates the
MIS vectors by recursively calling the function genMIS() starting
from the unrolled index of target node T in Line 5 of Algorithm 1.
The genMIS() is described in detail in Algorithm 3. The MIS vec-
tors are generated by scanning the unrolled network from the
root node (i.e., target node T) toward the leaf nodes. The func-
tion genMIS() is called recursively for the inputs of a given node
(specified by currNode in Algorithm 3). The MIS vectors corre-
sponding to input nodes are merged as described in the function
mergeMIS(). The merged MIS vectors are combined with the new
MIS vector which is generated for the given currNode using the
function newMIS(). The mergeMIS() function as described in
Algorithm 3, starts by setting Boolean variable flagOR to TRUE
for Boolean input-output relationships that should be treated as
anOR function (Lines 11–17). If the flagOR variable is TRUE, then
the MIS vectors corresponding to input nodes to currNode are

FIGURE 2 | (A) Unrolled GRN when the node T has a fixed
polarity in steady states. The labels 0 and 1 next to node labels
represent polarity propagated from the root node T = 1 to the

leaf nodes in the unrolled networks. (B) Propagation of MIS
patterns through an AND gate. (C) Propagation of MIS patterns
through an OR gate.
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merged using the MIS_OR function (as decribed in Algorithm 4).
Otherwise the input MIS vectors are merged using the MIS_AND
function. The newMIS() function, generates a new MIS vector for
the currNode. It returns a Boolean vector of length six times the
number of number of nodes in the original GRN. The Boolean
vector can be divided into three fragments of equal number of
bits. The first fragment stores the information corresponding to
offTargetIndex nodes, the second fragment stores the information
of nodes that should have a specific initial state (i.e., nodes with
the symbol “∼”), and the last fragment stores the information
regarding the nodes that should be perturbed (i.e., over-expressed
or knocked-out). Figure 2A shows the polarity of each node in
the unrolled GRN as a result of applying the genMIS() function
on the unrolled network.

The MIS_OR() and MIS_AND() are the core functions of our
MIS algorithm and ensure minimal and non-conflict properties
of generated MIS vectors. Functions MIS_OR() and MIS_AND()
merge the list of MIS vectors in a Boolean OR or AND man-
ner as described in Algorithm 4. The MIS_OR() function checks
for setwise containment of an MIS vector from one input list
in another input list (Lines 5 and 7) and maintains the mini-
mal property of generated MIS vectors by dropping MIS patterns
that are not minimal in Lines 6 and 8 of Algorithm 4. The
MIS_AND() function, checks for conflict between the MIS vec-
tors in two input lists (Lines 23–25). Before merging any two MIS
vectors, it checks if the resulting MIS vector would give rise to
a conflicting perturbations (i.e., the same node over-expressed
in one input MIS and knocked-out in the other MIS). Any such
MIS vectors are dropped from the merged list of two input MIS
vectors. Small examples further demonstrating the MIS_AND()
and MIS_OR() functions are described in Figures 2B,C, respec-
tively. In Figure 2B, the MIS pattern at the input node E1, which
requires two perturbations involving over-expression of node B
and knock-down of node Q is dropped from the merged MIS list

at the output, as it is not a minimal pattern and can be replaced
by the minimal MIS at the input node B1, which only requires one
perturbation involving over-expression of node B.

Function genMIS() in Line 5 of Algorithm 1 returns mini-
mal perturbation sets obtained by traversing the unrolled GRN.
However, presence of feedback loops may prevent some of these
MIS patterns from generating the desired steady state in actual
simulations. Therefore, in order to ensure that the generated MIS
can indeed give rise to desired steady state, we simulate the gen-
erated MIS patterns using the the function simulateMIS(), which
essentially uses the Algorithm we developed in Garg et al. (2008)
to model gene perturbations and checks if the resulting steady
state are indeed the ones that are expected from the comp_MIS()
function. The simulateMIS() function also checks for minimality
of generated MIS patterns. These two additional steps, ensure that
the list of MIS patterns resulting from comp_MIS() are indeed a
minimal list of perturbed genes that can push the system into a
desired cellular phenotype.

3. RESULTS
We show the application of our algorithms on T-Helper cell and
Growth vs. Apoptosis gene regulatory networks.

3.1. T-HELPER GRN
We have previously demonstrated existence of three steady states
in a Boolean model of the T-helper GRN [Figures 3A,B, (Garg
et al., 2008)]. These three steady states correspond to molecu-
lar profiles observed in Th0, Th1, and Th2 cells, which can be
distinguished at the molecular level by their pattern of cytokine
secretion that play a central role in cell mediated immunity (Th1
cells) and humoral responses (Th2 cells).

When we applied our MIS algorithm on the GRN of
Figure 3A, it reported 22 MIS patterns that can drive the Th0
steady state into Th1 steady state. Out of these 22 MIS patterns, 8

FIGURE 3 | (A) T-Helper Gene Regulatory Network. Green arrow-headed
edges represent activating interactions and red colored round-headed edges
represent inhibiting edges. (B) Profile of three steady states present in
T-Helper GRN representing Th0, Th1, and Th2 cellular phenotypes. (C) MIS

patterns indicating gene-perturbations in-order to generate Th1 steady states.
These MIS patterns have no pre-requirement on the initial state of the
network. (D) MIS patterns to push the system into Th1 phenotype when the
system is initially in Th0 steady state.
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patterns (Figure 3C) do not have any pre-requirement on initial
state of the network and can lead to Th1 steady state indepen-
dent of the initial state of the network. The remaining 14 MIS
(Figure 3D) would lead to Th1 steady state only if the network is
initially in the Th0 state. It is interesting to note that all the MIS
patterns are composed of either a single or at most two simultae-
nous perturbations. Most of the gene perturbation combinations
among the 14 MIS patterns in Figure 3D are well-known gene
perturbations for biasing the T-Helper cellular differentiation
toward Th1 cell types and have been used as target for well-known
drug molecules to enhance immune response. The existing meth-
ods to find MIS patterns, which do not take into account initial
state of the network, will only be able to identify 8 MIS patterns
listed in Figure 3C. All these 8 MIS patterns require either T-
bet over-expression or GATA3 knock-down in combination with
few other perturbations. However, both T-bet and GATA3 are
known to be difficult to target using drug compounds and can
only be supressed or activated by using siRNAs or through indi-
rect stimulation of upstream cytokines (Weigmann and Neurath,
2002; Usui et al., 2003; Liberman et al., 2009, 2012; Chou et al.,
2010). More interesting perturbations identified by the remaining
14 MIS patterns in Figure 3D highlight the importance of consid-
ering initial state of the GRN in the algorithms presented in this
manuscript.

The Th1 cells produce IFNg as their signature cytokine secre-
tion profile. Secreted IFNg can bind to its receptor IFNgR present
on the Th1 cell surface leading to activation of signaling pathways
involved in Th1 cell differentiation and maintenance of Th1 state
(Novelli et al., 1997; Murphy and Reiner, 2002). The MIS pat-
terns, MISInit 8 and 9, in Figure 3D represent over-expression of
IFNg or IFNgR, respectively, that are required for differentiation
of Th0 cells to Th1 phenotype. The MIS pattern MISInit 3 repre-
sents activation of T cell receptor (TCR) through external ligands,
which can lead to transcriptional expression of various cytokines
involved in T cell differentiation. The remaining MIS patterns
represent other well-known modes of differentiating Th0 to Th1
cell types either through production of IFNg in T helper cells or
by activating proteins downstream of IFNg signaling (Mendoza,
2005; Mendoza and Xenarios, 2006 ). These modes of activation
include expression of external ligands such as IL-18, IL-12, and
IFN-b (MISInit 5, 11 and 14), or by directly stimulating their
target receptors IL-18R, IL-12R, and IFN-bR (MISInit 6, 1 and
12), increased expression of intermediate Kinases IRAK and JAK1
(MISInit 7 and 10), or by expressing transcription factors STAT1,
STAT4, or NFAT (MISInit 13, 2 and 4). The compatible off-target
perturbations in the MIS patterns listed in Figure 3D, are mostly
related to down-regulating the expression of ligands and other
proteins involved in maintenance of Th2 cell type, and differen-
tiation of Th0 to Th2 cell types (Mendoza, 2005; Mendoza and
Xenarios, 2006 ).

3.2. GROWTH vs. APOPTOSIS GRN
We identified key proteins that are known to play a crucial role in
maintaining the balance between growth and apoptosis signals in
the cancer pathways. We then constructed the GRN representing
interactions between these proteins by identifying experimentally
validated functions defining these interactions from the literature.

Boolean formulation of these interactions are summarized in the
GRN in Figure 4A and literature evidence supporting these inter-
actions are listed in Supplementary Table 1. The GRN can be
divided among four modules—PI3K, AKT, p53, and mTORC1—
to represent four sub-networks that are mostly comprised of
linear paths (or no feedback loops). These four modules interact
with each other through positive and negative interactions giving
rise to multiple feedback loops in the resulting GRN. As a result
of these feedback loops, the GRN in Figure 4A gives rise to four
Boolean attractors when simulated using our Boolean modeling
toolbox genYsis (Garg et al., 2008). Both the attractors show
oscillating apoptosis and growth signals demonstrating the abil-
ity of the pathway to self-regulate the cellular growth. Figure 4B
shows the average growth and apoptosis signals in these attrac-
tors. An equal distribution of states displaying high growth and
high apoptosis in these Boolean attractors highlight the balance
maintained by the feedback loops in the constructed GRN.

We modeled the impact of two well-known cancer mutations
in genes p53 and TSC2 on the attractors of GRN in Figure 4A.
The p53 gene is one of the most frequently mutated genes in
human cancers (Bourdon, 2007; Vousden and Lane, 2007). The
p53 mutation leads to constitutive inhibition of its functional-
ity and suppresses apopotosis signals, leading to uncontrolled cell
growth or proliferation. Our simulation results also capture this
effect of p53 mutation, wherein the average apoptosis signals in
the attractor states decreases to 0 and growth signals stay high as
compared to attractors in wild-type GRN (Figure 4B). We also
modeled the impact of mTORC1 and PI3K inhibition (repre-
senting the affect of drug compounds such as Rapamycin and
Wortmannin, respectively) on restoring the balance of growth vs.
apoptosis in the presence of p53 mutation (Figure 4B). From the
simulation results in Figure 4B, it is clear that while PI3K inhi-
bition can balance the p53 mutation by completely suppressing
growth signals, mTORC1 inhibition can only moderately decrease
the constitutive growth signals resulting from p53 mutations. This
can be attributed to PI3K inhibitor acting upstream of mTORC1
in order to block all the three distinct pathways leading to cell
division and protein production (Welsh et al., 1997; Mendez et al.,
2001; Liang et al., 2003). On the contrary, in the presence of muta-
tion in TSC2 gene (leading to loss of function of TSC2 and high
growth vs. apoptosis signals in attractor states), simulation results
show that growth signals cannot be regulated with PI3K inhibitors
(Figure 4B). However, mTORC1 inhibitor can counter the effect
of TSC2 mutation by restoring the growth signals to low level of
wild-type steady state levels. It has been shown in the experiments
that cells treated with PI3K inhibitors show improved apoptosis
response in a TSC2 expression dependent manner (Kolb et al.,
2005). On the other hand, greatly elevated mTORC1 signaling has
been reported in the presence of TSC2 mutation, which can be
restored with mTORC1 inhibitors (Kim et al., 2011).

Having established a confidence in our constructed GRN for
modeling the balance between growth and apoptosis signals in
cancer pathways, we next computed MIS patterns that can force
the dynamics of the network to constitutive high growth and con-
stitutive low apoptosis signals. Our algorithm reported a total
of 54 MIS patterns, none of which requires the system to be
in a specific initial state (Figure 4C). Most of the perturbations
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FIGURE 4 | (A) GRN representing interactions among some proteins
known to play a crucial role in maintaining a balance between apoptosis
and cellular growth in cancer signaling pathways. (B) Distribution of growth
and apoptosis signals in the steady states of the wild-type GRN [labeled
(wt)], or in the presence of p53 or TSC knock-out mutations (labeled p53-

and TSC-), and of the GRN where the knock-out affects of drugs targeting
mTORC1 (labeled mTORC1-) and PI3K (labeled PI3K-) are modeled. (C) MIS
patterns indicating gene-perturbations necessary for in-order to push the
system into the state correponding to constitutive high-growth and
low-apoptosis signals.

(over-expression or knock-out) defined by these MIS patterns are
well-known mutations in cancer cells. Most of the MIS patterns
listed in Figure 4C require two or more simultaneous perturba-
tions, highlighting that highly malignant cell phenotypes often
comprise of multiple mutations. For example, MIS patterns that
contain either p53 or TSC mutations also require mutations in
other parts of the pathway to push the system into desired steady
state. This observation is also supported from the simulation
results in Figure 4B, where these mutations alone cannot give rise
to constitutively high growth and low apoptosis signals in steady
states. Another perturbation vector given by MIS 19 represents
the over-activated AKT protein, which may explain a well-known
mutation in AKT that leads to hyper-phosphorylated form of
AKT in cancer cells.

We next screened these MIS patterns against a database of
miRNA and their target gene pairs in human genome, which
we compiled using four different miRNA target prediction algo-
rithms [miRANDA (John et al., 2004), TargetScan (Lewis et al.,
2005), mirDB (Wang and El Naqa, 2008) and RNA22 (Miranda
et al., 2006)] to predict miRNA-target pairs and combined these
with experimentally validated pairs [TarBase, (Papadopoulos
et al., 2009)]. In silico miRNA target prediction algorithms suf-
fer high rates of type I and type II errors (Watanabe et al.,
2007; Zhang and Verbeek, 2010 ). Therefore, in order to increase
the quality of the predictions we considered only those predic-
tions that were supported by at least two different prediction

algorithms, or were experimentally validated. We restricted the
application of our algorithm to 464 miRNA cancer type pairs that
were collected from different experimental studies in literature
and have been shown to be disregulated (either up-regulated or
down-regulated) in various different human cancers or cancer cell
lines (Sinha et al., 2008).

If a given miRNA targets a gene identified as over-expressed
in an MIS pattern, then we define the polarity of dis-regulation
of that miRNA as down-regulated. Similarly, a given miRNA is
said to be up-regulated if its target gene is knocked-down in
the MIS pattern. When disregulation of only a single miRNA
is assumed to lead to cancerous behavior (i.e., only looking at
MIS patterns with all knock-down genes or all over-expressed
genes), our algorithm predicts 33 up-regulated and 20 down-
regulated miRNAs. The predicted miRNAs, their polarity, cor-
responding cancer types and supporting MIS patterns are listed
in Supplementary Table 2. Out of these predicted miRNAs, 38
miRNAs were found to have the same polarity as has been seen
in published experimental results and 15 predicted miRNAs did
not match the polarity observed in published experiments (Sinha
et al., 2008). However, we believe that the small list of miRNA with
mismatched polarity may arise from the fact that two or more
miRNA may be simultaneously perturbed in the cancer types
studied in published results and require analyzing the effect of
disregulation in more than one miRNA along with our list of MIS
patterns.
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FIGURE 5 | Algorithms for computing the MIS patterns given a Boolean GRN and the profile of desired steady states.
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FIGURE 6 | Algorithms for merging MIS patterns.

4. DISCUSSION
In this manuscript, we have presented an efficient approach to
generate a list of minimal sets of gene perturbations that can
push the dynamics of GRN into a specific steady state (represent-
ing a given cellular phenotype). Our algorithm for computing
MIS patterns follows a branch and bound approach, where the
unrolled network is scanned for MIS patterns in a depth-first
manner. If the network being simulated has many feedback loops,
then the current implementation of Algorithms proposed in this
manuscript may be inefficient due to the large size of the unrolled
network (Supplementary Table 3). However, the unrolled net-
work can be scanned for MIS patterns in an efficient manner
by a parallel implementation of the function genMIS() described
in Algorithm 3. The efficiency of MIS computation can be fur-
ther enhanced by parallelizing the function simulateMIS(), which

simulates and tests the minimality of the MIS patterns generated
by the function genMIS().

The algorithms proposed here can be useful in various exper-
imental settings where one would like to enumerate multiple
options to regulate the dynamics of GRNs. We demonstrate one
such application of our algorithm with respect to T-Helper GRN.
The T-helper GRN shown in Figure 3A has been previously
shown to effectively model the precursor Th0 cells and effector
Th1 and Th2 cells (Mendoza and Xenarios, 2006 ). Understanding
the molecular mechanisms that regulate the differentiation pro-
cess from Th0 toward either Th1 or Th2 is very important, since
an immune response biased toward the Th1 phenotype result in
the appearance of autoimmune diseases, and an enhanced Th2
response can originate allergic reactions (Murphy and Reiner,
2002; Agnello et al., 2003). We previously demonstrated how one
can efficiently simulate the effect of gene perturbations in the T-
Helper GRN (Garg et al., 2008, 2009). However, it would be of
utmost interest to generate a list of possible perturbations that
can transition a cell from one steady state to another. For exam-
ple, MIS patterns required to transition a cell from Th0 to Th1 cell
state would indicate different possible treatments to stimulate the
auto-immune response of the body. The MIS patterns generated
by our algorithm captures some of the well-known perturbations
that have been experimentally validated to differentiate T-Helper
cells into Th1 phenotype. Gene expression levels can often exist at
more than two expression states. The algorithms proposed here
can be extended to multiple expression levels of nodes (such as
Low/Medium/High) by encoding them into Boolean rules (Garg
et al., 2007).

The GRN presented here for modeling the growth vs. apop-
tosis signals in cancer pathways, consists of various feedback
loops that ensures the balance between the growth and apop-
tosis pathways. It is a well-accepted fact that mutations leading
to permanent loss or gain of function of genes in the feedback
loops of signaling pathways can disregulate the delicate balance
between pro-growth and pro-apoptopic cellular signals. If these
mutations are in a favor of pro-growth or anti-apoptosis signals,
then a cell is said to have a pre-disposition toward uncontrolled
growth (and hence proliferation). In such a scenario, a cell (car-
rying mutations) undergoes uncontrolled proliferation and can
subsequently lead to the formation of tumors. Most cancer thera-
pies either try to restore the normal expression of mutated genes
directly or counteract the impact of mutated genes by targeting
other genes (or proteins) in the pathway. Understanding how dif-
ferent genes (and proteins) regulate each other in these pathways
is therefore of major interest in the development of treatments for
various cancers. Here, we show how the impact of such mutations
can be studied with respect to our proposed GRN by modeling
p53 and TSC mutations. In Figure 4B, differential response of
therapies targeting PI3K and mTORC1 nodes in the presence of
p53 and TSC mutations indicate the importance of taking into
account gene mutations when deciding upon the drug therapies.
Whereas, only single mutations are simulated in Figure 4B, in a
real world scenario, multiple mutations can be present simulta-
neously. In such a scenario, activity of multiple genes/proteins
may have to be targeted for the drug therapy to be effective. Such
compatible sets of genes/proteins which would be suitable for
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manipulation by one or more drug compounds can be quickly
discovered by enumerating all MIS vectors of a GRN. Here, we
demonstrate one such application by listing MIS vectors that can
lead to high growth and low apoptosis signals in steady state of
GRN of Figure 4A.

We also demonstrate an example of how the MIS patterns gen-
erated by our algorithm could be used to predict miRNAs which,
when over or under-expressed, could lead to a cancerous pheno-
type of cells. Aberrant expression of miRNAs is known to play
a major role in the development of cancers due to their impor-
tance in various biological processes such as cellular proliferation
and apoptosis (Subramanian and Steer, 2010; Yu et al., 2010).
However, despite much interest in this area, the mechanism of
action of miRNAs in disease remains largely unknown. The cur-
rent view is that miRNAs have evolved to coordinately regulate
cellular processes; thus, whilst the number of miRNAs is rela-
tively small compared to the number of genes [<1000 in humans,
(Griffiths-Jones et al., 2008)], complex regulation mechanisms
can be achieved through the combined actions of multiple miR-
NAs acting in a temporal and spatial manner. In our analysis, of
53 miRNAs predicted to influence the cancerous phenotype, 38
(∼71%) show the same polarity as published data, demonstrating
the potential of this approach. It remains to be seen whether the
remaining 15 predicted miRNAs that do not show the same polar-
ity as published data, have an impact on defining the cancerous
phenotype.

In addition to applications shown in this manuscript, such as
discovering minimal functional mutations in a disease phenotype
and screening drug compound library, one can use the MIS
vectors to guide experimental setups. Normally, in the absence of
information of MIS patterns, one would have to try all possible
combinations (3N) of N different perturbations (compounds or
treatments) of genes/proteins in a given signaling pathway, which
can quickly lead to a large number of experiments for even a
modestly large GRN. Even when number of simultaneous per-
turbations to test are restricted to two, it becomes unfeasible to
perform all possible two-combinations of available compounds.
In such a scenario, MIS patterns generated by our algorithm
can be very useful. The number of MIS patterns that can lead
to a desired steady state can be significantly smaller than the
number of all possible perturbations as has been seen from the
application of our algorithm on the T-Helper and Apoptosis
vs. Growth GRNs (Figures 3, 4 and Supplementary Table 3).
Generating such MIS patterns algorithmically using an approach
presented here can therefore reduce both the number of
simulations and experiments required, and can provide
model-driven insight into which subsets of genes should be
knocked-down and over-expressed to obtain a desired cellular
phenotype.
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